Adham Ahmed - uni of liverpool

25

Transcript of Adham Ahmed - uni of liverpool

Page 1: Adham Ahmed - uni of liverpool
Page 2: Adham Ahmed - uni of liverpool
Page 3: Adham Ahmed - uni of liverpool

New drugs

medicinal chemistry of antimalarial and anticancer drugs.

'Dry Water' technology

potential for commercial applications in the storage and transportation of gases such as methane and carbon dioxide, as well as in green catalysis

Superficially porous silica

Page 4: Adham Ahmed - uni of liverpool

Uniform silica microspheres Formation of Organic Nanoparticles by Freeze-

Drying and Their Controlled Release Freeze-Align and Heat-Fuse: Microwires and

Networks from Nanoparticle Suspensions Systematic tuning of pore morphologies and

pore volumes in macroporous materials by freezing

Porous silica spheres in macroporous structures and on nanofibres

Hierarchically porous silica monoliths with tuneable morphology, porosity, and mechanical stability

Surface pattern for cell-growth Novel aligned silica monolith A new superficially porous silica particles

4µm

300nm

15µm

H. Zhang, J. Lee, A. Ahmed, I. Hussain, A.Cooper, Angew. Chem. Int. Ed. 2008, 47

A. Ahmed, P. Myers, H. Zhang, Ind. Eng. Chem. Res. 2010, 49, 602

A. Ahmed, N. Grant, L. Qian, H. Zhang, Nanosci. Nanotechnol. Lett. 2009, 1, 185

40µm30µmA. Ahmed, P. Myers, H. Zhang, J. Chem. Mater. 2011, in press

L. Qian, A. Ahmed, H. Zhang, Chem. Mater. 2011, in press

Page 5: Adham Ahmed - uni of liverpool

Outline

How to make hierarchically porous silica beads using polyHIPEs

Controlling the growth of silica particles

Changing the particles size and physical properties

Silica spheres on other porous structures

3µm

2µm

Page 6: Adham Ahmed - uni of liverpool

Emulsion Templated Porous Polymers (PolyHIPEs)

Poly(High Internal Phase Emulsion)

HIPE: high droplet phase volume, >70%

Monomeric continuous phase

Barby & Haq, Eur. Pat. 0,060,138 (1982)

N. Cameron, Polymer, 2005, 46, 1439

Page 7: Adham Ahmed - uni of liverpool

PolyHIPE (polyacrylamide) Beads

Dropwise addition of HIPE to long column of hot oil (sedimentation polymerisation)

H. Zhang, A. Cooper, Chem. Mater. 2002, 14, 4017

Page 8: Adham Ahmed - uni of liverpool

Adsorption of Silica Colloids

Structure collapsed50µm

5µm

2µm

Embedded into the macropore walls

Silica colloids -Poly(acrylamide) composite

Page 9: Adham Ahmed - uni of liverpool

Silica Synthesis in PAM Beads

25µm

H. Zhang, A. Cooper, Chem. Mater. 2004, 16, 4245

5µm

50µm

Microscopic silica-gel coating

Silica gel -Poly(acrylamide) composite

Acidic conditions

Page 10: Adham Ahmed - uni of liverpool

Synthesis of Silica Colloids in PAM Beads

Base H3N:

24 hrs

24 hrs

SoakedModified Stöber synthesisSilica precursor with organic template CTAB and PVA

A. Ahmed, P. Myers, H. Zhang, Ind. Eng. Chem. Res. 2010, 49, 602

Silica growth

Page 11: Adham Ahmed - uni of liverpool

silica nanospheres

Silica microspheres

30µmVoid diameter 10 – 30 µm

Interconnecting (window)

Internal pore structure

External pore structure

A. Ahmed, P. Myers, H. Zhang, Phil. Trans. R. Soc. A 2010, 368, 4351

2µm

300µm 30µm

Page 12: Adham Ahmed - uni of liverpool

30µm1mm

2µm5µm

Template removal by calcination

Page 13: Adham Ahmed - uni of liverpool

0.0 0.2 0.4 0.6 0.8 1.0

0

50

100

150

200

250

Quan

tity

Adso

rbed

(cm

³/g S

TP)

Relative Pressure (p/p°)

0.01 0.1 1 10 1000.0

0.1

0.2

0.3

0.4

0.5

Incr

emen

tal I

ntr

usi

on (m

L/g

)

Pore Diameter (µm)0 1 2 3 4 5 6 7 8 9 10

0.0

5.0x105

1.0x106

1.5x106

2.0x106

2.5x106

3.0x106

Inte

nsity

Position [o2Theta] (Copper (Cu))

1 10 1000.0

0.5

dV/d

log(w

) Pore

Vol.

