ACTIVITIES 2010/2015 - LGClgc.cnrs.fr/IMG/pdf/livret_activites_en_final.pdfACTIVITIES 2010/2015 ......

76
ACTIVITIES 2010/2015 SCIENCE AT THE CORE OF INDUSTRIAL PROCESSES

Transcript of ACTIVITIES 2010/2015 - LGClgc.cnrs.fr/IMG/pdf/livret_activites_en_final.pdfACTIVITIES 2010/2015 ......

A C T I V I T I E S 2 0 1 0 / 2 0 1 5

SCIENCE AT THE CORE OF INDUSTRIAL PROCESSES

This activities brochure presents the expertise and the mainscientific resultsof theChemical EngineeringLaboratory (LaboratoiredeGénieChimique-LGC)fortheperiod2010-2015. Through itssixresearchdepartments,LGCstudiesawiderangeof topics from chemical, physical or biological processes involving thetransformation ofmatter, to the design, implementation and control ofunitoperationsandindustrialsystems. Theresearchresultsachievedhave ledtonewadvances in themajor fields of concern for society: treatment of water and effluent,generatingandmanagingenergy,healthcareengineering,etc. Youare invited todiscover LGCby travelling throughprocessesfromthescaleofthemoleculeuptothatoflargeindustrialplant. WehopethisbrochureanswersmanyofthequestionsyoumayhaveconcerningtheLGCandwethankallthosewhohaveparticipatedinitscreation.

BéatriceBiscans,DirectorofLGC PatriceBacchin,Deputydirector XavierJoulia,Deputydirector

Table of contentsTheChemicalEngineeringLaboratoryScienceatthecoreofIndustrialProcesses....................................................................................2

AScientificPolicyatthecoreofIndustrialandSocietalChallenges............................................4

6ScientificDepartments..................................................................................................................6

4Crossdomaintopicstopoolskillsandencourageexchanges...................................................8

LaboratoryOrganizationandLife....................................................................................................10

ServiceforProcessAnalysis(SAP)ofLGC.....................................................................................11

Atthecoreofregional,nationalandinternationalEngineering...................................................12

Interactionswiththeeconomicenvironmentandscientificproduction......................................14

Afeweventsinpictures..................................................................................................................15

Interface&ParticleInteractionEngineering..............................................................................16

Membranes.........................................................................................................................................18ThermodynamicApproaches............................................................................................................20BehaviorandStructuringofInterfaces............................................................................................22HydrodynamicsandTransport..........................................................................................................24

ElectrochemicalProcesses.............................................................................................................26ElectrochemicalProcessesandMoltenSalts....................................................................................28ElectrochemicalEngineeringinSynthesis,Depollution,CatalysisandEnergy............................30ElectrochemicalSensorsandProcesses..........................................................................................32

InnovativeMultiphaseReactorEngineering...............................................................................34CatalyticReactorsandHybridProcesses..........................................................................................36FluidizationforEnergy,CVDandNewMaterials..............................................................................38ActivationtechniquesandAdvancedOxidationProcessesfortheEnvironment..........................40

BioprocessesandMicrobialSystems............................................................................................42Engineeringforhealth:BiofilmsandMycotoxins............................................................................44Fermentationandsecondarymetabolites......................................................................................46EngineeringofBiofilms,Energy,SynthesisandCorrosion.............................................................48BiologicalDepollutionofContaminatedEnvironments..................................................................50

ScienceandTechnologyforProcessIntensification...................................................................52Contact,MixingandMicro-StructuredTechnologies.......................................................................54ReactiveSeparation..........................................................................................................................56SupercriticalProcesses.......................................................................................................................58StrategiesforIntensificationandProcessSafety.............................................................................60

ProcessSystemEngineering...........................................................................................................62FunctionalAnalysisofProductsandProcesses:MethodsandGenericToolsforModelingandSimulation.............................................................64AidsforInnovativeSystemDesign...................................................................................................66Multi-ObjectiveOptimizationfortheEco-DesignofIndustrialSystems.......................................68CommandandControlofIndustrialSystems..................................................................................70

2

© IN

P-EN

SIAC

ET /

www.

jpgp

hoto

grap

hie.

com

LGC in figures• 300staffmembersincluding:

-109permanentacademicstaff(researchers,professorsandassis-tantprofessors)-50permanenttechnical,adminis-trativeandengineeringstaff-120PhD:studentsandpost-docs-21invitedprofessorsandtrainees

•Non-consolidatedbudget7Me•7000m2ofbuildingswithchemical

engineeringfacilities

© IN

P-EN

SIAC

ET /

www.

jpgp

hoto

grap

hie.

com

ThemainmissionsoftheLGCarecreating,structuring,capitalising and disseminating knowledge, by forgingcloselinksbetweenprocess,productandtechnology.Thestudiesundertakenconcernmanufacturingprocessesthatconfer controledproperties to theirproducts,aswellasthe design and optimized implementation of innovativeandsustainableprocessesforthechemical,physicalandorbiologicaltransformationofmatterandenergy.

The laboratoryalso trainsa largenumberofstudents(masters, doctorate, post-doctorate) through researchandmaintainsaregularpartnershipwithsocioeconomicpartners for the transfer of new scientific knowledgeandinnovativetechnologiesthroughtrainingorresearchcontracts.

The Chemical Engineering Laboratory : Scienceatthecoreofindustrialprocesses

TheChemicalEngineeringLaboratory(LGC),isaNationalCenterforScientificResearch(CentreNationaldelaRechercheScientifique-CNRS)laboratory,operatedjointlybytheCNRS,theUniversityPaulSabatier(UPS)ofToulouseandtheInstitutNationalPolytechnique(INP)ofToulouse.300peopleworkattheLGC.TheresearchstaffoftheLGCarehostedinfourdifferentbuildings located in the campuses of INP-ENSIACET,INP-ENSATandUPS(EngineeringandScienceFaculty-FSI,andPharmaceuticalSciencesFaculty-FSP)

3

ACTIVITIES 2010 / 2015

... to the scale of whole industrial systems

Crystals Emulsions Membranes

Sensors Molten Salts Electrosynthesis

Activation Oxidation CVD Fluidization

Biofilms Depollution Fermentation

Multifunctional devices

MicrosystemsSeparators

Mixing

Supercritical fluids

Safety

Modeling-Simulation

Design-Innovation

Multi-objective optimization

Scheduling

Innovative technologies

From the scale of the molecule …

Interfaces and Particle Interaction

Electrochemistry

Process Systems engineering

Products' processes

Chemical reactions

Microbial Systems

Intensification

Scientific field

4

TheaimoftheresearchcarriedoutattheLGCistodesign,optimizeandscale-upnewprocessesforthetransformationofproducts,materialsandobjects.Themanufactureofcomplexmultiphasicandmulticompo-nentproductswithspecificpropertiesdemandsnew

routes for approaching the complexity and diversityoftheprocesses.Theyareexploredenvisagingbetterintegration of the processes atmultiple scales: thatofmolecules and particles, or ofwhole populationsof bubbles, droplets, and particles. Research based

Scientific approaches at the core of industrial and societal challenges

LGC’smissionistoproduceknowledgeinthefieldofChemicalEngineeringbyfocussingonindustrialandsocietalconstraintsandissueswhileparticipatingintheinternationalcompetitionofnewknowledgecreation..

5

ACTIVITIES 2010 / 2015

© IN

P-EN

SIAC

ET /

www.

jpgp

hoto

grap

hie.

com

on the thermodynamics and on physical, chemical,electrochemicalorbiochemicalkineticshasbenefitedfromrecentprogressinnumericalfluidmechanics,inmethodsofmodelingandsimulationandalsoinme-thodsofanalysisandinstrumentation.

LGC’sresearchisparticularlyactive inthedesignofhybrid processes, microprocesses, processes for theproduction of advanced materials including micro ornanoparticles, nanostructured objects, the productionof carbon-free energy, the treatment of water andwastewater,andhealthcareengineering.TheLabora-tory scientific approaches are both experimental andcomputational(modeling,simulation,optimization,de-sign).TheLGChasaseriesofpilotplantscoveringthelaboratory’sscaleuptothedemonstratorsinwhichrealindustrialconditionscanbeapproached.Thelaboratoryalsocarriesoutspecificexperimentsatthenano-andmicro-scales generating fundamental data. Further-more, itbenefitsfromalargepoolof instrumentsforcharacterizationandanalysis(scanningelectronmicros-copy,characterizationofparticles,chromatography,ICP,etc.)gatheredintheServiceforAnalysisandProcesses(SAP)ontheINP-ENSIACETcampusorintheMeasure-ments and Analysis Service on the UPS-FSI campus.Inaddition to theseexperimental techniques,specificmeansofcalculationandcommercialorinternallyde-veloped software are available. LGC is organized intosixscientificdepartmentsexploringprocessesfromlo-calscaletothesystemicapproach:thedepartmentofInterface and Particle Interaction Engineering (GIMD),theDepartmentofElectrochemicalProcesses(PE),theDepartmentofInnovativeMultiphaseReactorEnginee-ring(IRPI),theDepartmentofBioprocessesandMicro-bialSystems(BioSyM),theDepartmentofScienceandTechnology for Process Intensification (STPI) and theDepartmentofProcessSystemsEngineering(PSI).

Threecross-domaintopicspoolthespecificskillsofthedifferentdepartmentsaroundsocietaldemandsi)Waterandwastewater; ii)Energy:sourcesandma-nagement; iii) Healthcare engineering. A fourth field,which ismoremethodological, concerns the thermo-dynamicsofcomplexmediaandenablesgenerictoolstobeshared

6

6 Scientific departments

TheIRPIdepartmentcreatesinnovativeprocessesformultiphasesystems,eitherreactiveornot.Itpools skills in catalytic reactor engineering, ad-vancedoxidationprocesses,fluidization,chemical

vapourdeposition(CVD),andactivationtechniquesfordepollution,energy,andnovelmaterials.

The GIMD department focuses on thegeneration and behavior of interfacesinvariousprocessesandonmulti-scaleand multi-physics modeling in dis-

persedmedia (colloids, particles, crystals, emulsions). Physical orchemicalinteractionsoccurringatinterfaces:solid-liquid,liquid-liquidandgas-liquid,inmembraneprocessesandindispersedmediaarestudiedbylinkingthemechanismsoccurringatthemicroscopicleveltothemacroscopicpropertiesofthemediumand/oroftheprocess.

InterfaceandParticleengineering-GIMD

The PE department develops electrochemicalmethods and tools for the design and thecontrol of processes. Multiscale, experimentaland numerical approaches are used to study

phenomena occurring at the electrochemical interfaces and the couplingwithchemicalreactionsinrealmedia.

ElectrochemicalProcesses-PE

InnovativeMultiphaseReactorEngineering-IRPI

7

ACTIVITIES 2010 / 2015

BioprocessesandMicrobialSystems-BioSyM

The BioSyM department focuses oncontrolling microbial activity in agro-food processes, the environment,healthandtheproductionofenergy.It

combinestheknowledgebasesusedinindustrialmicrobiology,thephysiologyofmicroorganisms,bio-electro-chemistryandtoxicolo-gyinordertodesignbioprocesses.

ScienceandTechnologyforProcessIntensification-STPI

The STPI department’s activities focuson thedesign, scale-up, operationandsafetyofintensifiedprocessesinvolvingmultifunctionaldevices,greensolvents,

energyefficiencyandbiosourcedcarbon.Scientificapproachaimsatproductionscaleandestablishesacloselinkbetweentechnology,productandprocess

ProcessSystemsEngineering-PSE

ThePSEdepartmentdevelopsgenericmul-ti-objective tools for modeling, simulation,andoptimization,withtheaimtodesignin-terconnectedequipmentwithinaproduction

unit.Itsactivitycoversthewholerangeofscalesinspaceandtime;fromthemoleculetothemulti-sitecompany,includingdecision-makingbasedontheconceptofindustrialengineering,thedesignofintensifiedequip-mentandintegratedproduct-processdesignusingthetoolsofmolecularsimulation.

8

Waterandwastewater:The research conducted allowed us to develop waterand waste water treatment skills focusing on unders-tanding,modelingandoptimizingtheprocessesappliedtodomesticorindustrialeffluentwithextremelyvariedcharacteristics.Theinvestigationsoftwentyorsoresear-cherscanbegatheredinthreeareas:-Decontaminationofwastewaterbyconcentration-Chemical,biologicalorelectrochemicaldegradation-Potablewaterpurification

Energy:

Thisdomaingatherstheactivitiesrelatedtothecontrol,designanddevelopmentofprocessesandsystemsthatconcernenergy.Theactivitiesinvolvetheimprovementof energyefficiency: in design,management, and im-plementationoftheprocessesandalsointheevaluationanddiagnosisofenergyperformance,thedevelopmentofnewsourcesofenergy(e.g.biomass,bioenergy,solarenergy),thematerialsandtheprocessesinvolvedinen-ergy,aswellastrappingandstorageofCO

2(referredto

assequestrationbelow).

Healthcareengineering:Engineeringforhealthusestheprinciplesofengineeringfrom the cell to the process, as applied to medicine,pharmacyandbiologyforthedevelopmentofservicesor products for the health industry. The main applica-tionsrangefromtheworkflowmanagementinanin-dustrialsiteor inthehospitalsectortotheproductionofpharmaceuticalsandtheforminwhichtheyaremar-keted,thedesignofmedicalappliances,biosensors,andcontrolingtheimpactofprocessesonpublichealthandtheenvironment.

Thermodynamicsofcomplexsystems:

The thermodynamic study of systems in LGC is basedon experiment, theoretical models and the molecularthermodynamics. The applications are: lipids for nutri-tion,multiphase polar systems, supercritical CO

2-green

solventmixtures,exergyforenergyefficiency,activatedsludgefortheadsorptionofdrugs,sugar-basedoroeno-logicalelectrolyticsystems,colloidaldispersedmediaormesoscopicaggregates.

Thefourcross-domaintopicsenablethespecificexpertiseofdifferentdepartmentstobeunitedandencouragecollaborationwithinnationalresearchnetworks.Thesecross-disciplinarytopicsgeneratenewfocusesforresearch,possiblyattheinterfacesofthefieldscoveredbythedifferentdepartments,orevenwithinasingledepartment.

Four cross-domain topics to pool expertise and encourage exchange

9

ACTIVITIES 2010 / 2015

GIMD

Interface & Particle Interaction Engineering

PE

Electrochemical Processes

IRPI Innovative

Multiphase Reactor Engineering

BioSyM

Bioprocesses and Microbial Systems

STPIScience and Tech-nology for Process

Intensification

PSEProcess Systems

Engineering

Membranes Flocculation Precipitation

Electrochemical Sensors

Electrodepollution

Activation and advanced oxidation for environment

Membrane bioreactor Micropollutants Bio-electro- chemical oxidation

CO2 captureWaste water treatment

Multi-objective optimization for eco-design of industrial processes and systems

CO2 captureOil transportCoatings

Redox flow batteries

Molten salts for nuclear applications

Fluidized beds for energy,CVD and new materials

BioenergyBioethanolElectroactive Biofilms

Energy chemical storageGas to liquidEnergy efficiency

Multi- objective optimization for the eco-design of industrial processes and systems

Crystallization & crystal growth, FiltrationDrug, vectorization

Electrosynthesis

Biomedical sensors

Toxic micro-pollutants

Biofilms Biological metabolitesMycotoxins

Screening and development of green organics synthesis

Biological processes modeling

Wat

era

ndw

aste

w

ater

Ener

gy

Phase transitions, Equations of state

Molten salts FermentationSurface/species interactions

Adsorption /desorptionIonic liquidsSolubility

Supercritical fluidsPhase equilibraMulticomponents mass transfer

Computer aided products and processes engineeringM

ETHO

DS:

Ther

mod

ynam

ics

of co

mpl

ex

Heal

thca

re

engi

neer

ing

SOCIETAL DEMANDS

Cross-domain topics, societal demands and methods

10

Laboratory organization and life

TheLGCoperatesthroughtheworkofagroupofpeoplewhocommunicateonsubjectsofascientific,technicaloradministrativenature.Toenhanceexchange,thelaboratoryisorganizedfunctionallyalongthelinesofthefollowingchart.

