Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive...

99
Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept., Greece, [email protected] SPCC 2016

Transcript of Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive...

Page 1: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Adaptive Sinusoidal Modeling

Yannis Stylianou

University of Crete, Computer Science Dept., Greece,

[email protected]

SPCC 2016

Page 2: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

1 Sinusoidal Modeling

2 Advanced Modeling

3 QHMValidation

4 aQHMDescriptionValidationAM-FM decomposition

5 eaQHM

6 ApplicationsSpeech technologies

7 Key papers

8 References

[email protected] Adaptive Sinusoidal Modeling 2/48

Page 3: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

Sinusoidal Models

Sinusoidal Model:

x(t) =K∑

k=−Kγke

j2πfk t

Special case, Harmonic Model:

x(t) =K∑

k=−Kγke

j2πkf0t

Estimation of parameters (Linear approach):

γ = Ffk s

Model Evaluation, Mean-Squared Error (MSE):

ε =

∫w|s(t)− x(t)|2 dt

[email protected] Adaptive Sinusoidal Modeling 3/48

Page 4: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

Sinusoidal Models

Sinusoidal Model:

x(t) =K∑

k=−Kγke

j2πfk t

Special case, Harmonic Model:

x(t) =K∑

k=−Kγke

j2πkf0t

Estimation of parameters (Linear approach):

γ = Ffk s

Model Evaluation, Mean-Squared Error (MSE):

ε =

∫w|s(t)− x(t)|2 dt

[email protected] Adaptive Sinusoidal Modeling 3/48

Page 5: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

Sinusoidal Models

Sinusoidal Model:

x(t) =K∑

k=−Kγke

j2πfk t

Special case, Harmonic Model:

x(t) =K∑

k=−Kγke

j2πkf0t

Estimation of parameters (Linear approach):

γ = Ffk s

Model Evaluation, Mean-Squared Error (MSE):

ε =

∫w|s(t)− x(t)|2 dt

[email protected] Adaptive Sinusoidal Modeling 3/48

Page 6: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

Sinusoidal Models

Sinusoidal Model:

x(t) =K∑

k=−Kγke

j2πfk t

Special case, Harmonic Model:

x(t) =K∑

k=−Kγke

j2πkf0t

Estimation of parameters (Linear approach):

γ = Ffk s

Model Evaluation, Mean-Squared Error (MSE):

ε =

∫w|s(t)− x(t)|2 dt

[email protected] Adaptive Sinusoidal Modeling 3/48

Page 7: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

iQHM, aQHM, eaQHM, aHM

Towards Adaptive Sinusoidal Models

[email protected] Adaptive Sinusoidal Modeling 4/48

Page 8: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

Estimating Sinusoidal parameters

Sinusoidal representation for a speech/signal frame:

x(t) =

(K∑

k=−Kake

j2πfk t

)w(t)

Methods:

FFT-based methods (i.e., QIFFT [Abe et al., 2004-05, [1] [2]])Subspace methodsLeast Squares (LS) method

Frequency mismatch:

fk = fk + ηk

[email protected] Adaptive Sinusoidal Modeling 5/48

Page 9: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

Estimating Sinusoidal parameters

Sinusoidal representation for a speech/signal frame:

x(t) =

(K∑

k=−Kake

j2πfk t

)w(t)

Methods:

FFT-based methods (i.e., QIFFT [Abe et al., 2004-05, [1] [2]])Subspace methodsLeast Squares (LS) method

Frequency mismatch:

fk = fk + ηk

[email protected] Adaptive Sinusoidal Modeling 5/48

Page 10: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

Estimating Sinusoidal parameters

Sinusoidal representation for a speech/signal frame:

x(t) =

(K∑

k=−Kake

j2πfk t

)w(t)

Methods:

FFT-based methods (i.e., QIFFT [Abe et al., 2004-05, [1] [2]])Subspace methodsLeast Squares (LS) method

Frequency mismatch:

fk = fk + ηk

[email protected] Adaptive Sinusoidal Modeling 5/48

Page 11: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

Estimating Sinusoidal parameters

Sinusoidal representation for a speech/signal frame:

x(t) =

(K∑

k=−Kake

j2πfk t

)w(t)

Methods:

FFT-based methods (i.e., QIFFT [Abe et al., 2004-05, [1] [2]])Subspace methodsLeast Squares (LS) method

Frequency mismatch:

fk = fk + ηk

[email protected] Adaptive Sinusoidal Modeling 5/48

Page 12: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

Estimating Sinusoidal parameters

Sinusoidal representation for a speech/signal frame:

x(t) =

(K∑

k=−Kake

j2πfk t

)w(t)

Methods:

FFT-based methods (i.e., QIFFT [Abe et al., 2004-05, [1] [2]])Subspace methodsLeast Squares (LS) method

Frequency mismatch:

fk = fk + ηk

[email protected] Adaptive Sinusoidal Modeling 5/48

Page 13: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

Estimating Sinusoidal parameters

Sinusoidal representation for a speech/signal frame:

x(t) =

(K∑

k=−Kake

j2πfk t

)w(t)

Methods:

FFT-based methods (i.e., QIFFT [Abe et al., 2004-05, [1] [2]])Subspace methodsLeast Squares (LS) method

Frequency mismatch:

fk = fk + ηk

[email protected] Adaptive Sinusoidal Modeling 5/48

Page 14: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

Quasi-Harmonic Model, QHM [5]

Frequency mismatch:

x(t) =

(K∑

k=−Kake

j2πfk t

)w(t)

QHM (de Prony 1795, Laroche [3] (1989), Stylianou 1993,Pantazis [4] (2008, 2011) ):

x(t) =

(K∑

k=−K(ak + tbk)e j2πfk t

)w(t)

[email protected] Adaptive Sinusoidal Modeling 6/48

Page 15: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

Quasi-Harmonic Model, QHM [5]

Frequency mismatch:

x(t) =

(K∑

k=−Kake

j2πfk t

)w(t)

