Adriana Pálffy Max Planck Institute for Nuclear Physics ...

20
Nuclear isomers in intense electromagnetic fields Adriana Pálffy Max Planck Institute for Nuclear Physics, Heidelberg, Germany      SDANCA-15 Sofia, October 8 th , 2015

Transcript of Adriana Pálffy Max Planck Institute for Nuclear Physics ...

Page 1: Adriana Pálffy Max Planck Institute for Nuclear Physics ...

Nuclear isomers in intense electromagnetic fields

Adriana Pálffy

Max Planck Institute for Nuclear Physics, Heidelberg, Germany

     SDANCA­15

Sofia, October 8th, 2015

Page 2: Adriana Pálffy Max Planck Institute for Nuclear Physics ...

Max Planck Institute in Heidelberg

Astroparticle physics

Quantum dynamics - interaction of laser light with matter

Light-nuclei interactionLight-nuclei interaction(Theory)(Theory)

Wen-Te LiaoJonas GunstXiangjin KongJörg EversHans A. WeidenmüllerChristoph H. Keitel

Page 3: Adriana Pálffy Max Planck Institute for Nuclear Physics ...

Max Planck Institute in Heidelberg

Light-nuclei interactionLight-nuclei interaction(Theory)(Theory)

Wen-Te LiaoJonas GunstXiangjin KongJörg EversHans A. WeidenmüllerChristoph H. Keitel

Astroparticle physics

Quantum dynamics - interaction of laser light with matter

Page 4: Adriana Pálffy Max Planck Institute for Nuclear Physics ...

 Outline – what could one attempt with light and isomers? 

Part 2. Nuclear quantum optics with 229Th

Part 1. Isomer triggering with the X-ray Free Electron Laser (XFEL)

Page 5: Adriana Pálffy Max Planck Institute for Nuclear Physics ...

Isomer triggering with theXFEL

Page 6: Adriana Pálffy Max Planck Institute for Nuclear Physics ...

Stronger XFEL excitation

Secondary nuclear processes become possible in the plasma environment:

• Secondary photoexcitation

• Coupling to the atomic shell

Nuclear excitation by electron capture - NEEC

Page 7: Adriana Pálffy Max Planck Institute for Nuclear Physics ...

Isomer triggering

Partial level scheme of

Triggering mechanisms

Photoexcitation

Coulomb excitation

NEEC

Typically,

for low-lying triggering levels

Competition in the nuclear excitation process between

resonant XFEL photons – direct photoexcitation plasma electrons – NEEC

Page 8: Adriana Pálffy Max Planck Institute for Nuclear Physics ...

NEEC wins overhand as secondary process

J. Gunst, Y. Litvinov, C. H. Keitel and AP, Phys. Rev. Lett. 112, 082501 (2014)

NEEC cross sections, available electron energies and charge states in the plasma

Page 9: Adriana Pálffy Max Planck Institute for Nuclear Physics ...

NEEC wins overhand as secondary process

J. Gunst, Y. Litvinov, C. H. Keitel and AP, Phys. Rev. Lett. 112, 082501 (2014)

NEEC cross sections, available electron energies and charge states in the plasma

NEEC excitation 5 orders of magnitude larger than direct photoexcitation!!!

Page 10: Adriana Pálffy Max Planck Institute for Nuclear Physics ...

NEEC wins overhand as secondary process

NEEC excitation 5 orders of magnitude larger than direct photoexcitation!!!

Plasma expansion after pulse - thermodynamical model

Atomic processes included via FLYCHK code

Time for NEEC much longer than XFEL pulse duration

For Mo advantageous plasma parameters for NEEC

Total rates still too small for experimental observation of isomer triggering in Mo

J. Gunst, Y. Wu, N. Kumar, C. H. Keitel and AP, arXiv: 1508.07264 (2015)

Page 11: Adriana Pálffy Max Planck Institute for Nuclear Physics ...

Nuclear quantum optics with 229Th

Page 12: Adriana Pálffy Max Planck Institute for Nuclear Physics ...

A possible nuclear frequency standard

ISOLATION FROM ENVIRONMENTISOLATION FROM ENVIRONMENT

1967, hyperfine transition of6s electron in the 133Cs atom. frequency uncertainty

THE SECOND

Better frequency standard

Variation of fundamental constants

Oscillator involving the strong force

fine structure constant, strong interaction parameter

5/15

NARROW TRANSITION WIDTHSNARROW TRANSITION WIDTHS

229mTh, E=7.8 eV

Page 13: Adriana Pálffy Max Planck Institute for Nuclear Physics ...