11

ACTIVITIES 2010 / 2015

Service for Process Analysis (SAP) at the LGC

SpecificEquipment-DifferentialScanningCalorimeter(DSC)Q2000-Thermo-gravimetricanalyzer(TGA)Q600-Thermo-gravimetricanalyzerlinkedtoaFouriertransform

infraredspectrometer(TGA/DSC1-FTIRNicoletIS10)-Surfaceandinterfacialmeasuringdevice(contact

anglemeasurementwithWilhemy-plateGBX,dropshapeanalyzerKrüssDSA100,etc)

-Rheometer(AR2000Ex)-Porosimeterforsolidsandsurfacecharacterization

(AUTOPOREIV,BELSORP-miniII,BELSORP-max)-ICP-AES(Ultima2R)-ZetaPotential(NanoZS)-Laserparticlesizeanalyzer(MS2000,MS3000,Nanozs)-Particle(ordrop)shapeandParticle(ordrop)size

(MorphologiG3S)-ScanningElectronMicroscope:

.JEOLJSM7100FTTLSFEG-SEM+EDXOxfordInstruments.

.HITACHITM3000TabletopSEMequipedwithEDXdetectorOxfordInstruments.

Sectorsofactivity-Chemistry-Ecologyandenvironment-Biologicalsciences,medicalsciencesand

biotechnologies-Sciencesofengineeringandsystems-Agro-Foodindustries,Agroindustries

Expertise-Developmentofanalyticalprotocols-Performingmeasurementsandspecifictrials-Trainingstudents

ContactPhilippeDestracE-mail:[email protected]:www.lgc.cnrs.fr

TheSAPisLGC’ssharedanalyticalservice.Itwascreatedin2000andbringstogethertheinstrumentsessentialtothelaboratoryalongwithstaffhavingtheexpertisetorunit.Theaimistomaintainandenhancetechnicalknow-howwhileguaranteeingoptimalservicefortheinstruments.TheSAPalsoperformsanalyticalworkforexternallabsandcompanies.ApolicyofinvestmentoftheLGC’sownfundsalongwithhelpfromtheRegionalCouncilofMidi-PyrénéesandtheEuropeanUnion(EuropeanRegionalDevelopmentFund-ERDF)providesforregularrenewalofthemachines.Threeheavyinstrumentswereacquiredin2014,FEG-SEM,TGA-FTIRandBET.

12

RegionalTheLGCparticipatesactivelyintheactionsoftheresearchfederationFERMAT(Fluids,Energy,Reactors,MaterialsAndTransfers)whichaimsinparticulartoinitiateandsupportinterdisciplinaryresearchprojectsinthebroaddomainofSciencesforEngineering,inToulouseandtheMidi-Pyre-neesRegion.FERMATcreatesanexcellentopportunitytopooltheskillsdeveloped in different laboratories in the Toulouse areaand encourage exchange on extremely varied scientificsubjects ranging from multiphase flow to the study ofmaterials,colloidsandengineeringofthelivingworld.Itmakesavailabletheuseofacertainnumberofcommonbutadvancedtechniquessuchas:X-raymicrotomography,atomicforcemicroscopy,high-temperatureX-rayreflecto-metry-diffractometry, lasersandhigh-definition cameras,morphometry,etc.TheLGCalsoparticipatesinafederativestructureknownasIODE(EngineeringofDistributedOrganizations)inthedomainofIndustrialEngineering(DepartmentPSI)inasso-ciationwithlaboratoriesfromtheAquitaineandMidi-Py-reneesregions.

NationalandEuropeanTheLGCisrecognizedasbeinga leader inthefieldofChemicalEngineering.ItsrankingonanationallevelisvisiblethroughitsactiveparticipationinvariousResearchGroups(RG):ThermodynamicsRG,BioprocessesRG,Col-loidal Media RG, Modeling, Analysis and Implementa-tionofDynamicSystemsRG.MembersoftheLGCchairworkgroupsfortheSociétéFrançaisedeGéniedesPro-cédés(SFGP)andtheEuropeanFederationofChemicalEngineering (EFCE) andparticipate in the CNRS Energynetwork.

International:TheLGCmaintainsanetworkofinternationalcollabora-tionsthroughresearchprojects,takinginforeignresear-chers,exchanging students,organizationandparticipa-tioninscientificcommitteesofinternationalcongresses.TheinternationalinfluenceoftheLGCisespeciallyvisiblethroughtheproportionofscientificpaperspublishedincooperationwith partners from laboratories abroad. Intheperiod2009-2014,236articles(36%)ofthetotalnu-mberpublished,werewrittenwithscientistsfromothercountries.Theproportionofpublicationspercontinentispresentedinthisfigureandshowsafairlywellbalanceddistributionofthecollaborations.

At the Core of Regional, National and International engineering

30,8%31,9%

10,1%

5,4%3,3%

2,2%16,3%Europe

Africa

NorthAmerica

Asia

SouthAmerica

MiddleEast

Oceania

Proportionofarticlespublishedwithpartnersfromforeignlabs(2009–2014)

NationalA web of companies and industriesOver 80 industrial partnersWorking group with RIO TINTO ALCANLabcom SOpHy

Regional implantation

Centers of competitiveness• Water• Cancer-bio-health• Agrimip

Aerospace valley

Federation of laboratories from the Toulouse areaIMFT LISBP LAPLACE

LAAS CIRIMAT

International• Member of EFCE (European Federation of Chemical Engineering)

• 4-7 professors invited per year• 25% of PhD: students are from abroad• 36% of the publications are co-written with non-French scientists

GDR (CNRS Research Group):• Colloidal media,• Thermodynamics• Bioprocesses• Modeling

SFGP (French Society for Process Engineering)

ACTIVITIES2010/2015

13

14

Interactionwiththesocio-economicenvironment;The LGC has a high level of interaction with thesocio-economicworld:contractsbringinaboutM€7,(withoutsalaries).Thegraphgives thedistributionof contracts in terms of income from each sourceof funding: ANR (National Research Agency)conventions;CCREResearchcollaborationconventionwithaEuropeanpartner;CCRIResearchcollaborationconventionwithanindustrialpartner;CCRPResearchcollaborationconventionwithapublicpartner;CPScontractforprovisionofservices;FUIInter-ministerialAppliedResearchFund

Scientificproduction:Each year the Laboratory publishes about 130articlesandtypicallyappliesfor7patentsprotectingitsinventions.Thedistributionofitspublicationsbyresearch field shows that 30% concern chemicalengineering.Thelaboratoryalsopublishesnumerousarticlesinchemistry,engineeringinabroadsense,materials,biologicalsciencesandbiotechnology.

Interaction with the economic environment and scientific production

ChemicalengineeringChemistryEngineeringMaterialscienceBiologicalscienceandmicrobioloy

EnvironnementalsciencePhysicsComputersciencePharmaceuticsEnergy

>FieldsofresearchfollowingananalysisofLGC’spublicationsbyScopuson01/07/2013

>Distributionoffunding(%oftotalfunding)intermsofcontracttype(2009–2014)

46%

8%

23%

9%6% 8%

29,6%

15,8%10,3%

9,8%

13,1%

6,6% 4,4%

3,5%2,1%

4,6%

ANR CCRE CCRI CCRP CPS FUI

15

ACTIVITIES 2010 / 2015

Some events in a few pictures

Prize:

2014: AnLGCresearcherreceivedanawardattheTrophéesdesÉtoilesdel’Europe(TheEuropeanStarTrophies)2014

2014: AmemberoftheLGCwasnamedasvicepresidentoftheEFCE

2012: TheprizeforInnovativeTechniqueswasawardedto3researchersfromtheLGC

Internationalevents:

2009 – 2011 – 2014 : LGCcreatedandchairedaseriesofevents:InternationalCongressonGreenProcess

Engineering(Venice,Kuala

Lumpur,Seville).

2014 : LGCorganizedandchairedtheInternationalSympo-siumofIndustrialCrystallization

(ISIC19)heldinToulouse.

2011 – 2012 – 2014 : MartineAuriolSeminaries

2013 :GAYAProject,abiomass

gasificationdemonstrator2011 : CreationofajointworkgroupCNRS/UPS/RioTintoAlcan.

Industry-orientedevents:

ISO9001:

CertificationofLGC’smanagementsystemoftheAnalysisandProcessesService(SAP)

16

I N T E R F A C E S - M E M B R A N E S - C O L L O I D S - A G G R E G A T E S / F L O C S - C R Y S T A L S - E M U L S I O N S - S U S P E N S I O N S

SCIENTIFICDEPARTMENT:

InterfaceandParticleInteractionEngineering

Multi-scaleapproaches

TheissuesdealtwithbyGIMDare,asitsnamesuggests(GIMD=InterfaceandParticle InteractionEngineering) tounderstand,modelandcontrol themecha-nismsoccurringinprocessesorsystemsinvolvinginterfaceswithaviewtopre-

dicting theirbehavior. Thebehaviorof these inter-facescanbecontrolledbymechanismsofdifferenttypes and scales: hydrodynamic, thermodynamic,physicalorchemical,aswellasbyconjointactionsbetweendifferentmechanisms.Researchwork inGIMD concerns a broad rangeofprocessesorunitoperationssuchas:filtrationcrys-tallization, membrane separation, precipitation, ex-trusionofhollowfiber,wetgrinding,emulsification,fluidization, aggregation, flocculation, transport indispersedmediaandevenatomization.Thesameistrueforthearrayofsizesoftheobjectsstudied ranging from molecules to non-Browniandispersionsthroughcolloidalmedia.Owingtotheintegrationofanincreasingcomplexityof themedia studied: formulations, polydispersion,complex interfaces, concentrated media and mul-ti-scalemechanisms, the investigations carried outbyGIMD,have,over the lastdecade, ledtoan in-creased development of local approaches. This isthe result of ever increasing technical and societaldemands:aneyetothefutureforbettercontrolandoptimizationonarelevantscalebutalsotodesignsaferandcleanerprocesseswith increasingly strictstandardstoberespectedconcerningboththepro-ductionandtheeffluent.

Small-angle X-ray scattering (SAXS).

Simulation of the laminar-turbulent transition in a suspension flowing through a flat channel.

17

I N T E R F A C E S - M E M B R A N E S - C O L L O I D S - A G G R E G A T E S / F L O C S - C R Y S T A L S - E M U L S I O N S - S U S P E N S I O N S

ACTIVITIES2010-2015-InterfaceandParticleInteractionEngineering

InterfaceandParticleInteractionEngineering

Monitoring of colloidal film drying by DWS (Diffusing WaveSpectroscopy)

Combinedexperimentalandnumericaltools

Thetrendtowardsmicroscalesininterfacesandparticleinteractionshasbecomepossiblebothexperimentallyandtheoretically,bythedevelopmentofnewexperi-mentaltoolsandhigh-accuracymetrology(lightscatte-ring,smallanglescattering,rapidparticleimagevelo-cimetry(PIV),rapidhigh-resolutionimageryandX-raymicro-tomography)andthecorrespondingdigitaltoolsDNS-FCM coupling or Level set, IBM, Poisson-Boltz-mann,WITS,NWChem.Thephenomenastudiedcovera broad rangeof interactions that can bemulti-bodyparticle/molecule-surface or multi-scale (particle, ag-gregate,network,confinement),underthermodynamicor hydrodynamic limitations such as phase changesand transitions (crystals, colloids), structuring pheno-menaatthemolecularorcolloidalscale(membranes,composites,polymorphism,solute-solvent-material in-teractions,colloidalfilms,aggregation)oratthescaleof non-Brownian dispersions (flocculation, disruption,fragmentationandcoalescence)oragain,thedynamicsof interfaces and the transport of suspensions. The relationship between thesemechanismsatmicroscalesandthestatisticalquantitiesorthemacroscopicbeha-vior(permeability,porosity,diffusion,viscosity,selectivity,polydispersity,propertiesofuse,stateequations,etc.)thatcanbeusedtocharacteriseperformanceatthescaleofaprocessorofanoperationareanimportantconnectingthreadrunningthroughallthisresearchwork.

GIMDisorganizedaroundfourscientificthemes:Membranes,ThermodynamicAp-proaches,BehaviorandStructureofInterfaces,HydrodynamicsandTransport.

Headofthedepartment:Olivier MASBERNAT

Permanentmembers: Micheline Abbas | Pierre Aimar | Patrice Bacchin | Béatrice Biscans | Christel Causserand | Emmanuel Cid | Clémence Coetsier | Sandrine Desclaux | Christine Frances | Sylvain Galier | Yannick Hallez | Jean-François Lahitte | Benjamin Lalanne | Olivier Masbernat | Martine Meireles | Jean-Christophe Remigy | Kevin RogerI Jean-Christophe Rouch | Hélène Roux de Balmann | Carole Saudejaud | Sylvie Schetrite | Sébastien Teychené | Mallorie Tourbin | Jean-Luc Trompette.

18

I N T E R F A C E S - M E M B R A N E S - C O L L O I D S - A G G R E G A T E S / F L O C S - C R Y S T A L S - E M U L S I O N S - S U S P E N S I O N S

1THEME

GroupLeader:Jean-FrançoisLahitte

Thetheme’sresearchincludesstudyingthephenomenaoccurringduringthepre-parationofmembranes(phaseinversion,functionalization),orduringtheirimple-mentation(solvent/solute/membraneinteractions,ageing),theircharacterization(X-ray micro-tomography, retention model) and their integration into a process(gas/liquidtransfers).

CO2capture:themembranesolution

Wehaveshownthatgas-liquid(G/L)membranecontactorsmadeofhollowcompositeswithadensepermeableskinofferedsuitablesolutionsforCO

2capture.Intensificationfactorsof4andmorecom-

paredtothebestconventionalabsorptioncolumnswereobtainedalongwithstabilityofoperationusingmodelgases(incollaborationwithLRGPNancy)[1].TheLGChasbeenlookingatthemanufac-tureofhollowfibers,inparticularattheconditionsrequiredforthecontinuousdepositionofthinlayersofpolymeratthesurfaceofahollowfiber.ThetechnologydevelopedwontheprizeforInnova-tingTechnologyfortheEnvironmentatthePollutecTradeFair2010andistheobjectofapatent(WO2014020019).

Newmaterialsforuseincatalyticprocesses

Theefficiencyofcatalyticmembraneshasbeendemonstratedwhenmetalnanopar-ticlesof3to4nmareincorporatedatthesurfaceoffunctionalizedmembranes.Thecatalyticnanoparticlesareimmobilizedanddispersedinapolymerchemicalgel.Theincreaseinthefiltrationfluxlimitingtheroleofdiffusion,andthehighandlocalizednanoparticleconcentrationleadstoa30000-foldincreaseinreactionratecomparedtotheresultsofastirredreactor,withconversionlevelsreaching100%[2].