QHM (de Prony 1795, Laroche [3] (1989), Stylianou 1993,Pantazis [4] (2008, 2011) ):

x(t) =

(K∑

k=−K(ak + tbk)e j2πfk t

)w(t)

[email protected] Adaptive Sinusoidal Modeling 6/48

Page 16: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

A few details of QHM

QHM in the frequency domain:

Xk(f ) = akW (f − fk) + jbk2π

W ′(f − fk)

Decomposition of bk : bk = ρ1,kak + ρ2,k jakThen

Xk(f ) = ak

[W (f − fk)−

ρ2,k

2πW ′(f − fk) + j

ρ1,k

2πW ′(f − fk)

]and taking into account:

W (f − fk −ρ2,k

2π) = W (f − fk)−

ρ2,k

2πW ′(f − fk)+

O(ρ22,kW

′′(f − fk))

Approximation of the kth component of QHM

Xk(f ) ≈ ak

[W (f − fk −

ρ2,k

2π) + j

ρ1,k

2πW ′(f − fk)

][email protected] Adaptive Sinusoidal Modeling 7/48

Page 17: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

A few details of QHM

QHM in the frequency domain:

Xk(f ) = akW (f − fk) + jbk2π

W ′(f − fk)

Decomposition of bk : bk = ρ1,kak + ρ2,k jakThen

Xk(f ) = ak

[W (f − fk)−

ρ2,k

2πW ′(f − fk) + j

ρ1,k

2πW ′(f − fk)

]and taking into account:

W (f − fk −ρ2,k

2π) = W (f − fk)−

ρ2,k

2πW ′(f − fk)+

O(ρ22,kW

′′(f − fk))

Approximation of the kth component of QHM

Xk(f ) ≈ ak

[W (f − fk −

ρ2,k

2π) + j

ρ1,k

2πW ′(f − fk)

][email protected] Adaptive Sinusoidal Modeling 7/48

Page 18: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

A few details of QHM

QHM in the frequency domain:

Xk(f ) = akW (f − fk) + jbk2π

W ′(f − fk)

Decomposition of bk : bk = ρ1,kak + ρ2,k jakThen

Xk(f ) = ak

[W (f − fk)−

ρ2,k

2πW ′(f − fk) + j

ρ1,k

2πW ′(f − fk)

]and taking into account:

W (f − fk −ρ2,k

2π) = W (f − fk)−

ρ2,k

2πW ′(f − fk)+

O(ρ22,kW

′′(f − fk))

Approximation of the kth component of QHM

Xk(f ) ≈ ak

[W (f − fk −

ρ2,k

2π) + j

ρ1,k

2πW ′(f − fk)

][email protected] Adaptive Sinusoidal Modeling 7/48

Page 19: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

A few details of QHM

QHM in the frequency domain:

Xk(f ) = akW (f − fk) + jbk2π

W ′(f − fk)

Decomposition of bk : bk = ρ1,kak + ρ2,k jakThen

Xk(f ) = ak

[W (f − fk)−

ρ2,k

2πW ′(f − fk) + j

ρ1,k

2πW ′(f − fk)

]and taking into account:

W (f − fk −ρ2,k

2π) = W (f − fk)−

ρ2,k

2πW ′(f − fk)+

O(ρ22,kW

′′(f − fk))

Approximation of the kth component of QHM

Xk(f ) ≈ ak

[W (f − fk −

ρ2,k

2π) + j

ρ1,k

2πW ′(f − fk)

][email protected] Adaptive Sinusoidal Modeling 7/48

Page 20: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

A few details of QHM

QHM in the frequency domain:

Xk(f ) = akW (f − fk) + jbk2π

W ′(f − fk)

Decomposition of bk : bk = ρ1,kak + ρ2,k jakThen

Xk(f ) = ak

[W (f − fk)−

ρ2,k

2πW ′(f − fk) + j

ρ1,k

2πW ′(f − fk)

]and taking into account:

W (f − fk −ρ2,k

2π) = W (f − fk)−

ρ2,k

2πW ′(f − fk)+

O(ρ22,kW

′′(f − fk))

Approximation of the kth component of QHM

Xk(f ) ≈ ak

[W (f − fk −

ρ2,k

2π) + j

ρ1,k

2πW ′(f − fk)

][email protected] Adaptive Sinusoidal Modeling 7/48

Page 21: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

Approximations in QHM

we found previously:

Xk(f ) ≈ ak

[W (f − fk −

ρ2,k

2π) + j

ρ1,k

2πW ′(f − fk)

]Back to the time-domain:

xk(t) ≈ ak

[e j(2πfk+ρ2,k )t + ρ1,kte

j2πfk t]w(t)

Initially, we assumed:

xk(t) = ak

[e j(2π(fk+ηk ))t

]w(t)

in other words, it is suggested:

ηk = ρ2,k/2π

[email protected] Adaptive Sinusoidal Modeling 8/48

Page 22: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

Approximations in QHM

we found previously:

Xk(f ) ≈ ak

[W (f − fk −

ρ2,k

2π) + j

ρ1,k

2πW ′(f − fk)

]Back to the time-domain:

xk(t) ≈ ak

[e j(2πfk+ρ2,k )t + ρ1,kte

j2πfk t]w(t)

Initially, we assumed:

xk(t) = ak

[e j(2π(fk+ηk ))t

]w(t)

in other words, it is suggested:

ηk = ρ2,k/2π

[email protected] Adaptive Sinusoidal Modeling 8/48

Page 23: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

Approximations in QHM

we found previously:

Xk(f ) ≈ ak

[W (f − fk −

ρ2,k

2π) + j

ρ1,k

2πW ′(f − fk)

]Back to the time-domain:

xk(t) ≈ ak

[e j(2πfk+ρ2,k )t + ρ1,kte

j2πfk t]w(t)