(cm

³/g-1)

Pore Width (nm)

d- spacing 7.1nm

13.9µm

10.7nm

1.9nm

Surface area = 220 m2/g

Page 14: Adham Ahmed - uni of liverpool

Increasing silica precursor concentration

o Doubling TEOS amount

o Increased mechanical stability

o Lower surface area 53.6 m2/g

o A large portion of nanoparticles (approx. 200 nm)

2µm

20µm

Thicker pore wall ~10nm

4µm

Page 15: Adham Ahmed - uni of liverpool

2µm30µm

50µm 2µm

0.01 0.1 1 10 1000.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Incre

menta

l Intr

usio

n (m

L/g

)Pore Diameter (µm)

1 10 1000.0

0.1

0.2

0.3

0.4

0.5

dV

/dlo

g(w

) P

ore

Vol (

cm

³/g·A

)

Pore Width (nm)0.0 0.2 0.4 0.6 0.8 1.00

50

100

150

200

Quantity

Adsorb

ed (cm

³/g S

TP

)

Relative Pressure (p/p°)

17.2µm12.0nmSurface area = 116 m2/g

Without PVA and CTAB

Without CTAB

Control the silica spheres size

Surface area = 165 m2/g

Page 16: Adham Ahmed - uni of liverpool

0 2 4 6 8 10

0.0

5.0x105

1.0x106

1.5x106

2.0x106

2.5x106

3.0x106

3.5x106

4.0x106

Inte

nsi

ty

Position [o2Theta] (Copper (Cu))

2 4 6 8 10

0.0

2.0x102

4.0x102

6.0x102

8.0x102

1.0x103

0.0 0.2 0.4 0.6 0.8 1.0

50

100

150

200

250

300

Quan

tity

Adso

rbed

(cm

³/g S

TP

)

Relative Pressure (p/p°)

1 10 1000

1

2

dV

/dlo

g(w

) P

ore

Vo

l.

(cm

³/g)

Pore Width (nm)

20µm

0.01 0.1 1 10 1000.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Incre

menta

l Intr

usio

n (m

L/g

)

Pore Diameter (µm)

10µm

d- spacing 7.1nm

11.3µm

1.9nm

Surface area = 729 m2/g

d- spacing 2.5nm

Tuning silica beads surface area and porosity

Page 17: Adham Ahmed - uni of liverpool

Silica-PAM composite beads as a template

H. Zhang, G. Hardy, M. Rosseinsky, A.Cooper, Adv. Mater. 2003, 15, 78

Page 18: Adham Ahmed - uni of liverpool

0.01 0.1 1 10 1000.0

0.2

0.4

0.6

0.8

Incr

emen

tal I

ntr

usi

on (m

L/g

)

Pore Diameter (µm)1 10 1000.0

0.1

0.2

0.3

dV

/dlo

g(w

) P

ore

Vol.

(cm

³/g·A

)

Pore Width (nm)

4µm100µm

Internal pore structure

50µm

external pore structure

2µm

3.9µm7.6nm

Surface area = 247 m2/g

Page 19: Adham Ahmed - uni of liverpool

Porous Structures by Freezing method

Frozen

LN

Polymer solution

Freeze-dried

nanofibers Microfibers Monolith

Polymer %wv

Microsheets

Page 20: Adham Ahmed - uni of liverpool

Sub-Micron chitosan structures

0.1% wv

1% wv

1µm

200µm

L. Qian, A. Ahmed, H. Zhang., J. Mater. Chem., 2009, 19, 5212

L. Qian, E. Willneff, H. Zhang, Chem. Commun. 2009, 3946

Page 21: Adham Ahmed - uni of liverpool

Silica Spheres on Sub-Micron chitosan structures

1mm

1µm5µm 1µm10µm

A. Ahmed, P. Myers, H. Zhang, Phil. Trans. R. Soc. A 2010, 368, 4351

Chitosan sheet-like structure as a template

Chitosan fibers structure as a template

2µm

2µm

1% wv

0.1% wv 0.05% wv

Page 22: Adham Ahmed - uni of liverpool

2µm

1µm

0.01 0.1 1 10 1000.0

0.1

0.2

Incre

menta

l In

trusio

n (m

L/g

)

Pore Diameter (µm)

1 10 1000.00

0.05

0.10

0.15

0.20

0.25

0.30

dV

/dlo

g(w

) P

ore

Vol (c

m³/g·A

)

Pore Width (nm)0.0 0.2 0.4 0.6 0.8 1.00

50

100

Quantity

Adsorb

ed (cm

³/g S

TP

)

Relative Pressure (p/p°)

0 2 4 6 8 100

2000

4000

6000

8000

Inte

nsity

Position [o2Theta] (Copper (Cu)]2.2nm

Surface area = 169 m2/g

d- spacing 4.85nm

60µm

3.5nm

Template removal by calcination

Page 23: Adham Ahmed - uni of liverpool

Fe–sodium carboxymethyl cellulose composite fibre

5µm 5µm

1µm

10 20 30 40 50 60 70 800

200

400

600

Inte

nsi

ty

Position [o2Theta] (Copper (Cu)]

Surface area = 291 m2/gSCMC fibres modified with iron trichloride

α-Fe2O3 fibres (haematite)

Fe2O3 – Silica composite

Calcined 600 oC

Silica synthesis

0.1% wv

Page 24: Adham Ahmed - uni of liverpool

Conclusions

Highly porous silica beads

Controlling the particles size, surface area and porosity

Silica spheres on sub-micron polymer and metal oxide structures

1mm

5µm

Page 25: Adham Ahmed - uni of liverpool

Acknowledgements

Supervisors Dr. Haifei Zhang Prof. Peter Myers

ThermoFisher Dr. Harald Ritchie (development director)

CMD Rob Clowes Elizabeth Willneff (Manchester University) Lei Qian (University of Singapore)