Ageingofmembranes:betterunderstandingforbetteruse

Drinking water production plants using membrane filtration processes reportmembrane failure issues.We showed thatmembranedegradation ismainly in-ducedbyexposuretosodiumhypochlorite,anoxidantbroadlyusedduringin-placecleaning.CorrelationofmolecularandmacroscopiccharacterizationsdemonstratedthatdegradationofPVP(ahydrophilicagentinthematerial)isresponsibleforthelossofmembraneintegrity.Autopsyofmembranesthathadagedforseveralyears

Membranes

Coating of a catalytic membrane loaded with reactive nanoparticles.

Hollow fiber ultrafiltration membrane.

19

I N T E R F A C E S - M E M B R A N E S - C O L L O I D S - A G G R E G A T E S / F L O C S - C R Y S T A L S - E M U L S I O N S - S U S P E N S I O N S

ACTIVITIES2010-2015-InterfaceandParticleInteractionEngineering-Theme1

onsitesupportedtheobservationsmadeinthelaboratory:theimpactofhypochlo-riteconcentrationonthedegradationratedominatesthatoftheexposuretime.

Retentionofbacteriaduringmicro-filtration:influenceofthemedium

During the removal of bacteria bymicrofiltration usingmembranes qualified as“sterilising”, leakage of microorganisms was observed. Our findings confirmedthatE.coli,aGramnegativebacterium,isabletochangeitsshapesufficientlytopassthroughamembranewithporessmallerthanthesmallestdimensionofthebacterium.Moreover,hypotonicconditionswerefoundtoincreaseretentionofthebacteriawhilehypertonicmediaenhancedtheirabilitytocrossthemembrane.

Membrane/solutioninteractionsandtransferacrossmembranes

Dependingonthetypeofmembraneoronthetransferregime,itwasfoundthattheincreaseinneutralspeciestransferacrossthemembraneinthepresenceofelectrolyte isgovernedeitherbymodificationof thestructuralpropertiesof themembrane(material/electrolyteinteraction)orbythemodificationoftheproper-tiesofthesolute(solute/electrolyte interaction).The increaseofthetransferofneutralsolutes,linkedtothepresenceofelectrolyte,wascorrelatedtothehydra-tionoftheions(effectsofswellingofthematerialandreductionoftheapparentsizeofthedehydratedion)[4].

3D reconstitution of the porous structure of a membrane by X-ray tomography analysis.

References : u Lasseuguette E., J-C. Rouch, J-C.

Remigy, Hollow-Fiber Coating : Application to Preparation of Composite Hollow-Fiber Membrane for Gas Separation, IEC&R, 52, 36, 13146-13158 (2013)

v Emin C., J-C. Remigy, J-F. Lahitte, Influence of UV grafting conditions and gel formation on the loading and stabilization of palladium nanoparticles in photografted polyethersulfone membrane for catalytic reactions, Journal of Membrane Science, 455, 55-63 (2014)

w Pellegrin B., R. Prulho, A. Rivaton, S. Thérias, J-L. Gardette, E. Gaudichet-Maurin, C. Causserand, Multi-scale analysis of hypochlorite induced PES/PVP ultrafiltration membranes degradation, Journal of Membrane Science, 447, 287-296 (2013)

x Boy V., H. Roux-de Balmann, S. Galier, Relationship between volumetric properties and mass transfer through NF membrane for saccharide/electrolyte systems, Journal of Membrane Science, 390-391, 254-262 (2012)

20

I N T E R F A C E S - M E M B R A N E S - C O L L O I D S - A G G R E G A T E S / F L O C S - C R Y S T A L S - E M U L S I O N S - S U S P E N S I O N S

Theissuesdealtwithinthisthemearerelatedtofieldssuchassoftmaterials,com-plexfluids,phasetransitionsorsolvation,forwhichthereisacloselinkbetweenmacroscopicbehaviorandinteractionsatsmallerscales.Whatarethenumericalmethodsrelevantforthischangeofscale?Whyarecertaincrystalsstableinmi-crodropletsbutnotinstandardreactors?Howdoestheionicspecificityaffectmass

flowthroughafiltrationorelectrodialysismembrane?Howcantheequa-tionofstateofananisotropiccolloidaldispersionbepredicted?

Thecontributionofsupercomputing

Numericapproachesbasedonsupercomputinghavebeenintroducedin parallel to the experimental approaches alreadywell practiced inthedepartment.Forinstance,itwasexperimentallydemonstratedthatmass transfer throughan ionexchangemembraneduringelectodia-lysisisinfluencedbythetypeoftheionsintheelectrolyte[1](PhD:Julie Savignac2010).Hybridmethods involvingmechanics, quantummechanicsandmolecularmechanicshavebeenimplementedtodeter-minethesolute-electrolyte,solute-membrane,andmembrane-electro-lyteinteractionenergiesinthissystem(PhD:underco-supervisionwithITM-CNR,UniversityofCalabria).Anotherexampleisthedeterminationoftheequationofstateequationofacolloidaldispersion–variationof theosmoticpressureversus thevolume fractionofnanoparticles.It enables both the prediction of the characteristics of a dispersion

at equilibrium or the type of phase obtained and the transport properties ofcolloids.Theequationofstatecanbedeterminedbymeansofosmoticcom-pressionexperiments[2](PhD:Marie-LaureRami2009)orbysmall-anglelightscattering, techniques familiar to the laboratory. Moreover, an approach wasdevelopedinvolvingthecalculationoftheBrowniandynamicslinkedtothere-solutionofmulti-bodyelectrostaticinteractionsbetweenanisotropiccolloids[3](PhD:JosephDiatta2014).

Lab-on-a-chipmicrofluidicsattheserviceofthermodynamics

Determiningtheconditionsrequiredfortheexistenceofaphaseandthekineticsofaphasechangeisessentialforapplicationssuchascrystallizationortheproductionofpolymericfiltrationsmembranes.Microfluidicschipsefficientlyrespondtoboththeseissues.Miniaturizationenablesexcellentcontroloftheoperationalparametersand

ThermodynamicApproaches:YannickHallez

2THEME

Thermodynamicapproaches

Simulation of ion-membrane-solute interactions in an electrodialysis process using the Quantum Mechanics Molecular Mechanics method.

Simulation of the structure of a dispersion of platelets under the effect of electrostatic interactions.

21

I N T E R F A C E S - M E M B R A N E S - C O L L O I D S - A G G R E G A T E S / F L O C S - C R Y S T A L S - E M U L S I O N S - S U S P E N S I O N S

Crystallization of an active pharmaceutical in a confined environment.

providesanextremelyhighlevelofreproducibility.Italsoenablesascanthroughoftheparametersonasinglechip.Thus,metastablesolidandliquidphases,impossibletorevealinanormalsizedreactor,weregeneratedusingthesechips.

Molecularinteractionswithmacroscopicpropertiesinprocesses

Inanorganicmedium,intra/extramolecularinteractions(hydrogenbonding),theeffectsofsolvation,andself-associationatthemolecularlevelhaveaprimordialinfluence on the thermodynamic macroscopic quantities that control a process.Investigationsbasedonvariousthermodynamicapproachesatdifferentlevelsen-ableconnectionstobeestablishedbetweenpropertiesatthemolecularscaleandthoseatthescaleoftheprocess.Bymodifyingexistingmodels,wehavetakenintoaccountinteractionssuchashydrogenbondsleadingtoamuchfinerdescriptionofthesolubilityequilibriaofcomplexsystems.

Thermodynamicapproaches

ACTIVITIES2010-2015-InterfaceandParticleInteractionEngineering-Theme2

References : u Galier S., Savignac, J., and

Roux-de Balmann, H. Influence of the ionic composition on the diffusion mass transfer of saccharides through a cation-exchange membrane, Separation and Purification Technology, 109, 1-8 (2013)

v Rami M-L., Meireles, M., Cabane, B., and Guizard, C. Colloidal Stability for Concentrated Zirconia Aqueous Suspensions, JACS, 92 (1) S50-S56 (2009)

w Hallez, Y., Diatta, J. and Meireles, M. A quantitative assessment of the accuracy of the Poisson-Boltzmann cell model for salty suspensions, Langmuir, vol. 30(23), 6721-6729 (2014).

x Teychené S. and Biscans B. Microfluidic Device for the Crystallization of Organic Molecules in Organic Solvents Crystal Growth & Design 11 (11), 4810-4818 (2011)

22

I N T E R F A C E S - M E M B R A N E S - C O L L O I D S - A G G R E G A T E S / F L O C S - C R Y S T A L S - E M U L S I O N S - S U S P E N S I O N S

Thisthemebringstogetherstudiesinvolvingthemechanismsunderlyingtheforma-tion,themodificationorthestructuringofinterfacesinmultiphasemedia.Theapproaches

thathavebeendevelopedaimtoestablisha linkbetweenthebehaviorofthesemediaatthelocalscale and certain macroscopic properties of thedispersionorofthe interfaceattheheartoftheprocess.

Describingthefirstmomentsofnucleation

Experimentalapproachesweredevelopedthatlinkdigitalmicro-fluidicsandsmallangleX-rayscatte-ringforthein-situcharacterizationofthenucleationprocessatthenanometrescale[1].Formodeling,Monte-Carlo Kinetics simulations (in collaboration

withtheLPSofOrsay)shouldclarifythemechanismsofformationandthestruc-turesofthenucleisoastodeterminethecharacteristicscales.

Anewlookatconcentratedcolloidalsuspensions

Themechanisms involved in the generation orof concentration of colloidal dispersions werestudiedusingexperimentalandnumericmodelsable to reproduce the complexity of the inte-ractionsandthewaysuspensionsarestructuredat different scales. Experiments were set upwhich linkedosmotic compressionandprecipi-tationprocesseswithX-rayandneutronscatte-ring (SAXS, SANS) using synchrotron radiationandhyperspectralpolarizedlight[2].Oneoftheachievementsof theseapproacheswas to cor-relatethevariationofporositywiththereorga-nizationof theagglomerates.Weshowedthat,in contrast to commonly accepted hypotheses,thestructureofthemedium(fractaldimensionandcorrelationlength)islostfromtheveryfirstmomentsofcompression[3].

Compression of an aggregated network of particles.

GroupLeader:SébastienTeychené

3THEME

Behaviorandstructureofinterfaces

Monitoring crystallization in an on-chip lab using SAXS.

23

I N T E R F A C E S - M E M B R A N E S - C O L L O I D S - A G G R E G A T E S / F L O C S - C R Y S T A L S - E M U L S I O N S - S U S P E N S I O N S

ACTIVITIES2010-2015-InterfaceandParticleInteractionEngineering-Theme3

Complexoscillatinginterfaces

Tools were developed to predict fragmentation during emulsification, couplingforcedflowatthescaleofadropletandthedynamicresponseoftheinterfaces.Specific experiments studying free or forced oscillations of the interfaces wereruntoidentifythemodesofdropletoscillation(frequencyanddamping)[4].Thisapproachhasprovedusefultoaccuratelydeterminethebehaviorofcomplexin-terfacesinrealflows.

Forcontroledproductionofparticlesformedicaluse

Oneofthechallengesinherenttotheproductionofparticlesforbiomedicaluseistheabilitytocontroltheirfunctionalpropertiessuchastheirstabilityinasus-pension(nano-drugsforcontroleddelivery),theirstructuralproperties(biomate-rialsusedforcoatings)andtheirbioavailability(activepharmaceuticals[5]).Ouraimistodevelopmethodscoveringprocessesofagglomerationandredispersionwhether they are simultaneous or successive [6]. The implementation of a na-

no-atomiserbasedonthetechnologiesofpulverizationandrecoverydesignedfornanoparticlesandmaterialswithahighaddedvalueisjustoneexample.

Oscillations of droplet shape in the presence of surfactants.

References :

u Pham N.V., F. Bonneté, M. Brennich, A. Round, P. Pernot, E. Cid, B. Biscans, S. Teychené. Coupling Droplet Microfluidic and Small Angle X-Ray Scattering : Toward on-line measurement of first nucleation step. Submitted to ISIC 19, Toulouse, France

v Ceolato R, Riviere N, Hespel L, and Biscans B. “Probing optical properties of nanomaterials, ” Spie Newsroom, 84 2012.

w Seto R., R. Botet, M. Meireles, G.K. Auernhammer, B. Cabane, Compressive consolidation of strongly aggregated particle gels., J. Rheology 57, 1347 (2013).

x Abi Chebel N., J.Vejrazka, O. Masbernat, F. Risso, Shape oscillations of an oil drop rising in water : effect of surface contamination, J. of Fluid Mech. 702, 533-542 (2012).

y Estime N., Teychené S. and Autret, J. M. and Biscans B. Impact of downstream processing on crystal quality during the precipitation of a pharmaceutical product. (2011) Powder Technology, vol. 208 (n° 2). pp. 337-342.

z Tourbin M., A. Al-Kattan, C. Drouet, Study on the stability of suspensions based on biomimetic apatites aimed at biomedical applications, Powder Technology, 255, 17-22 (2014).

24

I N T E R F A C E S - M E M B R A N E S - C O L L O I D S - A G G R E G A T E S / F L O C S - C R Y S T A L S - E M U L S I O N S - S U S P E N S I O N S

This theme focuses on the development of experimental and complementarynumerical techniques to determine how hydrodynamic interactions, collectiveeffectsandmulti-phasecouplingcontroltransportproperties(agitation,viscosity,dispersion) and transport of properties (particle size and shape) in processesoccurringinheterogeneousmedia?

Fromtransportproperties…

Transport studies in emulsionswith a particle Reynolds num-ber <<1 have shown that theconcept of effective mediumwas relevant up to a volumefractionof0.6[1],infullylami-

narorturbulentregime.Incontrast,forparticlesuspensionswithafiniteparticleReynoldsnumberinachannel,simulationshaveshownthatthelaminar-turbulenttransitionistheresultofaninteractionbetweenthemigrationofparticlestowardsthewalls,interactionsbetweenparticlesandtherotationalstructuresofthefluc-tuatingflow[2].Forthefirsttime,directnumericalsimulation(fictitiousdomainwithpenalization)ofa3Dliquidfluidizedbedwasperformedforthesamegeometryandthesameflowparametersasthoseused inanexperimentalstudyalsocarriedoutattheLGC.Thesimulation/experimentconfrontationforthestatisticalquantitiesrelatedtothetransportofthetwophasesvalidatedthemethodandopenedupabroadfieldofinvestigationsinpartnershipwithI2M(Bordeaux)andIMFT(projectwithFERMATsupport).Directnumericalsimulationhasbeenusednotonlytopredicttheflowofsuspen-sionsandofthebeadsinastirred-mediumgrindingmillbutalsotodeterminetheparametersthatcontroltheenergyefficiencyoftheprocess[3].

Visualization of a dislocation in a flow of concentrated emulsion.

Formation of a plume of bacterial filaments in a model porous medium.

GroupLeader:MichelineAbbas

Hydrodynamicsandtransport4THEME

25

I N T E R F A C E S - M E M B R A N E S - C O L L O I D S - A G G R E G A T E S / F L O C S - C R Y S T A L S - E M U L S I O N S - S U S P E N S I O N S

ACTIVITIES2010-2015-InterfaceandParticleInteractionEngineering-Theme4

Simulation of stratification of a suspension in a channel flow.