Initially, we assumed:

xk(t) = ak

[e j(2π(fk+ηk ))t

]w(t)

in other words, it is suggested:

ηk = ρ2,k/2π

[email protected] Adaptive Sinusoidal Modeling 8/48

Page 24: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

Approximations in QHM

we found previously:

Xk(f ) ≈ ak

[W (f − fk −

ρ2,k

2π) + j

ρ1,k

2πW ′(f − fk)

]Back to the time-domain:

xk(t) ≈ ak

[e j(2πfk+ρ2,k )t + ρ1,kte

j2πfk t]w(t)

Initially, we assumed:

xk(t) = ak

[e j(2π(fk+ηk ))t

]w(t)

in other words, it is suggested:

ηk = ρ2,k/2π

[email protected] Adaptive Sinusoidal Modeling 8/48

Page 25: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

Constraints

W (f − fk −ρ2,k

2π) = W (f − fk)−

ρ2,k

2πW ′(f − fk)+

O(ρ22,kW

′′(f − fk))

[email protected] Adaptive Sinusoidal Modeling 9/48

Page 26: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

Influence of the Window

We would like small value for W ′′(f ) at fk

W ′′(f ) is influenced by the length, T , of the analysis window,i.e., for rectangular window: W ′′(f ) ∝ T 3

So ... we would like a short analysis window

But ... long analysis window provides robustness

Length of the window � bandwidth

[email protected] Adaptive Sinusoidal Modeling 10/48

Page 27: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

Influence of the Window

We would like small value for W ′′(f ) at fk

W ′′(f ) is influenced by the length, T , of the analysis window,i.e., for rectangular window: W ′′(f ) ∝ T 3

So ... we would like a short analysis window

But ... long analysis window provides robustness

Length of the window � bandwidth

[email protected] Adaptive Sinusoidal Modeling 10/48

Page 28: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

Influence of the Window

We would like small value for W ′′(f ) at fk

W ′′(f ) is influenced by the length, T , of the analysis window,i.e., for rectangular window: W ′′(f ) ∝ T 3

So ... we would like a short analysis window

But ... long analysis window provides robustness

Length of the window � bandwidth

[email protected] Adaptive Sinusoidal Modeling 10/48

Page 29: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

Influence of the Window

We would like small value for W ′′(f ) at fk

W ′′(f ) is influenced by the length, T , of the analysis window,i.e., for rectangular window: W ′′(f ) ∝ T 3

So ... we would like a short analysis window

But ... long analysis window provides robustness

Length of the window � bandwidth

[email protected] Adaptive Sinusoidal Modeling 10/48

Page 30: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

Influence of the Window

We would like small value for W ′′(f ) at fk

W ′′(f ) is influenced by the length, T , of the analysis window,i.e., for rectangular window: W ′′(f ) ∝ T 3

So ... we would like a short analysis window

But ... long analysis window provides robustness

Length of the window � bandwidth

[email protected] Adaptive Sinusoidal Modeling 10/48

Page 31: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

Influence of frequency mismatch

Assumey(t) = αe j(2πf t+ηt)

modeled by QHM as

x(t) = (a + tb)e j(2πf t) − T ≤ t ≤ T

LS solution provides:

a = αsin(ηT )

ηT

b = α 3j(sin(ηT )

η2T 3− cos(ηT )

ηT 2)

Frequency mismatch estimate:

η = 3

(1

ηT 2− cot(ηT )

T

)[email protected] Adaptive Sinusoidal Modeling 11/48

Page 32: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

Influence of frequency mismatch

Assumey(t) = αe j(2πf t+ηt)

modeled by QHM as

x(t) = (a + tb)e j(2πf t) − T ≤ t ≤ T

LS solution provides:

a = αsin(ηT )

ηT

b = α 3j(sin(ηT )

η2T 3− cos(ηT )

ηT 2)

Frequency mismatch estimate:

η = 3

(1

ηT 2− cot(ηT )

T

)[email protected] Adaptive Sinusoidal Modeling 11/48

Page 33: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

Influence of frequency mismatch

Assumey(t) = αe j(2πf t+ηt)

modeled by QHM as

x(t) = (a + tb)e j(2πf t) − T ≤ t ≤ T

LS solution provides:

a = αsin(ηT )

ηT

b = α 3j(sin(ηT )

η2T 3− cos(ηT )

ηT 2)

Frequency mismatch estimate:

η = 3

(1

ηT 2− cot(ηT )

T

)[email protected] Adaptive Sinusoidal Modeling 11/48

Page 34: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

Influence of frequency mismatch

Assumey(t) = αe j(2πf t+ηt)

modeled by QHM as

x(t) = (a + tb)e j(2πf t) − T ≤ t ≤ T

LS solution provides:

a = αsin(ηT )

ηT

b = α 3j(sin(ηT )

η2T 3− cos(ηT )

ηT 2)

Frequency mismatch estimate:

η = 3

(1

ηT 2− cot(ηT )

T

)[email protected] Adaptive Sinusoidal Modeling 11/48

Page 35: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

Combining Influences

−400 −300 −200 −100 0 100 200 300 400−400

−200

0

200

400

η1 (Hz)

(b)

er(η

1) (

Hz)

−400 −300 −200 −100 0 100 200 300 400−400

−200

0

200

400

η1 (Hz)

(a)

er(η

1) (

Hz)

RectWinHamming

no iter2 iter

• Iteratively, the bias can be removed when |η| < B/3, where B isthe bandwidth of the squared analysis [email protected] Adaptive Sinusoidal Modeling 12/48

Page 36: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

Robustness against additive noise

Signal contaminated by noise:

y(t) =4∑

k=1

akej2πfk + v(t)

Mean Squared Error (MSE):

MSE{fk} =1

M

M∑i=1

|fk(i)− fk |2

MSE{ak} =1

M

M∑i=1

|ak(i)− ak |2

Comparison with Cramer-Rao Bounds (CRB) and QIFFT(Abe et al. 2004)

10000 Monte Carlo simulations

[email protected] Adaptive Sinusoidal Modeling 13/48

Page 37: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

MSE of frequencies as a function of SNR.