Cri9cal  Problems-­‐  1  eV  Uncertainty  is  Too  Large

43

? 7.8  ±  0.5  eV  

10-­‐19  eV  

energy

emission

B.  R.  Beck,  et.  al,  PRL.  98,  142501  (2007)

indirect  measurement

Page 14: Adriana Pálffy Max Planck Institute for Nuclear Physics ...

229Th

Γ

Detector

VUV

fluorescence  (signal)  

Cri9cal  Problems-­‐  Low  Signal  to  Background  Ra9o

α  induced  spurious    fluorescence  (background)  

0.75  MHz  in  4π

(a)  0.3  photon/α  decay  (b)  229gTh  life9me  7880  yr  (c)  1018  229Th/cm3

W.  G.  Rellergert,  et.  al,  IOP  Conf.  Ser.:  Mater.  Sci.  and  Eng.  15,  012005  (2010)

Page 15: Adriana Pálffy Max Planck Institute for Nuclear Physics ...

Forward  Detec9on  solves    Cri9cal  Problems

46

229Th αΓ

α  induced  spurious    fluorescence  (background)  1.8  Hz  in  1°  ×  1°  

Nuclear  Forward  Scalering  (signal)

fluorescence  Γ

VUV

W.-­‐T.  Liao,  S.  Das,  C.  H.  Keitel  and  A.  Pálffy,  PRL  109,  262502  (2012)  

nuclear  signature

Page 16: Adriana Pálffy Max Planck Institute for Nuclear Physics ...

Level  Scheme  of  229Th  inside  Crystals

G.  A.  Kazakov,  et.  al.,  New  J.  Phys.  14  083019  (2012)  E.  V.  Tkalya,  PRL  106,  162501  (2011)

ϕzz  =  -­‐5.1  ×  1018  V/m2  

Q5/2  =  3.149  eb  Q3/2  =  1.8  eb  (eb  =  e  ×  10-­‐24  cm2)  quadruple  spli�ng  10-­‐7  eV

2292Th:CaF

~ 7.8 0.5 eV±

52

I =

32

I =

m 52

−12

−32

−12

32

52

sub-­‐Kelvin  cooling  via    spin-­‐spin  relaxa9on  à    kHz  

Page 17: Adriana Pálffy Max Planck Institute for Nuclear Physics ...

0 1 2 3 4 5 6 7 8 9 10Time Delay (ms)

1x10-16

1x10-14

1x10-12

1x10-10

1x10-8

1x10-6

1x10-4

1x10-2

1

1x102

1x104

Inte

nsity

(arb

. uni

t)

= 0 ~ 10 Γ = 10 Γ

7

8Δp

Δp

NFS  Time  Spectrum

5 5,2 2

3 3,2 2

pΩpΔDetector

probe

229Th

W.-­‐T.  Liao,  S.  Das,  C.  H.  Keitel  and  A.  Pálffy,  PRL  109,  262502  (2012)  

Page 18: Adriana Pálffy Max Planck Institute for Nuclear Physics ...

Electromagne9cally  induced    Quantum  Beat

49

pΩcΩ

5 3,2 2

3 3,2 2

5 5,2 2

c pΔ = Δ = Δ

beat    

energy absorp9o

n

Autler-­‐Townes  spli�ng  by  Ωc  ~  kHz  with  coupling  laser  intensity  2  kW/cm2

S.  H.  Autler  and  C.  H.  Townes,  Phys.  Rev.  100,  703  (1955)

Detector couple

229Th

probe

Page 19: Adriana Pálffy Max Planck Institute for Nuclear Physics ...

Coherence enhanced optical determination

W.-T. Liao, S. Das, C. H. Keitel and AP, Phys. Rev. Lett. 109, 262502 (2012)

traditional fluorescence with one field

two-field Lambda scheme

Page 20: Adriana Pálffy Max Planck Institute for Nuclear Physics ...

 Summary 

Part 2. Nuclear quantum optics with 229Th

Part 1. Isomer triggering with the XFEL

NEEC exotic nuclear excitation mechanism predominates in dense plasmas for small E

coherence effects in ²² Th useful to determine⁹the nuclear transition frequency

joint efforts with PTB, TU Vienna, TU München, Jyväskylä, MPQ, U Heidelberg