…tothetransportofproperties

Whilestudyingthefiltrationofcolloidalsuspensionsusingthetechniquesofmi-cro-fluidics,microseparatorsrevealedtheoccurrenceofdifferentcloggingregimes[4] (absence of deposit, formation of dendrites or arches leading to deposits)dependingontheconditionsoffiltration.Stabilityofparticlestoaggregation,thefiltration rateand theconcentrationof thesuspension, for instance,were takenintoaccount.Numerical simulationsconfirmed thedirect impactof thecolloidalinteractionsandhydrodynamicsontheformationofarchesandthegrowthofthedepositattheporeentrance[5].ThesestudieswerecarriedoutincollaborationwithLM2P2,SuezEnvironnementandIMFT.ThemechanismsunderlyingtheflocculationofparticlesuspensionswasanalyzedintheturbulentregimeinaTaylor-CouettereactorincollaborationwithLISBP.Itwasobservedthatthesizeandshapeoftheflocsdependedonthesmallestscalesoftheturbulenceandthestirringintensity.Thistypeofstudyidentifiedthemorpho-logicaldescriptorsrequiredforfinermodelingoftheprocessviatheaggregationorbreak-upkernels inpopulationbalanceequations,resolvedbythequadraturebasedonmomentsmethods(QMOMandDQMOM)[6].ThesestudiescontinueincollaborationwiththeMathematicsInstituteofToulouse.

References : u Pouplin A., O. Masbernat, A. Liné,

S. Décarre, Wall friction and effective viscosity of a homogeneous dispersed liquid-liquid flow in a horizontal pipe, AIChE J., DOI : 10.1002, (2011)v Loisel V., M. Abbas, O. Masbernat, E. Climent, The effect of neutrally-buoyant finite-size particles on channel flows in the laminar-turbulent transition regime.” Phys. Fluids, 25, 123304 : 1-18 (2013)w R. Gers, E. Climent, D. Legendre, D. Anne-Archard, C. Frances. Numerical modelling of grinding in a stirred media mill : hydrodynamics and collision characteristics, Chem. Eng. Sci., 65, 2052-2064 (2010)x Marty A., C. Roques, C. Causserand, P. Bacchin, Formation of bacterial streamers during filtration in microfluidic systems, Biofouling : The Journal of Bioadhesion and Biofilm Research, 28 : 6, 551-562 (2012)y Agbangla C., E. Climent, P. Bacchin, Numerical investigation of channel blockage by flowing microparticles, Computers & Fluids, 94, 69-83 (2014)z Frances C., A. Liné, Comminution process modelling based on the monovariate and bivariate Direct Quadrature Method of Moments, AIChE J., 60 : 5, 1621-1631(2014)

ElectrochemicalProcessesE L E C T R O C H E M I C A L S E N S O R S - E L E C T R O S Y N T H E S I S - M O L T E N S A L T S - C O R R O S I O N - M I C R O - R E A C T O R S - D E P O L L U T I O N - E N E R G Y

SCIENTIFICDEPARTMENT:

2726

Researchactivityledtothedevelopmentofcutting-edgeexperimentaltools

TheactivitiesofthePEdepartmentfocusonelectroche-mistry,electrochemicalengineeringanditsapplications.The researchdone in thedepartment aims to developelectrochemicalmethods and tools for the design andthecontrolofprocesses.The approach consists in the study of the phenomenaoccurringatelectrochemicalinterfacesandthecouplingwith chemical reactions. Laws and concepts of physical-chemistryareappliedtorealsystemsusingmulti-scale,experimentalandnumericalapproaches.Physical-chemicallawsandconceptsareconfrontedwithrealenvironments.Theresearchisintentionallyorientedtowardsthemajorsocietalissuessuchastheproductionofenergy,thecontroloftheenvironmentandhealthen-gineering. The laboratory specifically investigates threemainthemes:-Electrochemicalprocessesandmoltensalts-Electrochemicalengineeringforsynthesis,depollution,

catalysisandenergy-Electrochemicalsensorsandprocesses

Numerousindustrialcollaborationsandalargenumberofpatents

The PE departmentworks in close collaborationwith se-veralFrenchlaboratoriesandisinvolvedinregional(RTRAMaisoe)andnational(ANRMilifox,Miminela,CNRSPacen,Needs)networksaswellasinEuropeanprograms(Acsept,Sacsess,Evol).OneprojectreceivedalabelfromtheCancer-Bio-Healthcompetitivenesscluster.Membersofthedepart-menthavealsoorganisedscientificeventsfortheEuropeanprogrammes,summerschools,GDR(CNRSResearchGroup)andsessionsincongressesandscientificmeetings.Thecontractualbudgetof thedepartmentduring the last

Electrochemical processes for depollution.

Electrochemical processes and molten salts.

ACTIVITIES 2010-2015 - Electrochemical Processes

E L E C T R O C H E M I C A L S E N S O R S - E L E C T R O S Y N T H E S I S - M O L T E N S A L T S - C O R R O S I O N - M I C R O - R E A C T O R S - D E P O L L U T I O N - E N E R G Y

2726

5yearsreached3millioneuros.Themajorpart(70%)comesfromresearch collaborations with the local industrial network (Biopool,Biosentec,PierreFabre,Synelvia,Aeroprotec,Elta,Emta,Guardindus-trie),SMEsorlargeFrenchgroups(Areva,CeaValduc,CheneCo,EDF,Ferropem,Rio-Tinto,Saint-Gobain,Total,Vivelys)butalsoforeigncom-panies(Becton-Dickinson,Rec-scanwafer).Duringthelast5years,7patentsoroperatinglicenceshavebeenfiled.Oneof thehighlights in thisperiod is thecreationof thecommonlaboratorywithRioTintoAlcan.

Abundanthighqualityscientificproduction

Resultsfor2009-2014intermsofscientificproductionandvalorisationhas led to thepublicationof 97articles in international journals, 7proceedings,1book,and11bookchapters.Theproductivityofthedepartment,basedon7.5full-timeequivalents(FTE) is2.4publica-tions/FTE/yearfrom2009to2014.70%ofthearticlesappearedinthefollowingfields:chemicalengineering,electrochemistry,chemistryorappliedsectorssuchasthescienceofmaterials,thenuclearindustry,theenvironment,analysisandbiotechnology.

Asignificantinvestmentintrainingthroughresearch

It is important to note the strong involvement of the teacher-researchers of thedepartmentincoursesonelectrochemistryandelectrochemicalengineeringaswellasinotheruniversitycourses,takingresponsibilitiesinBScandfirstyearMScandsecondyearProcessEngineeringMSc.Inrecentyears,thedepartmenthasdevelopedseveralactivitiesinlife-longlearningtopromoteelectrochemistryandelectrochemi-calengineeringforindustriessuchasELTA,AREVAandDGA.

Permanentmembers: Laurent Cassayre | Pierre Chamelot | Fabien Chauvet | Maurice Comtat | David Evrard | Mathieu Gibilaro | Karine Groenen Serrano | Pierre Gros |Bernard Lafage | Laure Latapie | Laurent Massot | Olivier Reynes | André Savall | Pierre Taxil | Théodore Tzedakis

Headofthedepartment:Karine GROENEN SERRANO

Electrochemical sensors and processes.

2928

E L E C T R O C H E M I C A L S E N S O R S - E L E C T R O S Y N T H E S I S - M O L T E N S A L T S - C O R R O S I O N - M I C R O - R E A C T O R S - D E P O L L U T I O N - E N E R G Y

1THEME

GroupLeader:PierreChamelot

Researchactivitiesinthefieldsofenergy,theenvironmentandmaterials

The research activities focus on studying and understanding the physical-chemicalphenomenainherenttohigh-temperaturemoltensaltsinordertoopti-mizeand/ordevelopnewprocessesinthefieldofmaterials(primaryproduction,surfacefinishing),energy(nuclear,solar,wind)andtheenvironment(reproces-sing,recycling).

Moltensalts:usefulmediaforelectrochemicalprocesses

Current research activities concern theoretical as-pectssuchasdeterminingthestructureofmoltenmedia(e.g.fluoro-acidity[1]andoxo-acidity)wit-hin theANR projectMILIFOX, and determining orverifying the thermodynamicandkineticdatabutalsodevelopmentofbothexistingandnovelappli-cations.Anillustrationoftheseactivitiesisgiveninthethreedomainsbelow:

Nuclear industry:Activities in the nuclear industry can be both

upstream(productionofUF6forfuelenrichment–PhDofOlivierLemoine,2011)

anddownstreamofthenuclearfuelcyclewiththereprocessingofspentfuelandofnuclearwaste.Thestudyofpyrochemicalreprocessingoffuelforreactorsofthecurrentorthefuturegeneration(GENIV)isbasedonthecompleteseparationofactinides(U,Th)andlanthanides(Nd,Sm,Gd).Researchworkhasbeencarriedoutwithintheframeworkofnumerouscollaborationsinnational(CNRS-NEEDS)andEuropean(ACSEPT,EVOL,SACSESS)programs.

Preparing reactive metals: Moltensaltmediaareparticularlysuitablefortheelectrolyticpreparationofreactivemetals(refractorymetals,rareearths,actinidesormetalloids).Aprocesstorecyclesiliconwaste from the solar panel industrywas developedwith Rec-ScanwaferCo.Itisbasedonelectro-winninginmoltenfluorides[2]andallows95%ofthesilicon to be recovered (over 99.9% purity). These processes can also be used

Separation processes suitable for treatment of spent nuclear fuel in molten salts.

Electrochemicalprocessesandmoltensalts

2928

E L E C T R O C H E M I C A L S E N S O R S - E L E C T R O S Y N T H E S I S - M O L T E N S A L T S - C O R R O S I O N - M I C R O - R E A C T O R S - D E P O L L U T I O N - E N E R G Y

ACTIVITIES2010-2015-ElectrochemicalProcesses-Theme1

Electrochemicalprocessesandmoltensalts

tosatisfy the increasingdemandfor the rareearthmetals(Nd,Dy,Pr),whichenterintothecompositionof thepermanentmagnetsusedinwindturbines.Oneoftheapproachesenvi-saged consists of recycling magnets throughurbanmining.

Aluminium production:Theonlyprocessusedfortheproductionofpri-maryaluminiumisbasedontheHall-Heroultprocessconsistingontheelectrolysisofalumi-nadissolved in amixtureonmolten cryoliteat980°C.Thecreation,onJuly11th2011,ofthe joint laboratory SFE2A (Molten Salts andElectrochemistry for theProductionofAlumi-nium)betweenRioTinto-Alcan,LGCanditspa-rent organizations (CNRS and University PaulSabatier) is theculminationofover30years

ofcollaboration.OnestudycarriedoutbythislaboratoryaimstodevelopaninertanodematerialtoreplacetheconsumablecarbonanodesresponsiblefortheproductionofCO

2onreac-

tionwiththeoxygenreleasedfromthealumina[3].AnX-rayimagingset-upwasdevelopedtovisualizegasreleaseatananodeinindustrialoperatingconditions(960°C).Thisoriginaltoolistodaytheonlysuchdeviceavailableworldwide.AlltheaboveprojectshavebeenrecentlyrenewedintheANRprojectMIMINELA(2014).

Anode materials for aluminium production using Hall Héroult Process.

Pure or alloyed metal deposit prepared in molten salts.

References :

u M. Kergoat, L. Massot, M. Gibilaro, P. Chamelot, Electrochimica Acta 120 (2014) 258-263.

v A-L. Bieber, L. Massot, M. Gibilaro, L. Cassayre, P. Chamelot, P. Taxil, Electrochimica Acta 56 (2011) 5022-5027.

w M. Oudot, L. Cassayre, P. Chamelot, M. Gibilaro, L. Massot, M. Pijolat, S. Bouvet Corrosion Science 79 (2014) 159-168.

3130

E L E C T R O C H E M I C A L S E N S O R S - E L E C T R O S Y N T H E S I S - M O L T E N S A L T S - C O R R O S I O N - M I C R O - R E A C T O R S - D E P O L L U T I O N - E N E R G Y

Fromthedesigntotheoptimizationoftools,methodsandelectrochemicalprocesses

Theaimoftheresearchisthedesignandtheexperimentalortheoreticaloptimi-zationofelectrochemicaltools,methodsandprocessesinsingle-ormulti-phasesystems,atscalesrangingfromthemicro-systemtothepilotplant.Themainfieldsofapplicationareelectrochemicaldepollution,energyandelectro-synthesis.

Innovatingapproachesfordepollution,energyandelectro-synthesis

Electrochemistry for depollution Forthelast15yearsaresearchactivitydevelopedaround boron-doped diamond as electrode mate-rialanditspotentialforthedepollutionofeffluentscontaining persistent organic compounds. Whenusedasananode,powerfuloxidants(.OHradicals)aregeneratedinthedirectvicinityoftheBDDsur-face(within100nm)[1].Ithasbeendemonstratedthatthismaterialisabletototallymineralizeorga-niccompounds.Industrialcollaborationshavebeenmaintainedinthisfield:notablySGN-AREVACoforthe mineralization of nuclear effluent (2009) andELTACoforaprojecttodevelopanelectrochemicalanalyzer formetals that requires priormineraliza-tionoftheorganicmatterpresentinsurfacewatersamples(Frenchpatentappliedfor)[2].Moreover,owingtothehighanodicovervoltageoftheoxida-tionofwaterBDDgeneratespowerfuloxidantsthataresufficientlystabletodiffuseandactthroughoutthesolution.ThekineticsoftheproductionofAg(II)throughoxidationofAg(I),wasstudiedinatubularreactor built in cooperation with SGN-AREVA. TheAg(II)cationisusedtodissolvenon-irradiatedplu-

toniumoxide(PhD(Cifre)C.Racaud,2012).Electrolyticdepollutionhasalsobeenappliedtothetreatmentoflowconductivityeffluentfromtheoilindustry.Morethan50%of theNiandVpresent incrudeoil (<300ppm)were recoveredby

Diamond electrode for the treatment of wastewater.

Electrochemical micro-reactor with a large specific surface area.

GroupLeader:ThéodoreTzedakis

Electrochemicalengineeringforsynthesis,depollution,catalysisandenergy2

THEME

3130

E L E C T R O C H E M I C A L S E N S O R S - E L E C T R O S Y N T H E S I S - M O L T E N S A L T S - C O R R O S I O N - M I C R O - R E A C T O R S - D E P O L L U T I O N - E N E R G Y

ACTIVITIES2010-2015-ElectrochemicalProcesses-Theme2

electrolysisinareactorwithnarrowelectrodegap(mm)thatminimizesohmicdrop(PhD(Cifre)R.Ciumag,2013,Total,LeHavre).