0 10 20 30 40 50 60 70 8010

−10

10−5

100

SNR (dB)

MS

E(f

1)

CRBno iter3 iterFFT

0 10 20 30 40 50 60 70 8010

−10

10−5

100

SNR (dB)

MS

E(f

2)

CRBno iter3 iterFFT

0 10 20 30 40 50 60 70 8010

−10

10−5

100

SNR (dB)

MS

E(f

3)

CRBno iter3 iterFFT

0 10 20 30 40 50 60 70 8010

−10

10−5

100

SNR (dB)

MS

E(f

4)

CRBno iter3 iterFFT

[email protected] Adaptive Sinusoidal Modeling 14/48

Page 38: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

MSE of amplitudes as a function of SNR.

0 10 20 30 40 50 60 70 8010

−10

10−5

100

SNR (dB)

MS

E(a

1)

CRBno iter3 iterFFT

0 10 20 30 40 50 60 70 8010

−10

10−5

100

SNR (dB)

MS

E(a

2)

CRBno iter3 iterFFT

0 10 20 30 40 50 60 70 8010

−10

10−5

100

SNR (dB)

MS

E(a

3)

CRBno iter3 iterFFT

0 10 20 30 40 50 60 70 8010

−10

10−5

100

SNR (dB)

MS

E(a

4)

CRBno iter3 iterFFT

[email protected] Adaptive Sinusoidal Modeling 15/48

Page 39: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

Notes on QHM

The approximation made in QHM is valid provided that thefrequency mismatch lies in a specific interval.

This interval is a function of the bandwidth of the analysiswindow.

Robustness of QHM against noise was tested and verified.

It can be shown that iterative QHM is equivalent to (anapproximate) Gauss-Newton method.

There are also relations between QHM and ReassignedSpectrum

[email protected] Adaptive Sinusoidal Modeling 16/48

Page 40: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

Notes on QHM

The approximation made in QHM is valid provided that thefrequency mismatch lies in a specific interval.

This interval is a function of the bandwidth of the analysiswindow.

Robustness of QHM against noise was tested and verified.

It can be shown that iterative QHM is equivalent to (anapproximate) Gauss-Newton method.

There are also relations between QHM and ReassignedSpectrum

[email protected] Adaptive Sinusoidal Modeling 16/48

Page 41: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

Notes on QHM

The approximation made in QHM is valid provided that thefrequency mismatch lies in a specific interval.

This interval is a function of the bandwidth of the analysiswindow.

Robustness of QHM against noise was tested and verified.

It can be shown that iterative QHM is equivalent to (anapproximate) Gauss-Newton method.

There are also relations between QHM and ReassignedSpectrum

[email protected] Adaptive Sinusoidal Modeling 16/48

Page 42: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

Notes on QHM

The approximation made in QHM is valid provided that thefrequency mismatch lies in a specific interval.

This interval is a function of the bandwidth of the analysiswindow.

Robustness of QHM against noise was tested and verified.

It can be shown that iterative QHM is equivalent to (anapproximate) Gauss-Newton method.

There are also relations between QHM and ReassignedSpectrum

[email protected] Adaptive Sinusoidal Modeling 16/48

Page 43: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

Notes on QHM

The approximation made in QHM is valid provided that thefrequency mismatch lies in a specific interval.

This interval is a function of the bandwidth of the analysiswindow.

Robustness of QHM against noise was tested and verified.

It can be shown that iterative QHM is equivalent to (anapproximate) Gauss-Newton method.

There are also relations between QHM and ReassignedSpectrum

[email protected] Adaptive Sinusoidal Modeling 16/48

Page 44: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

QHM and Gauss-Newton method

Assuming we have N samples of x(t) = ce jωtw(t)

Approximate Gauss-Newton solution for frequency

ω(1) = ω(0) −R

{∑Nt=−N tw2(t)x(t)e−jω

(0)t

c(0)∑N

t=−N t2w2(t)

}QHM

x(t) = (c + tb)e jωtw(t)

withω(1) = ω(0) + ρ2

= ω(0) −R

{jb(0)

c(0)

}where

b(0) =∑N

t=−N tw2(t)x(t)e−jω(0)t∑Nt=−N t2w2(t)

[email protected] Adaptive Sinusoidal Modeling 17/48

Page 45: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

QHM and Gauss-Newton method

Assuming we have N samples of x(t) = ce jωtw(t)

Approximate Gauss-Newton solution for frequency

ω(1) = ω(0) −R

{∑Nt=−N tw2(t)x(t)e−jω

(0)t

c(0)∑N

t=−N t2w2(t)

}QHM

x(t) = (c + tb)e jωtw(t)

withω(1) = ω(0) + ρ2

= ω(0) −R

{jb(0)

c(0)

}where

b(0) =∑N

t=−N tw2(t)x(t)e−jω(0)t∑Nt=−N t2w2(t)

[email protected] Adaptive Sinusoidal Modeling 17/48

Page 46: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

QHM and Gauss-Newton method

Assuming we have N samples of x(t) = ce jωtw(t)

Approximate Gauss-Newton solution for frequency

ω(1) = ω(0) −R

{∑Nt=−N tw2(t)x(t)e−jω

(0)t

c(0)∑N

t=−N t2w2(t)

}QHM

x(t) = (c + tb)e jωtw(t)

withω(1) = ω(0) + ρ2

= ω(0) −R

{jb(0)

c(0)

}where

b(0) =∑N

t=−N tw2(t)x(t)e−jω(0)t∑Nt=−N t2w2(t)

[email protected] Adaptive Sinusoidal Modeling 17/48

Page 47: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

Evaluation: RMSE for frequency

B SNR = 0dB, N = 100 (left), N = 500 (right).CRB: Cramer-Rao lower bound for frequency estimation

2 4 6 8 10

10−4

10−3

10−2

Iterations(a)

RM

SE

GNiQHMCRB

2 4 6 8 10

10−4

10−3

10−2

RM

SE

Iterations(b)

GNiQHMCRB

[email protected] Adaptive Sinusoidal Modeling 18/48

Page 48: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

Evaluation: RMSE for amplitude

B SNR = 0dB, N = 100 (left), N = 500 (right).CRB: Cramer-Rao lower bound for amplitude estimation

2 4 6 8 10

10−1

100

Iterations(a)

RM

SE

2 4 6 8 10

10−1

100

Iterations(b)

RM

SE

[email protected] Adaptive Sinusoidal Modeling 19/48

Page 49: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

Reassigned Spectrum

Time relocation:

τ = −∂φ(τ, ω)

∂ω= τ −R

(XTw (τ, ω)

X (τ, ω)

)where

XTw (τ, ω) = −N∑

t=−Ntw(t)x(t + τ)e−jω(t+τ)

Frequency relocation:

ω = ω +∂φ(τ, ω)

∂τ= ω + I

(XDw (τ, ω)

X (τ, ω)

)where

XDw (τ, ω) = −N∑

t=−N

dw(t)

dtx(t + τ)e−jω(t+τ)

[email protected] Adaptive Sinusoidal Modeling 20/48

Page 50: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

Reassigned Spectrum and QHM

QHM: x(t) = (a + tb)e jωtw(t) with b = ρ1a + ρ2ja1

Then, it can be shown:

τ = τ +W2

W0ρ1

and (in case of using Gaussian windows):

ω = ω +W2

W0ρ2

where

Wk =N∑

t=−Ntkw(t)

[email protected] Adaptive Sinusoidal Modeling 21/48

Page 51: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

Reassigned Spectrum and QHM

QHM: x(t) = (a + tb)e jωtw(t) with b = ρ1a + ρ2ja1

Then, it can be shown:

τ = τ +W2

W0ρ1

and (in case of using Gaussian windows):

ω = ω +W2

W0ρ2

where

Wk =N∑

t=−Ntkw(t)

[email protected] Adaptive Sinusoidal Modeling 21/48

Page 52: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

Frequency mismatch estimation error

−600 −400 −200 0 200 400 600−2000

−1000

0

1000

2000

η1 (Hz)

er(

η1)

(H

z)

No Iterations

iQHM

−600 −400 −200 0 200 400 600−2000

−1000

0

1000

2000

η1 (Hz)

er(

η1)

(H

z)

RS−QHM

[email protected] Adaptive Sinusoidal Modeling 22/48

Page 53: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

From QHM to Adaptive QHM, aQHM [6]

QHM (stationarity assumption):

x(t) =

(K∑

k=−K(ak + tbk)e2πjfk t

)w(t)

Adaptive QHM (aQHM):

x(t) =

(K∑

k=−K(ak + tbk)e jφk (t)

)w(t)

where

φk(t) = 2π

∫ t

0fk(s)ds + ϕ, t ∈ [0,T ]

is the estimated instantaneous phase.

[email protected] Adaptive Sinusoidal Modeling 23/48

Page 54: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

From QHM to Adaptive QHM, aQHM [6]

QHM (stationarity assumption):

x(t) =

(K∑

k=−K(ak + tbk)e2πjfk t

)w(t)

Adaptive QHM (aQHM):

x(t) =

(K∑

k=−K(ak + tbk)e jφk (t)

)w(t)

where

φk(t) = 2π

∫ t

0fk(s)ds + ϕ, t ∈ [0,T ]

is the estimated instantaneous phase.

[email protected] Adaptive Sinusoidal Modeling 23/48

Page 55: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

From QHM to aQHM; Graphically

fk(t)

fk(t)

t

tl

tl+T

tl+Tt

l−T

tl−T

}ρ2,k

tl

t(b)

(a)

[email protected] Adaptive Sinusoidal Modeling 24/48

Page 56: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

Frame Rate in aQHM

One sample: no interpolation between estimations

Higher rates (i.e., 5ms, 10ms): Interpolation betweenestimates is required:

Amplitudes are linearly interpolatedFrequencies are interpolated with splinesPhases are interpolated by integration of instantaneousfrequency

[email protected] Adaptive Sinusoidal Modeling 25/48

Page 57: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

Example of estimation in aQHM: no iteration(QHM)

200 300 400 500 600 700 800 900 1000 1100900

920

940

960

980

1000

1020

1040

1060

1080

1100

Fre

quen

cy (

Hz)

Time (sample)

instantaneous frequency

estimated

[email protected] Adaptive Sinusoidal Modeling 26/48

Page 58: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

Example of estimation in aQHM: one iteration

200 300 400 500 600 700 800 900 1000 1100900

920

940

960

980

1000

1020

1040

1060

1080

1100F

requ

ency

(H

z)

Time (sample)

instantaneous frequency

estimated

[email protected] Adaptive Sinusoidal Modeling 27/48

Page 59: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

Example of estimation in aQHM: twoiterations

200 300 400 500 600 700 800 900 1000 1100900

920

940

960

980

1000

1020

1040

1060

1080

1100

Fre

quen

cy (

Hz)

Time (sample)

instantaneous frequency

estimated

[email protected] Adaptive Sinusoidal Modeling 28/48

Page 60: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

Validation

Let us consider as example:

x(t) = (11− 340t + 4000t2)e j2π(280t+19500t2)

and frequency mismatch: |fk − ζk | = 35Hz , using Hammingwindow

Consider simplified approaches: Sinusoidal-based analysis(SM)

Mean Absolute Error (MAE) [frame rate: one sample]

AM FM (Hz)

QHM, 10ms 0.46 2.15

aQHM (1) 0.008 0.006

SM, 10ms 0.44 3.08

[email protected] Adaptive Sinusoidal Modeling 29/48

Page 61: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

Validation

Let us consider as example:

x(t) = (11− 340t + 4000t2)e j2π(280t+19500t2)

and frequency mismatch: |fk − ζk | = 35Hz , using Hammingwindow

Consider simplified approaches: Sinusoidal-based analysis(SM)