Electrosynthesis in reduced scale systemsMicro-reactors with high specific surface areas (300 cm-1) have been designedand implemented for various applications (e.g. synthesis, deposition). The geo-metrieswithin themicro-reactorswereoptimized in suchaway that residencetimesdistributionin150micro-channelsisuniform[4](PhDC.Renault2010).Thisactivityreceivedfundinglocallyandregionally(UPS,Midi-Pyrenées)andacademiccollaborationslocallyandinternationally(forinstance,LGMT,Fermat,UIUC/USA,UABarcelona,LSPCMIB).Themicro-reactorsproducedwereusedforanodicfluorination(fluoro-deoxy-glucose)andfortheelectro-enzymaticregenerationofNADH(PhDC.Kane,2005andPhDJ.Roche,2010).Afteroptimization,thesystemwasabletoworkcontinuouslyfor20dayswiththeimmobilizedenzymeretaining50%ofitsinitialactivity.Thesemicro-reactorshavealsobeenappliedtothesynthesisofchi-ralaminoalcohols(PhDR.Anaid2014,collaborationP.Josep,Barcelona).Recently,electrosynthesishasfoundapplicationsinmetalnanoparticles(Fe(0)inparticular)using cathodeswitha lowsurfaceenergyandultrasound todisperse/breakupthecathodicdeposit(PhDA.Iranzostarted2013).Localanalysisofthephenome-na(flow,transfers,growth)occurringinconfinedspaces(Hele-Shawcells)wasachievedespeciallyforsynthesisoffinechemicalsandflowbatteries.

Electrochemicalengineeringforsynthesis,depollution,catalysisandenergy

Enzyme-catalysed synthesis in an electrochemical micro-reactor.

References : u K. Groenen-Serrano, E. Weiss-Hortala,

A. Savall, P. Spiteri, Electrocatalysis 4 (2013) 346–352

v Ruffien-Ciszak Audrey, Freyssinier Mathilde, Mauvais Olivier et Groenen-Serrano Karine, FR1257359, 30/07/2012.

w Ch. Racaud, A. Savall, Ph. Rondet, N. Bertrand, K. Groenen Serrano, Chemical Engineering Journal, 211-212 (2012) 53–59

x C. Renault, S. Colin, S. Orieux, P. Cognet, T. Tzédakis, Microsystem Technologies. 18, 2(2012) 209-223

3332

E L E C T R O C H E M I C A L S E N S O R S - E L E C T R O S Y N T H E S I S - M O L T E N S A L T S - C O R R O S I O N - M I C R O - R E A C T O R S - D E P O L L U T I O N - E N E R G Y

Designinghigh-potentialelectrochemicalsensors…

Theresearchactivitydealswiththedesignanddevelopmentofsensorsandelec-troanalyticalmethodsfortheassayoftargetspeciesandthemonitoringofredoxprocessesincomplexmedia.Themainapplicationsconcernthestudyofthebiolo-gicalprocessesinvolvedinoxidativestress,andtheassayofheavymetals(Hg,Pb,Ni)attracelevels(nM)insurfacewater.

…toresolvesocietalissues

OurresearchactivitiesareattheheartofProcessAnalyticalChemistry,definedastheapplicationofanalyticalsciencesforthecontrolofphysicochemicalprocesses.Theaimofourworkistoproposereliable,accurateandsensitiveelectrochemicalsensors toevaluatetheefficiencyofaproductionprocess,determineareactionmechanism,checkthequalityofafinalproduct,monitorbiologicalmetabolismandproposetoolsforenvironmentalsurvey.

Assaying markers of oxidative stress Oxidativestresshasbeenidentifiedasakeystageintheinitiationofcellageingandofnumerousassociatedpathologiessuchascataracts,cardiovascularandneu-rodegenerativediseaseandsomecancers.Thestudiesaimatperformingspecificmeasurements of the markers of oxidative stress. The first approach consistedindesigningavoltammetricsensorfortheassayofascorbicanduricacids.Thefunctionalizationoftheelectrodesbyaconducting,biocompatibleelectrogeneratedpolymerledtothedevelopmentofasensorwithanalyticalperformancessuitableformeasuringthephysiologicalconcentrationsofbothspecies.Thecomparisonoftheelectrochemicalmeasurementswiththoseobtainedusingreferenceanalyticalmethods(incollaborationwiththeBiochemistryLaboratoryofToulouse-Rangueilteachinghospital)confirmed,theaccuracyofthesensorandtheabsenceofanyin-terferencefrombloodserum[1].Amorefundamentalstudyrevealedasynergisticmechanisminvolvingthetwoacids.Afurtherapproachfocusedondevelopinganelectrochemicalsensorforthesimultaneousassayofoxygen,andhydrogenperoxide,bothprecursorsofhighlyreactiveoxygenatedradicals.Theprojectinvolvedevaluatingandcomparingthecatalyticefficiencyofgoldnanoparticlesdepositedonaglassycarbonsubstrateeitherbyelectrochemicalmeansorbychemicalsynthesis(colla-borationwithLCC).

Autonomous electrochemical microsensor for the assay of antioxidants in physiological fluids (blood, sweat, urin).

Electrochemical cell isolated in a Faraday cage for the detection of traces of heavy metals (detection limit reached: [Hg(II)] = 2 pM).

GroupLeader:PierreGros

Electrochemicalsensorsandprocesses3THEME

3332

E L E C T R O C H E M I C A L S E N S O R S - E L E C T R O S Y N T H E S I S - M O L T E N S A L T S - C O R R O S I O N - M I C R O - R E A C T O R S - D E P O L L U T I O N - E N E R G Y

ACTIVITIES2010-2015-ElectrochemicalProcesses-Theme3

Scanning electrochemical microscope (SECM).

Heavy metals assay in surface waterTheapplicationofelectrochemicalsensorstoenvironmentalmonitoringisanewsubject for thegroup,first introduced in2009during the ThematicNetwork forAdvancedResearch(RTRA)“InSituAnalysisLaboratoryforEnvironmentalObser-vatories” (MAISOE). Carried out in collaborationwith the LCA and the LCC, theaimof the project is to study speciation of heavymetals in continentalwater,with a particular focus onmercury. Themain objectivewas to reach detectionthresholdscompatiblewithtraceconcentrations.Ultrasensitivesensorswerebuiltmakinguseoftheparticularlyhighaffinityofmercuryforgold,electro-depositedonglassycarbon in itsnanoparticulate form[2].Amore fundamentalstudy re-vealedtheimportanteffectonthevoltammetricresponseofthesensorofchlorideionsadsorbedonto the surfaceof theelectrode [3]. Inparallel,analternativemethodforthepreparationofna-noparticlesusingachemicalapproachwastested.Withasimpleprotocolinnon-dearatedaqueousmedium,mono-dispersednanoparticlesaround20nmindiameterwerepreparedanddepositedontheglassycarbonelectrodesusing a physicochemical route. Current efforts focus onnanoparticlestabilizationontheelectrochemicalinterfacebymeansofcomplementaryfunctionalizationwithorga-niccompounds.

Electrochemicalsensorsandprocesses

References :

u F. Sekli-Belaidi, A. Galinier, P. Gros, Comb. Chem. High Through. Scr., 16 (2013) 84-91

v T. Hezard, K. Fajerwerg, D. Evrard, V. Colliere, P. Behra, P. Gros, J. Electroanal. Chem. 664 (2012) 46-52

w T. Hezard, L. Laffont, P. Gros, P. Behra, D. Evrard, J. Electroanal. Chem. 697 (2013) 28-31

C H E M I C A L R E A C T I O N S A N D R E A C T O R E N G I N E E R I N G - H Y D R O D Y N A M I C S - T R A N S F E R P H E N O M E N A - K I N E T I C S - E X P E R I M E N T A L S T U D I E S A N D M O D E L I N G

SCIENTIFICDEPARTMENT:

3534

InnovativeMultiphaseReactorEngineering

Anewdepartmentwithsomeremarkableexperimentalpotential

IRPIwascreatedinMarch2013,followingthereorganizationoftheLGCandinparticulartherevisionoftheRMSdepartment.IRPIaimstodevelopinnovatingprocessesgenerallyinvolvingmultiphasereactivesystems.Itbringstogethervariedskillsincludingcatalyticreactorengineering,advancedoxidationpro-cesses,fluidization,CVD,andactivation techniques.Among theapplicationstargetedincludeairandwaterdepollution,energyandnewmaterials.Threescientificthemesbringthesedifferentdomainsofresearchtogether:-Catalyticreactorsandhybridprocesses-Fluidizationforenergy,CVDandnewmaterials-Activationtechniquesandadvancedoxidationprocessesfortheenvironment

Experiencethathasgainednationalandinternationalrecognition

IRPIisinvolvedinnumerouscollaborativeprograms,whetherinternational(withChina,India,Brazil,Chile,Cuba,Spain,Germany,theUK,Italy,Bulgaria,Mo-rocco,andAlgeria),national(through8ANRandFUIprojects)orregional.Inaddition,membersofthedepartmenthavebeeninvolvedintheorganizationof4internationalcongresses.Theirinfluencecanalsobeseenthroughinvitationsto

national assessment committees (AERES,ANR) and requests for their expertise invariousdomains(35internationaljournalsofRankA,examiningcommissionsfordoc-torates,academicpositions,etc.)

Agoodpublicationrecord

The scientific production of IRPI can besummed up as 117 articles in A-rankinginternational journals (i.e. 2.7/FTE/year),118communications(oral,poster),4bookchapters,19invitedconferencesin(nationalorinternational)congressesorcolloquia,10patentsoroperatinglicenses.Thearticleswerepublishedinjournals

Advanced oxidation reaction for wastewater depollution.

Experimental investigation of catalytic reaction kinetics.

© IN

P-EN

SIAC

ET /

www.

jpgp

hoto

grap

hie.

com

C H E M I C A L R E A C T I O N S A N D R E A C T O R E N G I N E E R I N G - H Y D R O D Y N A M I C S - T R A N S F E R P H E N O M E N A - K I N E T I C S - E X P E R I M E N T A L S T U D I E S A N D M O D E L I N G

ACTIVITIES2010-2015-InnovativeMultiphaseReactorEngineering

3534

specializing in: chemical engineering,powder technology, material science,catalysis, drying, nanoscience andnanotechnologies, CVD, and environ-ment(effluenttreatment).

Asolidrelationshipwithregionalandnationalcompanies

Ourresearchfindingsaredisseminated indifferentways:- Contributions to the CNRS/La Dépêchebrochures:LePetitEnergieIllustré(Energy:Researchers contrasting perspectives: In-novating processes for CO

2 capture) and

LePetitChimisteIllustré(Chemistry:Resear-cherscontrastingperspectives:Innovationinmaterialssynthesisprocesses)- Publication of an article on industrialwastewater treatment in UPSMagazine(n°21,February2011)-Conference/debateattheJoseCabanisMediatheque“Whensciencegetsinvolved:”Whattoolsforpreservingwaterfortomorrow,April5th2012,online.

Permanentmembers: Caroline Andriantsiferana | Renaud Ansart | Laurie Barthe | Aimé Bascoul | Anne-Marie Billet | Florent Bourgeois | Brigitte Caussat | Hélène Chaumat | Henri Delmas | Audrey Devatine | Mehrdji Hemati | Carine Julcour-Lebigue | Nadine Le Bolay | Marie-Hélène Manero | Berthe Ratsimba | Romain Richard | Hugues Vergnes

Headofthedepartment:Marie-Hélène Manero

Reactors for the production of multifunctional materials.

© IN

P-EN

SIAC

ET /

www.

jpgp

hoto

grap

hie.

com

3736

C H E M I C A L R E A C T I O N S A N D R E A C T O R E N G I N E E R I N G - H Y D R O D Y N A M I C S - T R A N S F E R P H E N O M E N A - K I N E T I C S - E X P E R I M E N T A L S T U D I E S A N D M O D E L I N G

1THEME

Studyingtransfermechanismsandtheircouplingwithreactionsforinnovativecatalyticsystemsandoriginalhybridreactors

Thisresearchcovers3sub-topics:-metrologyandnumericaltoolsforthelocalanalysisofhydrodynamicsandmasstransferinmultiphasegas-liquid-(solid)reactors,-multiphaseprocessesforhomogeneouscatalysis,

-design,modelingandhybridizationofbubblecolumn,fixedbedandstructuredgas-liquidreactors.

Hybridisingoperationstoimprove(catalytic)multiphaseprocesses

Monolithic reactor-heat exchanger for three-phase catalytic reactionsIntheANRprojectHydromore,anintensifiedmonolithicreac-torforthe(selective)hydrogenationofbio-sourcedproducts

isstudied.Thechallengesarefirsttechnologicalwiththedesignandrealizationofaheat-conductingreactorthatincludeschannelswithcatalyticwallsandchannelsforcooling,aswellasaspecificdevicetoensureanevendistributionofthefluidstowards thecatalyticchannelsand theso-calledTaylorflowregime.Concerningmodeling,thedifficultystandsinthestrongcouplingthatexistsbetweenreaction,heatandmasstransferandhydrodynamics,whichmustbedescribedatvariousscales:thelubricatingfilmatthegas-liquidinterface,thecatalyticchannel,andthewholereactor.

CO2 sequestration using an attrition reactor for the accelerated leaching

of mineralsTheANRprojectCARMEXfoundaninnovativesolutionfordirectaqueousmineralcarbonation,which involves concomitant exfoliation andmineralization [1]. Thissolutionovercomesamajorlimitationinsilicatemineralization:theprecipitationofpassivatinglayersatthematerialsurfaceduringdissolution.Theproofofconceptofthecontinuousattritionofthesepassivationlayerswasachievedinanautoclavereactortransformedintoanagitatedballmill.Ouraimisnowtoextendthispro-cesstovariousmaterials,thentostudyitsscale-upforcontinuousoperationanditsoptimization.

Study of mass transfer in Taylor flow using the PLIF-I technique: dissolved gas concentration.

Stirred multiphase reactor under pressure.

GroupLeader:CarineJulcour

Catalyticreactorsandhybridprocesses

3736

C H E M I C A L R E A C T I O N S A N D R E A C T O R E N G I N E E R I N G - H Y D R O D Y N A M I C S - T R A N S F E R P H E N O M E N A - K I N E T I C S - E X P E R I M E N T A L S T U D I E S A N D M O D E L I N G

ACTIVITIES2010-2015-InnovativeMultiphaseReactorEngineering-Theme1

Assessingandanalyzingnewsystemsforhomogeneousmultiphasecatalysis

Differentstrategiesarestudied toachieveanefficient immobilizationofhomoge-neouscatalysts(allowingfortheirseparationfromtheproductsandtheirrecycling),

whilemaintaininghighreactionrates: supported ionic liquidphasecatalysisandaqueousbi-phasiccatalysiswithamphiphi-lic polymeric ligands. In colla-borationwithNCLPune(projectCEFIPRA 3305-2), LCC Toulouseand C2P2 Lyon (ANR Biphas-nanocat), we are investigatingthecatalyticactivityandselec-tivityofthesenewcatalyticsys-tems,aswellasmetalleachingtotheorganicphase.Themodelreaction is the rhodium-cataly-zedhydroformylationof1-octe-

neton-nonanal.Highcatalyticactivities(TOFexceeding500h-1)areobtainedforboththesupportedionicliquidphasecatalystandforthecore-shellpolymerthroughthecreationofafavorable(olefin-rich)environmentinthevicinityofthemetal.Athoroughkineticstudywascarriedoutinionicliquids,involvingthemeasurementsofpartitioncoefficientsofthesubstrate/productbetweentheionicliquidandtheor-ganicphase(bymultipleheadspace-gaschromatography)andthederivationofratelawsfromreactionmechanisms(usingthe“Christiansenmatrix”approach)[2].Theeffectofthegas-liquidtransferhasalsobeenmodeledusingreactionexperimentsunderslowstirringandmasstransfermeasurements.Weinvestigatedtheinfluenceofthecore-shellpolymerarchitectureontheactivity,selectivityandstabilityoftheresultingcatalysts,providingcluesfortheiroptimization[3].Furtherstudiesoncore-shellpolymersareaimingtoelucidatemasstransfermechanismsandtomodelthereactionkinetics,whichimpliesanalysisofthemicroenvironmentcomposition.