Mean Absolute Error (MAE) [frame rate: one sample]

AM FM (Hz)

QHM, 10ms 0.46 2.15

aQHM (1) 0.008 0.006

SM, 10ms 0.44 3.08

[email protected] Adaptive Sinusoidal Modeling 29/48

Page 62: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

Validation

Let us consider as example:

x(t) = (11− 340t + 4000t2)e j2π(280t+19500t2)

and frequency mismatch: |fk − ζk | = 35Hz , using Hammingwindow

Consider simplified approaches: Sinusoidal-based analysis(SM)

Mean Absolute Error (MAE) [frame rate: one sample]

AM FM (Hz)

QHM, 10ms 0.46 2.15

aQHM (1) 0.008 0.006

SM, 10ms 0.44 3.08

[email protected] Adaptive Sinusoidal Modeling 29/48

Page 63: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

Validation

Let us consider as example:

x(t) = (11− 340t + 4000t2)e j2π(280t+19500t2)

and frequency mismatch: |fk − ζk | = 35Hz , using Hammingwindow

Consider simplified approaches: Sinusoidal-based analysis(SM)

Mean Absolute Error (MAE) [frame rate: one sample]

AM FM (Hz)

QHM, 10ms 0.46 2.15

aQHM (1) 0.008 0.006

SM, 10ms 0.44 3.08

[email protected] Adaptive Sinusoidal Modeling 29/48

Page 64: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

QHM reminder

QHM:

x(t) =

(K∑

k=−K(ak + tbk)e2πjfk t

)w(t)

Instantaneous parameters:

Ak(t) =√

(aRk + tbRk )2 + (aIk + tbIk)2

Φk(t) = 2πfkt + atanaIk+tbIkaRk +tbRk

Fk(t) = fk +1

aRk bIk − aIkb

Rk

M2k (t)

= fk +1

2πρ2,k

[email protected] Adaptive Sinusoidal Modeling 30/48

Page 65: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

QHM reminder

QHM:

x(t) =

(K∑

k=−K(ak + tbk)e2πjfk t

)w(t)

Instantaneous parameters:

Ak(t) =√

(aRk + tbRk )2 + (aIk + tbIk)2

Φk(t) = 2πfkt + atanaIk+tbIkaRk +tbRk

Fk(t) = fk +1

aRk bIk − aIkb

Rk

M2k (t)

= fk +1

2πρ2,k

[email protected] Adaptive Sinusoidal Modeling 30/48

Page 66: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

QHM and AM-FM decomposition

AM-FM signal

y(t) =

K(t)∑k=1

ak(t)cos(φk(t)),

Taylor series expansion of the instantaneous phase of kthcomponent:

φk(t) = 2πζkt +∞∑i=0

φk,it i

i !

Instantaneous frequency of the kth component at t = 0:

νk(0) = ζk +φk,12π

... and previously we had:

Fk(0) = fk +ρ2,k

[email protected] Adaptive Sinusoidal Modeling 31/48

Page 67: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

QHM and AM-FM decomposition

AM-FM signal

y(t) =

K(t)∑k=1

ak(t)cos(φk(t)),

Taylor series expansion of the instantaneous phase of kthcomponent:

φk(t) = 2πζkt +∞∑i=0

φk,it i

i !

Instantaneous frequency of the kth component at t = 0:

νk(0) = ζk +φk,12π

... and previously we had:

Fk(0) = fk +ρ2,k

[email protected] Adaptive Sinusoidal Modeling 31/48

Page 68: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

QHM and AM-FM decomposition

AM-FM signal

y(t) =

K(t)∑k=1

ak(t)cos(φk(t)),

Taylor series expansion of the instantaneous phase of kthcomponent:

φk(t) = 2πζkt +∞∑i=0

φk,it i

i !

Instantaneous frequency of the kth component at t = 0:

νk(0) = ζk +φk,12π

... and previously we had:

Fk(0) = fk +ρ2,k

[email protected] Adaptive Sinusoidal Modeling 31/48

Page 69: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

QHM and AM-FM decomposition

AM-FM signal

y(t) =

K(t)∑k=1

ak(t)cos(φk(t)),

Taylor series expansion of the instantaneous phase of kthcomponent:

φk(t) = 2πζkt +∞∑i=0

φk,it i

i !

Instantaneous frequency of the kth component at t = 0:

νk(0) = ζk +φk,12π

... and previously we had:

Fk(0) = fk +ρ2,k

[email protected] Adaptive Sinusoidal Modeling 31/48

Page 70: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

Reconstruction errors with QHM, aQHM, SM

0.05 0.1 0.15 0.2 0.25 0.3 0.35−0.5

0

0.5

Time (s) (a)

0.05 0.1 0.15 0.2 0.25 0.3 0.35−0.1

−0.05

0

0.05

0.1

Time (s) (b)

0.05 0.1 0.15 0.2 0.25 0.3 0.35−0.1

−0.05

0

0.05

0.1

Time (s) (c)

0.05 0.1 0.15 0.2 0.25 0.3 0.35−0.1

−0.05

0

0.05

0.1

Time (s) (d)

Original

QHM Recon. Error

aQHM Recon. Error

SM Recon. Error

[email protected] Adaptive Sinusoidal Modeling 32/48

Page 71: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

aQHM: AM-FM decomposition of VoicedSpeech

Signal Reconstruction

x(t) =K∑

k=1

Ak(t) cos (Φk(t))

Test on 5 minutes of 20 female and male voiced speech(TIMIT)

Average Signal-to-Error Reconstruction Ratio (in dB)