Catalyticreactorsandhybridprocesses

Biphasic (organic/aqueous) reaction system with core-shell polymers.

References : u C. Julcour, F. Bourgeois, B. Bonfils,

I. Benhamed, F. Guyot, F. Bodénan, C. Petiot, E.C Gaucher Development of an attrition-leaching hybrid process for direct aqueous mineral carbonation. Chem. Eng. J., 262, pp. 716-726 (2015), DOI : 10.1016/j. cej.2014.10.031

v A. Sharma, C. Julcour-Lebigue, R.M Deshpande, A.A Kelkar, H. Delmas Hydroformylation of 1-octene using [Bmim][PF6 ]− decane biphasic media and rhodium complex catalyst : Thermodynamic properties and kinetic study. Ind. Eng. Chem. Res. 49 (21), pp. 10698-10706 (2010)

w A.F Cardozo, C. Julcour-Lebigue, L. Barthe , J.F Blanco, S. Chen, F. Gayet, E. Manoury, X. Zhang, M. Lansalot, B. Charleux, F. D’Agosto, R. Poli, H. Delmas Aqueous phase homogeneous catalysis using core-shell nanoreactors: application to rhodium catalyzed hydroformylation of 1-octene. J. Catal., 324, pp. 1-8 (2015), DOI : 10.1016/j.jcat.2015.01.009

3938

C H E M I C A L R E A C T I O N S A N D R E A C T O R E N G I N E E R I N G - H Y D R O D Y N A M I C S - T R A N S F E R P H E N O M E N A - K I N E T I C S - E X P E R I M E N T A L S T U D I E S A N D M O D E L I N G

Fluidizationandprocessestoproducehigh-performanceeco-responsiblesolidmaterials

Theresearchiscarriedoutalongfourmainlines:•Hydrodynamicsandtransferingas-solidreactors/heatexchangers•Shapingandsurfacefinishing•Processesfortheproductionofmaterials•Chemicalreactionengineeringinfluidizedbed

Acollaborativeprogramofresearchanddevelopment

Energy and environmentInthefieldofenergyandenvironment,thestudiesfocusedon:•Gasificationofbiomass inacirculatingfluidizedbedreactor:productionofga-seousbiofuel (Gayaproject, coordinatorGDF-Suez, funding:Ademeand theEu-ropeanCommunity,PhDs:M.Detournay2012,S.PecateandM.Morinstartedin2014,Post-Doc:X.Nitch2013).•Storageofconcentratedsolarenergy:newsolarreceiverusingadenseparticlesus-pension(1sharedpatentbetweenPROMES(Odeillo)andINPT-LGCin2010[1],funding:CNRSEnergyProgram,PARTISUNProjectandCSP2EuropeanProject,PhD:B.Boissière).•EnergyoptimizationofdryingoperationsintheproductionlineforpowderedPVC(collaborationwithINEOS,PhD:A.Aubin2014).•Transportbyhyper-densephasefluidizationofpowderedmaterials(2patents,collaborationwithRioTintoAlcan,PhD:G.Turzo2013).•Newprocessofdecarbonationincirculatingfluidizedbed:innovatingprocessfortheconcentrationofCO

2inacementplant(1commonpatentbetweenINPTand

Lafarge[2],collaborationwithLafarge,PhD:S.Wahlstartedin2014).•Recyclingofbuildingmaterials,inparticular,concretefromdemolitions(COFRAGEprojectfundedbyANR-Ecotech2009;PhD:N.Lippiatt2013).

New materials Researchonnewmaterialsisfocusedon:•Micro-encapsulationofvitamins(2patents,collaborationwithDSM,PhD:F.La-boulfie2013),•Newdryprocessfortheproductionofmicronicornanometricparticles(PhD:R.Lakhalstartedin2012).•FluidizedbedCVDprocessenablingpowderstobecoatedwithvariousmaterials.

Gasification of biomass in a circulating fluidized bed (GAYA project).

New solar receiver using a dense particle suspension (CSP2 European Project).

GroupLeader:MehrdjiHemati

Fluidizationforenergy,CVD,andnewmaterials2THEME

3938

C H E M I C A L R E A C T I O N S A N D R E A C T O R E N G I N E E R I N G - H Y D R O D Y N A M I C S - T R A N S F E R P H E N O M E N A - K I N E T I C S - E X P E R I M E N T A L S T U D I E S A N D M O D E L I N G

ACTIVITIES2010-2015-InnovativeMultiphaseReactorEngineering-Theme2

Amongthedifferenttopicsconsideredwecanmention:• Nucleation/growth phenomena on silicon nano-particles deposited on carbonnanotubes to produce anodematerials for Li-ion batteries in collaborationwithCEMES(PhD:N.Coppey2013).•Depositionofmetalsoncarbonnanotubesfortheproductionofconductingfillersforpolymercompositesinthedevelopmentofinnovativemulti-functionalmate-rials(FUIprojectincollaborationwithSafran,EADS,Airbus,…andLGP/ENIT,PhD:P.Lassèguestartedin2013).•Depositionofasiliconbarriercoatingonverydensetungstenpowders,simula-tingnuclearfuel(collaborationwithCEACadarache,PhD:F.Vannitobedefendedin2015).

CVD on flat substrates concerning:•ThesynthesisbycatalyticCVDofgrapheneoncopperfoilandnickelfoam[3],forapplicationssuchasOLEDandLi-ionbatteryelectrodes(EuropeanprojectFP7-NMP-2009-SmallcalledGRENADA:GrapheneforNanoscaledApplications,supportedbyCEA/Leti,PhD:P.Trinsoutrot2014).Thisworkisbeingpursuedbystudyingothercatalystsandforotherapplications,inparticularmicro-sensors(collaborationwithLAASandtheelectrochemicalsensorsgroupof LGC; FERMATpostdocof L.Assaudin2015).• The development of a CVD reac-tor for the deposition of an aluminabarrier layer on complex substrates(collaborationwithCIRIMATandSaintGobain Desjonquères, PhD: P.L. Et-cheparre 2015). This theme is also part ofaRTRASTAEproject(RéseauThématiquedeRechercheAvancéeenScienceetTechnologiepourl’Aéronautiqueetl’Espace)inToulouse,calledVIMA(AgeingofAdvancedMaterials).

Fluidizationforenergy,CVD,andnewmaterials

Catalytic CVD of graphene: – (a) the CVD reactor for graphene synthesis – (b) flakes of single-layered graphene deposited on copper – (c) network of 3D multilayer graphene deposited on nickel foam.

References : u Récepteur solaire à suspension dense de

particules fluidisées par un gaz pour la conversion de l’énergie solaire concentrée Flamant, G., Hemati, M., French Patent No. 1058565, 20 October 2010. PCT extension, 26 April 2012, No. WO 2012/052661 A2.,

v Procédé de décarbonatation, M. Hemati, M. Gimenez, PRO10045 (12/05/011) déposant INP/Lafarge

w High quality graphene synthesized by atmospheric pressure CVD on copper foil, P. Trinsoutrot, C. Rabot, A. Delamoreanu, H. Vergnes, A. Zenasni, B. Caussat, Surface and Coatings Technology, Vol. 230, 87-92 (2013).

4140

C H E M I C A L R E A C T I O N S A N D R E A C T O R E N G I N E E R I N G - H Y D R O D Y N A M I C S - T R A N S F E R P H E N O M E N A - K I N E T I C S - E X P E R I M E N T A L S T U D I E S A N D M O D E L I N GGroupLeader:CarolineAndriantsiferana

This theme brings together activities for the design of depollution reactors.Applicationsincludethetreatmentofwater,air,sludgeandtheregenerationofmaterials.

Advancedoxidationandadsorptionforthetreatmentofindustrialeffluent

Researchon“waterandairtreatment”hasbeenboostedbydevelopmentsinad-vancedoxidationprocesses:photocatalysis,Fentonandphoto-Fentonprocesses,ozo-nationandelectrochemistry.Thecommonpointofallthesetechniquesistheirabilitytogeneratepowerfulnon-selectiveoxidizingagentssuchasthehydroxylradicalOH•.Thesetechniquescanbeassociatedwithadsorption,appliedtothetreatmentofin-dustrialeffluentortotheeliminationofmicropollutants,forarangeofconcentrationsandtargets(drugs,pesticides,polycyclicaromatichydrocarbonsanddyes).Theperformanceofoxidationaloneiscomparedtothatobtainedwhenit isas-sociatedwith an adsorption step. Several such associations have been studied:sequential (adsorption then regenerativeoxidation) for lowerprocesscosts,andsimultaneoustoinvestigatepossiblesynergyeffects.Thetreatmentofextremelydilutesyntheticeffluent,andalsoofrealeffluentimpliedtheacquisitionofequipmentsuitedtocomplexeffluent(TOCmeter),thedevelopmentofadvancedanalyticaltechniques(GC-MS,LC-MSandLC-DAD)andthecollaborationwithanalyticalchemistrylaboratories.Awholepaneloftechniqueshasbeenusedtofollowthephysical-chemicalpropertiesofthematerialsinvestigated(e.g.microscopy,porosimetry,thermogravimetry,chemisorption,elementalanalysis,spectrometry).

Oneofthekeypointsintheseprocessesisthechoiceofthesolidmaterial,wor-kingbothasanadsorbentandacatalyst.Thedifferentstudieshaveinvestigatedactivatedcarbon,commercialzeolites[1][2],andcompositematerials.Thus,anoriginalaspectoftheapproachconsistedinsupportingTiO

2photocatalystatthe

surfaceoftheadsorbentbychemicalvaporphasedeposition(CVD),thusobviatingtheneedforseparatingTiO

2nanoparticles[3].Likewise,thehomogeneouscatalyst

ofthestandard(photo)Fentonoxidation(Fe2+)hasbeenreplacedbyironoxides,eitherunsupported[4]ordepositedontoactivatedcarbonorzeolite.These studieshaveallowed for theproposal continuous reactor designs for thetargetapplications:treatmentofhospitaleffluent(ANRPANACEE2009),ofbio-re-fractoryindustrialeffluent(ANRPHARE2006),ofwatercontainingpesticides(FUIINNOPOM2012),wastewaterfromthepetrochemicalindustry(ANRPETZECO2010),aircontainingvolatileorganiccompounds(VOC)(FUIINNOPOM2012).

Adsorption columns.

Photocatalytic reactors under UV irradiation.

Activationtechniquesandadvancedoxidationprocessesfortheenvironment3

THEME

4140

C H E M I C A L R E A C T I O N S A N D R E A C T O R E N G I N E E R I N G - H Y D R O D Y N A M I C S - T R A N S F E R P H E N O M E N A - K I N E T I C S - E X P E R I M E N T A L S T U D I E S A N D M O D E L I N G

ACTIVITIES2010-2015-InnovativeMultiphaseReactorEngineering-Theme3

Advancedoxidationandultrasoundactivation

Synergybetweenlow-frequencyultrasoundandadvancedoxidationhasbeenin-vestigatedforheterogeneouscatalyticreactionsassociatedtomembranefiltration.Theaimhereistodevelopacontinuouswatertreatmentprocess,ensuringstableperformanceofthecatalyst(bysurfacereactivation)andofthemembrane(unclo-gging)(ANRSOFENcoMEM,2015).

Regenerationofdeactivatedcatalysts

This topicaims toproposemethods for regeneratingcatalystsusingadvancedoxidationprocesses.Inparticular,itinvolveselucidatingtheelementarymecha-nismsandtheirkineticsandlinkingthemtothepropertiesofthecatalyst.Asanexample,gasphaseozonationofcokedzeolites provided good regenerationperformance[5].

Ultrasonicsludgetreatment

Following REMOVALS European project(2006), themost recent studiesonultra-sonic disintegration of sludge concerntheeffectofparameters thathadbeenpoorlyornotatallstudied,suchas:hy-drostatic pressure, ultrasound intensityandfrequency(downtoaudiblerange),as well as association with chemicaltreatment(alkalinization)[6].

Activationtechniquesandadvancedoxidationprocessesfortheenvironment

Gas phase oxidation in a zeolite fixed bed reactor.

References :u J. Vittenet, W. Aboussaoud,… M-H

Manero et coll., Catalytic ozonation with g-Al2O3 to enhance the degradation of refractory organics in water, Appl. Catal. A, DOI : 10.1016/j.apcata.2014.10.037 (2015)

v N. Brodu, C. Andriantsiferana, J.S. Pic, M.H. Manero, H. Valdés, Role of Lewis acid sites of ZSM-5 zeolite on gaseous ozone abatement, Chem. Eng. J. 231, 281-286 (2013)

w C. Andriantsiferana, E.F. Mohamed, H. Delmas. Photocatalytic degradation of an azo-dye on TiO2/Activated Carbon composite material, Env. Tech. 35 (3), 355-363 (2014)

x F. Velichkova, C. Julcour-Lebigue, B. Koumanova, H. Delmas, Heterogeneous Fenton oxidation of paracetamol using iron oxide(nano) particles, J. Env. Chem. Eng. 1 (4), 1214-1222 (2013)

y S. Khangkham, C. Julcour-Lebigue, S. Damronglerd, C. Ngamcharussrivichai, M.H. Manero, H. Delmas, Regeneration of coked zeolite from PMMA cracking process by ozonation, Appl. Catal. B : Env. 140-141, 396-405 (2013)

z H. Delmas, N.T. Le, L. Barthe, C. Julcour-Lebigue, Optimization of hydrostatic pressure at varied sonication conditions – power density, intensity, very low frequency – for isothermal ultrasonic sludge treatment, Ultrason. Sonochem., In Press, Available online 23 August 2014, http://dx.doi.org/10.1016/j.ultsonch.2014.08.011

BioprocessesandMicrobialSystems

B I O F I L M S - B I O P R O C E S S E S - F E R M E N T A T I O N - M O L E C U L E S O F I N T E R E S T - W A T E R T R E A T M E N T

SCIENTIFICDEPARTMENT:

4342

Amultidisciplinaryresearchactivity

Createdin2005followinganinterdisciplinarygatheringofexpertiseinthebiopro-cessestool,BioSymdepartmenttodaycounts4CNRSresearchersand18resear-

cherswithteacherposition(4UPSand14INP),yieldingatotalof11.9FTEinresearch.Overtheperiodinquestion,4colleaguesfromUPSjoinedthedepart-menttosupportthe“biofilms”activitiesin“health”andenvironment”applica-tions and also methodologies concer-ning chemical synthesis andmolecularbiology. One CNRS researcher has alsobeenrecruitedtoworkon“electro-ac-tivebiofilms”andoneresearcherwithteacher position to work on “fermen-tation and secondary metabiolites”.The distribution today is: 3 senior re-searchers,and1researcher(CNRS),10assistant professors two of whom arequalifiedtotrainPhD:students(1quali-fiedduringtheperiod)and8professors.

In addition to the technical support pooled for thewhole laboratory, thegroupbenefitsfromthespecificsupportoftheequivalentof3fulltimetechnicalstaff.

An expanding team of researchersSince 2009, the department has employed 5 engineers on contract (2 fromEuropeanfunding,3fromprivatecompanies[6-TMIC,Andra,Polyintell])12post-docs,9 temporaryteaching/researchpostsand44PhDsstudents.TheBioSymdepartmentcurrentlyhosts18PhDs,5post-docsand2contractengineers.Thedepartment’sinvolvementintrainingincludes9internshipsfromtheUniversityInstituteofTechnology,15MScorBScinternshipsfromToulouse(40%)orabroadforatotalof150months. Intermsoffundingfortheperiod, thedepartmentbenefitsfrom41contractsandvarioussubsidies(9ANRprojects5ofwhicharecoordinatedbyresearchersfromthedepartment,1Europeanproject(alsocoor-dinated),2inter-ministerialfunds(FUI)and10contractswithindustry).

BioElectrochemical systems.

BioprocessesandMicrobialSystems

B I O F I L M S - B I O P R O C E S S E S - F E R M E N T A T I O N - M O L E C U L E S O F I N T E R E S T - W A T E R T R E A T M E N T

ACTIVITIES2010-2015-BioprocessesandMicrobialSystems

4342

Aresearchactivityinphasewithcurrentneeds

Theexpertiseavailableatthedifferentsites(ENSIACET,ENSAT,Pharma-UPS)isputtocontributiononthevariousprojectsaimingtoobtainfundamentaland/orappliedresponsestomajorsocietaldemands.Theyconcerntheagro-foodindustry,processesforenvironmentaldepollution,health,andenergyproduction.Thecommondenominatortoresearchactivitiesisthecontrolofbioprocessesbydevelopingapproachesat themicroscopic scale involvingknowledgeofthemicroorganismandof its intracellularmachinery, tothemacroscopic scale taking into accounts the conditions of implementationandfunctioningofthemicroorganismwithinanecosystem/system.BioSymreachesitsgoalbypoolingexpertiseandknowhowinthefieldofprocessengineering, industrialmicrobiology, bioreactors, physiologyofmicroorga-nisms,bioelectrochemistry,toxicology,andmorerecentlymolecularbiology.Theactivitiesaredividedinto4themes:1)Engineeringforhealth,BiofilmsandMycotoxins,2)Fermentationandsecondarymetabolites,3)Biofilmen-gineering,energy,synthesisandcorrosionand4)Biologicaldepollutionofcontaminatedenvironments.

Permanentmembers: Claire Albasi | Marion Alliet | Philippe Anson | Régine Basseguy | Geneviève Baziard | Sandra Beaufort | Alain Bergel | Cédric Brandam | Marie-Line Délia | Fatima EL Garah | Salomé El Hage | Luc Etcheverry | Catherine Giovannini | Coralie Guadagna | Claire Joannis-Cassan | Benjamin Erable |Barbora Lajoie | Annie Leszkowicz | Thierry Liboz | Florence Mathieu | Marie-Carmen Monje | José Raynal | Christine Roques | Patricia Taillandier |Sylvie Schetrite.

Headofthedepartment:Claire ALBASI

Activated sludge used for the removal of micropollutants.

Membrane bioreactor for the study of mixed cultures

4544

B I O F I L M S - B I O P R O C E S S E S - F E R M E N T A T I O N - M O L E C U L E S O F I N T E R E S T - W A T E R T R E A T M E N T

1THEME

Thisthemeisorganizedaroundseveralhealth-relatedobjectives.Studiesincludefundamentalapproachesofthebehaviorofmicroorganismsandtheirinteractionswithsurfaces,themechanismsofformationofbiofilms,toappliedapproachesconcerningtheexpressionofbiomoleculesdependingonthephysiologicalstateof the microorganism (planktonic, adherent, biofilm) and the loss of sensiti-vity toantimicrobials. Themycotoxinsapproachcorresponds to theapplicationofknowledgeabout thesepathogenicity factorsand theirexpression in termsofenvironmentalbiomarkers.

Processessupportinghealthcareinnovation

Understanding biofilm formationTheLaboratory’sexpertiseintermsofadhesionandformationofbio-filmhaveledtothedevelopmentofspecificmodelsallowingthestudyofthebehaviorofcellsatdifferentstepsandofthe3Dstructureandof theextra-cellularmatrix. Themostnotable studies concern i) thefirstdemonstrationoftheLegionellapneumophilaabilitytogeneratemonospeciesbiofilms[1](ANSES),ii)theusefulnessofsyntheticana-

loguesofQuorumSensinginductors(QS)intheinvitrocontrolofPseudomonasaeruginosabiofilmformation[2](VLM),iii)theassociationofQSandbioelectroche-mistry.Theoriginalconceptisthemodificationofthemetabolicactivitycombiningvariationinthephysiologicalstatusofthemicroorganismandbyanelectricfield.

How to control biofilm formationLearning about the behavior of bacteria at interfaces led toapplied research. In this way, needs include the dispersionofmicrobial biofilms but also biofilm formation in a specificlocation, depending on the aim. The applications consideredconcernhealthandtheenvironment(fightingagainstnosoco-mialdiseases[3],controlofwaternetworks,bioremediation)andbiotechnology (synthesisofbiomolecules,bio-batteries).Biofilmtoolhasbeeninvolvedinnumerousregionalandna-tionalcollaborations:behaviorofbacteriainmicrofluidics[4],characterizationofantimicrobialsurfaceproperties.

Legionella pneumophila biofilm - 3D reconstruction (confocal microscopy – Syto9®).

Biofilm and extracellular matrix (confocal microscopy – Syto9® and ConA).

GroupLeader:ChristineRoques

Engineeringforhealth:biofilmsandmycotoxins

4544

B I O F I L M S - B I O P R O C E S S E S - F E R M E N T A T I O N - M O L E C U L E S O F I N T E R E S T - W A T E R T R E A T M E N T

Mycotoxins: Risk management, evaluation/validation of detoxification processesCharacterizationoftheochratoxinAmechanismofaction.Massspectrometrywasusedto identifyacovalentDNAadductprovidingabsoluteproofthatochratoxinA isadirectgenotoxiccarcinogen.Weidentifiedthemetabolitesresponsibleby“structure-activityrelationship”studies.Thisenabledtodefinebiomarkersnotonlyforthefollow-upofexposedpeople/animalsbutalsotovalidatemeansofdetoxi-fication.Thework isbasedon international(Canada,UK,CzechRepublic,Spain)andindustrialcollaborationsandwassupportedbyRegionandMycodiagprojects.Riskevaluationlinkedtomulti-contaminationbymycotoxins:simultaneousexpo-sure to severalmycotoxins at doses considered acceptable led to toxic effects,questioningcurrent legislationandstressingtheneedtofindefficientmeansofdetoxification[5].Withthisinmindprocessesusingyeastsandlacticbacteriaarebeingstudied(LesaffreandtheThaiBiotechnologyUniversity)[6].

Engineeringforhealth:biofilmsandmycotoxins

Effect of an original analogue of homoserine lactones (C11) in association with antibiotics on the formation of Pseudomonas aeruginosa biofilm (T 48h; CIP, ciprofloxacine; TOB, tobramycine; CAZ, ceftazidime; COL, colistine)

ACTIVITIES2010-2015-BioprocessesandMicrobialSystems-Theme1

References :

u Pecastaings S, Roques C. Production of L. pneu-mophila monospecies biofilms in a low-nutrient-concentration medium. Methods Mol Biol. 2013; 954: 219-24.

v Khalilzadeh P., Lajoie B., El Hage S., Furiga A., Baziard G., Berge M., Roques C. (2010) Growth inhibition of adherent Pseudomonas aeruginosa by a N-butanoyl-homserine lactone ana-log. Can. J. Microbiol. 56(4): 317-325.

w Jacquart S, Sisadous R, Henocq-Pigasse C, Bareille R, Roques C, Rey C, Combes C. Composition and properties of silver-containing calcium carbonate-calcium phosphate bone cement. J Mater Sci Mater Med. 2013. 24(12): 2665-75.

x Marty A, Causserand C, Roques C, Bacchin P. Impact of tortuous flow on bacteria streamer development in microfluidic system during filtration. Biomicrofluidics. 2014. 8(1).

y Faucet-Marquis V., Joannis-Cassan C, Hadjeba-Medjdoub K, Ballet N, Pfohl-Leszkowicz A. Development of an in vitro method for the prediction of mycotoxin binding on yeast-based products : case of Aflatoxin B1, Zearalenone and Ochratoxin A. Appl Microbiol Biotech. 2014. 98, 7583-7596

z Pfohl-Leszkowicz A, Hadjeba-Medjdoub K, Ballet N, Schrickx J, Fink-Gremmels J. Assessment and characterisation of yeast-based products intended to mitigate ochratoxin exposure using in vitro and in vivo models. Food Additives & Contaminants : Part A, 2014

4746

B I O F I L M S - B I O P R O C E S S E S - F E R M E N T A T I O N - M O L E C U L E S O F I N T E R E S T - W A T E R T R E A T M E N T

Towardsabetterunderstandingofhowthemicroorganismworkstocontrolandoptimizefermentationprocessesofindustrialinterest

In “real conditions” (industrially usedmedia and strains), the stoichio-kineticcharacterizationofthebiologicalreactionistheaimofthistheme.Understan-dingtheeffectsofbiologicalandenvironmentalfactorsandthoseofmetabolic

pathways connects themetabolism and theway it isma-nagedinthereactorandevenhowitismodeled.Thepro-jectscovertwomainareas:

Towardsabetterunderstandingofhowthemicroorganismworks

Interactions between microorganisms “Understanding the interaction and optimizing the implementation” Studiesonmicrobialinteractionsrespondstotwodifferentissues:development of biological means to counter mycotoxins [1]and fermentationprocesses involvingmixedmicrobial popu-lationgrowth[2].Inbothcasestheapproachisbasedontheanalysisoftheinteractionsoftheco-occurringmicroorganisms

whichcanleadtomodelingthedynamicsofthemicrobialpopulationsasafunc-tionoftheenvironmentalconditions.Inthecaseofbiologicalcontrol,theaimistoreducetherisksarisingfromthepresenceofmycotoxinsinprocessedfood.Theperspectiveistounderstandandpreventtheirappearance,especiallybystudyingtheirbiosyntheticpathwaysandtheireliminationthroughprocessesofbiologicaldegradationoravoidingtheirproductionusingastrategyofbiocontrol(inoculationofcompetitivebeneficialmicroorganisms)[3].Applicationsconcernfermentedbeveragesandthecerealandgrapesectors.Themainscientificprogressofthegroupconcernsmeasuringtheimpactoftheinte-ractionongeneexpression,alreadyobtainedintheexampleofbiologicalcontrolofaflatoxinleadingtoreducedcontamination(ANRAFLAFREE2011-2015),andinprogressconcerningmixedmicrobiologicalcommunitiescontainingyeastsinwinemaking.Theidentificationofthemetabolitesinvolvedintheseinteractionsisalsoinprogressinboththeseissues.

Equipped fermenters.

Inoculation of a Petri dish.

GroupLeader:PatriciaTaillandier–FlorenceMathieu

Fermentationandsecondarymetabolites2THEME

4746

B I O F I L M S - B I O P R O C E S S E S - F E R M E N T A T I O N - M O L E C U L E S O F I N T E R E S T - W A T E R T R E A T M E N T

Controling the biological reaction for the production of microbial metabolites of interestThe projects underway in agronomy, fermented drinks, and health involve twotypesofobjectives:-Fermentationprocessesusingultra-purecultures:productionofmicrobialstartersandimplementationoftheselectedmicrobialstrains.Experimentationandmode-lingareusedhand-in-handtounderstandtheinfluenceofcultureconditions(com-positionofthemedium,aeration,stirring,temperature,typeofbioreactor,modeofoperation,etc.)onthefermentationaptitudeofthemicroorganisms.

- Research and characterization of secondarymetabolites presenting interestingbiologicalactivities(antibiotic,antifungal,anticancer,antioxidant)[4].TheaimistodefineandtocontroltheirproductionbytheuseofrareActinobacteria(Strep-tomycessp.,Saccharothrixsp.)[5]ormoulds(Aspergillusniger).

Themajoreventsduringthelast5yearswere2FUI(projectswithInterministerialFunding)ontwoindustrialissues:continuousvinificationonanindustrialscaleof12m3(FUIVINEO)andbioactivemetabolitesforagronomy(FUINEOFERTIL).MajorprogresshasbeentheisolationofnewstrainsofActinobacteria(2patents)fortheproductionofbiofertilizers.Morerecently,theEpicureRegionprojectVINOSULFITESledtothevalorizationofantioxidantmoleculesinthewinemakingsector.

Fermentationandsecondarymetabolites

Aspergillus under the microscope..

References : u Verheecke, C., Liboz, T., Darriet, M., Sabaou,

N., Mathieu, F. In vitro interaction of actinomycetes isolates with aspergillus flavus : Impact on aflatoxins B1 and B2 production (2014) Letters in Applied Microbiology, 58, 6, 597–603

v Taillandier, P., Lai, Q.P., Julien-Ortiz, A., Brandam, C. Interactions between Torulaspora delbrueckii and Saccharomyces cerevisiae in wine fermentation : influence of inoculation and nitrogen content (2014) World Journal of Microbiology and Biotechnology, 30, 7, 1959-1967

w Nehme, N., Mathieu, F., Taillandier, P. Impact of the co-culture of Saccharomyces cerevisiae-Oenococcus oeni on malolactic fermentation and partial characterization of a yeast-derived inhibitory peptidic fraction (2010) Food Microbiology, 27, 1, 150-157

x Mkaddem, M., Bouajila, J., Ennajar, M., Lebrihi, A., Mathieu, F., Romdhane, M. Chemical composition and antimicrobial and antioxidant activities of mentha (longifolia L. and viridis) essential oils (2009) Journal of Food Science, 74, 7, 358-363

y Strub, C., Brandam, C., Meyer, X.-M., Lebrihi, A. À stoichiometric reaction scheme for Saccharothrix algeriensis growth and thiolutin production (2010) Process Biochemistry, 45, 11, 1808-1815

ACTIVITIES2010-2015-BioprocessesandMicrobialSystems-Theme2

4948

B I O F I L M S - B I O P R O C E S S E S - F E R M E N T A T I O N - M O L E C U L E S O F I N T E R E S T - W A T E R T R E A T M E N T

Findinginnovativesolutionsfornewprocesses

Overthelastfewyears,electro-activebiofilmshavebeenusedinnovelprocessesforbioelectrochemicalsynthesis.Thechoicewasmadein2009toengageinthisinnovativesynthesis routeand toannounce thekeyword“synthesis”asanew“sub-theme”.

Encouragingmethodologyandprotocolsharing

EnergyIn2009,theANRprojectBacteriopile(Bacteriofuelcell)coor-dinatedbythedepartmentreacheditsterm.Theaimofthisappliedprojectwastheuseofelectroactivemarinebiofilmstocatalyzeelectrodereactionsinamicrobialfuelcell.Apro-totypewasdevelopedthentestedandvalidatedonamarinesite for6months[1].From2008to2012, theANRprojectAgri-Elecproposedtheproductionofelectricenergyusingamicrobialfuelcellassociatedtotheintensificationofapro-cesstotreatorrecyclewaste.Thisfruitfulproject(2patentsand15articles)raisedanumberofnewscientificissuesand

clearlyidentifiedthehurdlestobeovercomebeforethetechnologycanbetrans-ferred.Thehurdlesinquestionconcernboththecathodeandtheengineeringofthe electrochemical bioreactor,which are currently the object of twonewANRprojects.TheJCJCprojectBiocathinoxstartedin2011andisatheoreticalprojectonthecomprehensionand theoptimizationofmicrobialcathodes, (electrochemical

reduction reactions catalysedbyelectroactivebiofilms). TheANRprojectBioElec(BioME2013),basedonanengineeringapproach,proposestoassociatetheconceptofthegas-diffusioncathodewiththatofthemicrobialcathodetoovercometheobstacleofthelowsolubilityofoxygeninwater.