Male Female

QHM 23.9 29.1

aQHM (3) 29.1 34.1

SM 17.2 21.1

[email protected] Adaptive Sinusoidal Modeling 33/48

Page 72: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

aQHM: AM-FM decomposition of VoicedSpeech

Signal Reconstruction

x(t) =K∑

k=1

Ak(t) cos (Φk(t))

Test on 5 minutes of 20 female and male voiced speech(TIMIT)

Average Signal-to-Error Reconstruction Ratio (in dB)

Male Female

QHM 23.9 29.1

aQHM (3) 29.1 34.1

SM 17.2 21.1

[email protected] Adaptive Sinusoidal Modeling 33/48

Page 73: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

aQHM: AM-FM decomposition of VoicedSpeech

Signal Reconstruction

x(t) =K∑

k=1

Ak(t) cos (Φk(t))

Test on 5 minutes of 20 female and male voiced speech(TIMIT)

Average Signal-to-Error Reconstruction Ratio (in dB)

Male Female

QHM 23.9 29.1

aQHM (3) 29.1 34.1

SM 17.2 21.1

[email protected] Adaptive Sinusoidal Modeling 33/48

Page 74: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

Extended aQHM

Recall aQHM:

x(t) =K∑

k=−K(ak + tbk)e jφk (t)

Extended aQHM:

x(t) =K∑

k=−K(ak + tbk)α(t)e jφk (t)

[email protected] Adaptive Sinusoidal Modeling 34/48

Page 75: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

AM-FM modeling: aQHM

0 0.05 0.11

1.5

2

2.5

3

Time (s) (a)

AM

1

0 0.05 0.1600

650

700

750

800

Time (s) (b)

FM

1 (

Hz)

0 0.05 0.11

1.5

2

2.5

3

Time (s) (c)

AM

2

0 0.05 0.1900

950

1000

1050

1100

Time (s) (d)

FM

2 (

Hz)

TrueEstimated

TrueEstimated

TrueEstimated

TrueEstimated

[email protected] Adaptive Sinusoidal Modeling 35/48

Page 76: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

AM-FM modeling: extended aQHM

0 0.05 0.11

1.5

2

2.5

3

Time (s) (a)

AM

1

0 0.05 0.1600

650

700

750

800

Time (s) (b)

FM

1 (

Hz)

0 0.05 0.11

1.5

2

2.5

3

Time (s) (c)

AM

2

0 0.05 0.1900

950

1000

1050

1100

Time (s) (d)

FM

2 (

Hz)

TrueEstimated

TrueEstimated

TrueEstimated

TrueEstimated

[email protected] Adaptive Sinusoidal Modeling 36/48

Page 77: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

Comparing Adaptive Models

0 0.1 0.2 0.3 0.4−0.5

0

0.5

Time (s)

Orig

inal

Sig

nal

0 0.1 0.2 0.3 0.4−0.5

0

0.5

Time (s)

aQH

M R

ec. S

igna

l

0 0.1 0.2 0.3 0.4−0.5

0

0.5

Time (s)

eaQ

HM

Rec

. Sig

nal

0 0.1 0.2 0.3 0.4−0.01

0

0.01

Time (s)

aQH

M R

ec. E

rror

0 0.1 0.2 0.3 0.4−0.01

0

0.01

Time (s)

eaQ

HM

Rec

. Err

or

[email protected] Adaptive Sinusoidal Modeling 37/48

Page 78: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

Stop modeling

0.05 0.1 0.15−0.05

0

0.05

0.1

Time (s)

Original signal /t/

0.05 0.1 0.15−0.05

0

0.05

0.1

Time (s)

adaptive QHM reconstruction

0.05 0.1 0.15−0.05

0

0.05

0.1

Time (s)

extended adaptive QHM reconstruction

0.05 0.1 0.15−0.05

0

0.05

0.1

Time (s)

Sinusoidal reconstruction

[email protected] Adaptive Sinusoidal Modeling 38/48

Page 79: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

Stop modeling

[email protected] Adaptive Sinusoidal Modeling 39/48

Page 80: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

Large scale evaluation

Global Signal to Reconstruction Error Ratio (dB)

Model /p/ /t/ /k/ /b/ /d/ /g/

SM 12.7 12.8 12.4 16.6 14.9 15.3

aQHM 19.9 20.6 21.7 28.3 26.9 27.5

eaQHM 25.4 25.7 27.2 32.9 32.2 32.9

[email protected] Adaptive Sinusoidal Modeling 40/48

Page 81: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

Speech Modifications

High quality pitch scale modification

Within glottal cycle formant tracking and modificationstowards voice conversion

Free pre-echo effect in time scaling

Emotion detection and control

[email protected] Adaptive Sinusoidal Modeling 41/48

Page 82: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

Speech Modifications

High quality pitch scale modification

Within glottal cycle formant tracking and modificationstowards voice conversion

Free pre-echo effect in time scaling

Emotion detection and control

[email protected] Adaptive Sinusoidal Modeling 41/48

Page 83: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

Speech Modifications

High quality pitch scale modification

Within glottal cycle formant tracking and modificationstowards voice conversion

Free pre-echo effect in time scaling

Emotion detection and control

[email protected] Adaptive Sinusoidal Modeling 41/48

Page 84: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

Speech Modifications

High quality pitch scale modification

Within glottal cycle formant tracking and modificationstowards voice conversion

Free pre-echo effect in time scaling

Emotion detection and control

[email protected] Adaptive Sinusoidal Modeling 41/48

Page 85: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

Speech Synthesis

Unit selection based: fast synthesis, smooth trajectories,high quality prosodic modifications, voice conversion

Statistical modeling: naturally smooth trajectories,articulators tracking, adaptation and controllability,modulations

Sinusoidal models work nicely with DNNs

[email protected] Adaptive Sinusoidal Modeling 42/48

Page 86: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

Speech Synthesis

Unit selection based: fast synthesis, smooth trajectories,high quality prosodic modifications, voice conversion

Statistical modeling: naturally smooth trajectories,articulators tracking, adaptation and controllability,modulations

Sinusoidal models work nicely with DNNs

[email protected] Adaptive Sinusoidal Modeling 42/48

Page 87: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

Speech Synthesis

Unit selection based: fast synthesis, smooth trajectories,high quality prosodic modifications, voice conversion

Statistical modeling: naturally smooth trajectories,articulators tracking, adaptation and controllability,modulations

Sinusoidal models work nicely with DNNs

[email protected] Adaptive Sinusoidal Modeling 42/48

Page 88: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

Speech Recognition

Robust to noise filter bank estimation

Data driven dynamic information

High-resolution modulations

Fits well to the DNN framework.

[email protected] Adaptive Sinusoidal Modeling 43/48

Page 89: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

Speech Recognition

Robust to noise filter bank estimation

Data driven dynamic information

High-resolution modulations

Fits well to the DNN framework.

[email protected] Adaptive Sinusoidal Modeling 43/48

Page 90: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

Speech Recognition

Robust to noise filter bank estimation

Data driven dynamic information

High-resolution modulations

Fits well to the DNN framework.

[email protected] Adaptive Sinusoidal Modeling 43/48

Page 91: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

Speech Recognition

Robust to noise filter bank estimation

Data driven dynamic information

High-resolution modulations

Fits well to the DNN framework.

[email protected] Adaptive Sinusoidal Modeling 43/48

Page 92: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

Speech Pathology

Jitter and shimmer estimators

Vocal fatigue

Robust estimation in spasmodic dysphonia

Vocal tremor.

[email protected] Adaptive Sinusoidal Modeling 44/48

Page 93: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

Speech Pathology

Jitter and shimmer estimators

Vocal fatigue

Robust estimation in spasmodic dysphonia

Vocal tremor.

[email protected] Adaptive Sinusoidal Modeling 44/48

Page 94: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

Speech Pathology

Jitter and shimmer estimators

Vocal fatigue

Robust estimation in spasmodic dysphonia

Vocal tremor.

[email protected] Adaptive Sinusoidal Modeling 44/48

Page 95: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

Speech Pathology

Jitter and shimmer estimators

Vocal fatigue

Robust estimation in spasmodic dysphonia

Vocal tremor.

[email protected] Adaptive Sinusoidal Modeling 44/48

Page 96: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

Key papers to read

R. McAulay and T. Quatieri: Speech analysis/Synthesis based on a sinusoidal representation IEEE TASSP,Vol.34, No.4, Aug 1986, pp 744-754.

Y. Pantazis, O. Rosec, and Y. Stylianou: Adaptive AM-FM Signal Decomposition with Application toSpeech Analysis IEEE TASLP, Vol.19, No.2, Feb 2011, pp 290-300.

Y. Pantazis, O. Rosec, and Y. Stylianou: Iterative Estimation of Sinusoidal Signal Parameters. IEEE SPL,Vol.17, No.5, May 2010, pp. 461-464

P. Babu and P. Stoica: Comments on Iterative Estimation of Sinusoidal Signal Parameters. Comments onIEEE SPL, pp.1022-1023, Vol.17, No.12, Dec 2010

Y. Pantazis, O. Rosec, and Y. Stylianou: Reply to ”Comments on ’Iterative Estimation of Sinusoidal SignalParameters’ ” IEEE SPL, pp. 1024-1026, Vol.17, No.12, Dec 2010

G. Degottex and Y. Stylianou: Analysis and Synthesis of Speech using an Adaptive Full-band HarmonicModel IEEE TASLP, Vol.21, Issue 10, pp 2085-2095, 2013

[email protected] Adaptive Sinusoidal Modeling 45/48

Page 97: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

M. Abe and J. S. III, “CQIFFT: Correcting Bias in a Sinusoidal Parameter Estimator based on Quadratic

Interpolation of FFT Magnitude Peaks,” Tech. Rep. STAN-M-117, Stanford University, California, Oct 2004.

M. Abe and J. S. III, “AM/FM Estimation for Time-varying Sinusoidal Modeling,” in Proc. IEEE Int. Conf.

Acoust., Speech, Signal Processing, (Philadelphia), pp. III 201–204, 2005.

J. Laroche, “A new analysis/synthesis system of musical signals using Prony’s method. Application to

heavily damped percussive sounds.,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, (Glasgow,UK), pp. 2053–2056, May 1989.

Y. Pantazis, O. Rosec, and Y. Stylianou, “On the Properties of a Time-Varying Quasi-Harmonic Model of

Speech,” (Brisbane), Sep 2008.

Y. Pantazis, O. Rosec, and Y. Stylianou, “Iterative Estimation of Sinusoidal Signal Parameters,” vol. 17,

no. 5, pp. 461–464, 2010.

Y. Pantazis, O. Rosec, and Y. Stylianou, “Adaptive AMFM signal decomposition with application to speech

analysis,” IEEE Trans. on Audio, Speech, and Language Processing, vol. 19, pp. 290–300, 2011.

T. F. Quatieri, Discrete-Time Speech Signal Processing.

Engewood Cliffs, NJ: Prentice Hall, 2002.

[email protected] Adaptive Sinusoidal Modeling 46/48

Page 98: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

Acknowledgments

My colleagues: Yannis Pantazis, Olivier Rosec (Voxygen),Vassilis Tsiaras, Gilles Degottex

My ex-PhD Student: Giorgos Kafentzis

Tom Quatieri and Prentice Hall for gave me the permission touse figures from Tom’s book[7]

[email protected] Adaptive Sinusoidal Modeling 46/48

Page 99: Adaptive Sinusoidal Modelingspcc.csd.uoc.gr/_docs/Lectures2016/SPCC16_StylianouI.pdf · Adaptive Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept.,

Outline Sinusoidal Modeling Advanced Modeling QHM aQHM eaQHM Applications Key papers References

THANK YOU

for your attention on this part as well!

[email protected] Adaptive Sinusoidal Modeling 47/48