SynthesisProductionofhydrogenbymicrobialelectrolysis:ANRprojectDéfiH12 (2009-2013), coordinatedby thedepartment, concluded intheexperimentalvalidationofamicrobialelectrolysispilotdeve-lopedconjointlywithanengineering start-up6T-MIC.Concerningthemicrobialelectrosynthesis,thegroupisengagedsince2011,in

GroupLeader:BenjaminErable–BarboraLajoie

3THEME

Biofilmsengineeringforenergy,synthesisandcorrosion

Electrochemical bioreactors for the fundamental study of the interfaces between electrodes and electro-active biofilms.

Air cathode microbial fuel cell (production: STI LGC).

4948

B I O F I L M S - B I O P R O C E S S E S - F E R M E N T A T I O N - M O L E C U L E S O F I N T E R E S T - W A T E R T R E A T M E N T

aprojectforInvestmentintheFuturepilotedbyIRSTEAandSuezEnvironnementintotheuseofelectro-activebiofilmforthedirectsynthesisofbiomolecules(che-micalsorsynthons/buildingblocks)fromelectricityand/orCO

2.Ourfirstnotable

result concerned the synthesis of glycerol from CO2 driven by an electro-active

biofilmofGeobactersulfureducensonstainlesssteelelectrodes.Theseresultswereprotectedbyapatentin2012thenpublishedin2013[2].Aquitenewpartofourworkconcernstheelectrochemicalbiosynthesisofanti-biotics.This innovativeproject is in itsearlydays, it isan interdisciplinarystudyinvolvingthethemesoftheBIOSYMdepartmentworkingonbiofilms,health,andfermentation.In2012itreceivedfinancialsupportfromLGCintheformofaPLUSproject.

Corrosion-Thestudyofbiocorrosionphenomenaishighlymultidisciplinary.Thus,tostructureanddefragmentthedomainontheEuropeanscale,aMarie-Curienetwork(FP7-PEOPLE-ITN-2008)entitled‘BIOCORInitialTrainingNetwork’wassetupunderthecoordinationofthedepartmentinSeptember2009.Itbringstogether18academicandindustrialgroupsfrom9Europeancountries.Themainaimistolookformi-crobialspeciesotherthantheknownsulfatereducingbacteria(SRB),whichcanplayaroleinthecorrosionofequipment.Itwasdemonstrated,forthefirsttime,thatbacteriasuchasGeobacterspcouldbeeitherpromoters[3]orinhibitors[4]ofcorrosion.Since2011anewcollaborativeprojectwithANDRAhasstartedin-vestigatingtheeffectsofbiodeterioationduringradioactivewastedisposal(concretedegradationandcorrosionofsteeldrums).

Biofilmsengineeringforenergy,synthesisandcorrosion

Scanning electron micrograph of a microbial biofilm colonising the surface of a carbon electrode. (Technical support: M.-L. De Solan).

References : u Erable B., Lacroix R., Etcheverry L., Féron D.,

Délia M.L., Bergel A., 2013. Marine floating microbial fuel cell involving stainless steel microbial cathodes. Bioressource Technol. 142, 510-516.

v Soussan L., Riess J., Délia M.L., Erable B., Bergel A., 2013. Electro-chemical reduction of CO2 catalysed by Geobacter sulfurreducens grown on stainless steel cathodes. Electroche-mistry Communications 28, 27-30.

w Mehanna, Maha and Basséguy, Régine and Délia, Marie-Line and Gubner, Rolf and Sathirachinda, Namurata and Bergel, Alain (2009) Geabacter species enhances pit depth on 304L stainless steel in a medium lacking with electron donor. Electro-chemistry Communications, vol. 11 (n° 7). pp. 1476-1481. ISSN 1388-2481

x Thèse Cote, 2013 : Biocorrosion de l’acier au carbone dans les systèmes d’injection d’eau de l’industrie du pétrole et du gaz : nouveaux modèles expérimentaux issus du terrain.

ACTIVITIES2010-2015-BioprocessesandMicrobialSystems-Theme3

5150

B I O F I L M S - B I O P R O C E S S E S - F E R M E N T A T I O N - M O L E C U L E S O F I N T E R E S T - W A T E R T R E A T M E N T

4THEME

GroupLeaders:MarionAllietetClaireJoannis-Cassan

Expertiseattheserviceofenvironmentalconservation

Thestudiescarriedout in this theme focuson theunderstandingandtheoptimizationofbiological treatmentprocesses,appliedtovariouseffluents.Muchoftheworkinvolvestheuseofmembranebioreactorsforwastewatertreatment.ClassicalnotionsofChemicalEngineeringwereusedtooptimizethebiologicalreaction.Moreo-ver,theaimsofenvironmentalconservationcomplementthepro-fitabilityobjectivesof thedepollutionprocesseswith toxicologicalcertificationofthetreatmentsonthehorizon.

Understandingandoptimizingwastewaterdecontaminationprocesses

For Membrane Bioreactors, energyexpenditure,mainlyduetotheactionstakentolimitfoulingremainsanobstacletotheirdevelop-ment.Twolinesofresearcharebeingpursuedtounderstandfoulingandpreventitfromhappening.Firstly,thedevelopmentofaglobalsimulatorofmembranebioreac-tors that incorporates three model blocks: biological depollution,membranecloggingandthebalances(massenergy)fortheove-rallprocess. Thisenablesoptimizationof thesyncopatedfiltrationmodeandofaerationmanagementforfoulinglimitationresultinginenergysaving(PhD:YusmelGonsalezHernandez,2013-2016)[1].In addition,more specific studies to understand themechanisms

underlyingfoulinghaveacceleratedtheirmodeling(studiescarriedintheresearchframeworkFERMATFR-CNRS3089INPT):sludgerheology(Regionproject,post-docJ.Günther,2009-2010),evaluationofmeanshearstressassessedinsludgearoundthemembranemodule (1 Pa, an order ofmagnitude greater than that usuallyfound forwater; PhD: E. Braak, 2009-2012, Léopold EscandeAward) [2], effectofthisstressonthesludgepropertiesaffectingtheclogging(particlediameters,solublemicrobialproductconcentrations).

Submerged membrane bioreactor for hospital wastewater treatment (pilot scale).

Biologicaldepollutionofcontaminatedenvironments

5150

B I O F I L M S - B I O P R O C E S S E S - F E R M E N T A T I O N - M O L E C U L E S O F I N T E R E S T - W A T E R T R E A T M E N T

Degradation of DNA used as a biomarker to evaluate the toxicity of effluent.

Severalprojectsconcerningthe elimination of anti-cancer drugs fromwastewaterbymembranebioreactortreatmenthaveplacedthedepartmentattheforefrontofresearchinthedomain.Thefeasibilityoftheprocessandtheeliminationof75%

ofthedrugspresentweredemonstrateddu-ringtheANRprojectcoordinatedbytheteamTOXEAUBAM(2006-2009PhD:ofL.Delgado,2009:laboratoryscaleandsemi-syntheticef-fluent).Partoftheoutcomeofthisworkwasthemicropollutantseliminationmechanisms(biodegradation and adsorption and thefateof thesemolecules in the sludgesolidphase was studied during the ANR projectJeune Chercheur BioMedBoue (Young Re-searcherBioMedSludge) coordinatedby thedepartment(2009-2013;PhD:J.Seira,2013)[3]. Owing to the development of analyti-calmethods to quantify low concentrationsof anti-cancer drugs both in the liquid and

inthesolidsludgephase,rigorousdeterminationoftheconcentrationsindicatedthat biodegradation is themain process contributing to their elimination (40%)while adsorption only accounts for 0.5%. Currently, as part of the ANR projectCD2I PANACEE 2010 -2015, coordinated by the department, these results havebeenextendedtoanexperimentonahospitalsiteandonasemi-industrialscalepilotplant(500L/d).Analyticalapproachesusinggeno-,cyto-andeco-toxicity[4]support chemical quantification. Although toxicitywas shown to be largely de-creased,pharmaceuticalsdonotseemasrefractoryasdetergentsandothertracesof hospital activity, themselves affecting the biolo-gicalefficiencyoftheprocess.Thesestudiesshouldhelpfutureresearchtofocusonbio-enhancementinthetreatmentofmicropollutants.

Biologicaldepollutionofcontaminatedenvironments

Hydrodynamics around a membrane bundle. Photos of bubbles in sludge, in water and the computational fluid dynamics (CFD).

ACTIVITIES2010-2015-BioprocessesandMicrobialSystems-Theme4

References : u González Hernández, Y., Jáuregui Haza,

U.J., Albasi, C., and Alliet M. Development of a Submerged Membrane Bioreactor simulator : a useful tool for teaching its functioning. Education for Chemical Engineers 9, n° 2 (avril 2014) : e32 41.

v Braak E. (2012), Aération pour le décolmatage dans les bioréacteurs à membranes immergées : effets sur la filtration et le milieu biologique. Thèse INP Toulouse.

w Seira J., (2013) Rôle de la sorption et de la biodégradation dans l’élimination de micropolluants par des procédés d’épuration biologique : application aux molécules anticancéreuses traitées par bioréacteur à membrane. Thèse INP Toulouse.

x Mater N, Géret F, Castillo L, Marquis-Faucet V, Albasi C, Pfohl-Leszkowiz A (2014) Ecological risk assessment of ciprofloxacine, tamoxifen and cyclophosphamide in range of concentrations released in hospital waste water and river. Environment International 63, 191-200.

ScienceandTechnologyforProcessIntensification

PROCESS INTENSIFICATION - MULTIFUNCTIONAL DEVICES - SUPERCRIT ICAL MEDIA - SEPARATION, CONTACT & MIXING - PROCESS SAFETY - GREEN PROCESSES

SCIENTIFICDEPARTMENT:

5352

Technologyinnovationandexpertise

The activities of the department Science andTechnology for Process Intensification (STPI) arecenteredonthedesign,scaleup,operationandsafety of intensified processes involving multi-functional equipment, green solvents, energyefficiency, biosourced carbon. Research focuseson industrial scaleprocesses, associatingequip-mentdesignandtechnology,aswellasfinalpro-ductspecifications.Thedepartment isstructuredinto four themes that integrate divers types ofknowledgeandexpertise,whicharenecessarytostructuredthescientificobjectives:

1.Contactors,mixingandmicro-structuredtechnologies2.Reactiveseparations3.Supercriticalprocesses4.Strategiesforintensificationandprocesssafety

Internationallyandnationallyrecognizedscientificandtechnicalexpertiseandknow-how

Thedepartment’sacademicandindustrialreputationandat-tractivenessarebasedon:-internationallyrecognizedscientificexpertise-theabilitytointegratetoolsformvariousscientificfields-thedesireandthemeanstoimplementprocessesatindus-trialscalewithdemonstrators

Duringthelastfiveyears,thedepartmenthasreceivedmorethan 4.4 million euros in the form of contracts, industrialcollaborativeprojectsandgrantsforPhDstudentsandpost-

docs. Themembers of the department havebeen involved in diverse inter-nationalandnationalnetworksandfederationsatdifferentmanageriallevelsincluding:EFCE (WP Mixing, WP Process Intensification, WP Separation, General Secre-

Semi-industrial intensified pilot.

Design and characterization of intensified equipments.

© IN

P-EN

SIAC

ET /

www.

jpgp

hoto

grap

hie.

com

ScienceandTechnologyforProcessIntensification

PROCESS INTENSIFICATION - MULTIFUNCTIONAL DEVICES - SUPERCRIT ICAL MEDIA - SEPARATION, CONTACT & MIXING - PROCESS SAFETY - GREEN PROCESSES

5352

ACTIVITIES2010-2015-ScienceandTechnologyforProcessIntensification

tariat,ExecutiveBoard,ManagementCommittee,Communi-cations-Southern Europe), Europeannetwork EUROPIC (Pro-cessIntensification),GDRmicroandnanofluidics,SFGP(GTReactorengineeringand intensification,GTTraining),AERES,ANRprojectCD2I,INERIS(Chairofthescientificcouncil).De-partmentmembershaveorganizedinternationalcongresses(GPE2009,GPE2011,GPE2014)andareorganisingthenextEuropeanCongressofChemicalEngineering(ECCE10,2015).Anumberofresearchershavebeeninvitedtogivelecturesand expertise internationally, including: “Engineering andSustainable Chemistry” (Federal University of Maranhao,Brazil), “Extraction processes for sustainable development(1st Journée eco-extraction de produits végétaux, AvignonUniversity),EuropeanCongressofChemicalEngineering(Berlin,2011),13thPolishConferenceonMixing(Krakow,2014),“Catalyticmicroreactors(BucharestUniver-sity, Romania), expertisework (CS INRS, programs ANR, PC2D, RDR3), journals,programs(CzechScienceFoundation)andscientificcommittees(SFGPcongress).Thedepartmenthascontributedtonumerousindustrialprojectsthroughdirectin-terventionsfortechnologytransfer,inANRconsortia,orinFUIprojects.Inaddition,thedepartmentplayedamajorroleincreatingtheMEPI(MaisonEuropéennedesProcédésInnovants),whichisatechnicalplatformforindustrialprocessdemonstra-tionandthedepartmenthostscertainresearchactivitiesforCIMV,whichisalocalbio-refinerycompanythatrecycleslignin.

Methodsandtoolsforprocessintensification

From2010to2015,thedepartmentwasstructuredaroundimportantprojects.Onesuchproject isheatexchangers-reactors,whichhasmadeconsiderableprogressbothon fundamental knowledge (experimental design formodels data acquisi-tion) and application driven research (safety, implementation of complex reac-tionsystemssuchasmulti-steppolymerizationorchemicalsynthesis).Moreover,thedepartmenthasmadesignificantcontributionsthroughinternationalfocusonGreenProcessEngineering,whichwasinitiatedmainlybythedepartmentin2007.Throughnumerousprojects,significantprogresshasbeenmadeintheunderstan-dingofhydrodynamicsandtransportphenomenainconfinedandfreeflows.Final-ly,newprojectsfocuson,forinstance,intensifiedseparatorsandthemethodologyusedfortheirdesignbutalsoalsobiosourcedcarbon.

Permanentmembers: Joelle Aubin-Cano | Michel Cabassud | Séverine Camy I Gilbert Casamatta I Patrick Cognet I Jean-Stephane Condoret I Joël Bertrand | Jean François Blanco Michel Delmas | Philippe Destrac | Sébastien Elgue | Nadine Gabas I Christophe Gourdon I Richard Guilet I Nathalie Le Sauze | Karine Loubière |Yaocihuat Medina González l Michel Meyer | Nelly Olivier-Naget I Yolande Peres Lucchese | Laurent Prat I Martine Poux | Nathalie Raimondi | David Rouzineau | Catherine Xuereb

Headofthedepartment:Laurent PRAT

Experimental implementation and data acquisition.

© IN

P-EN

SIAC

ET /

www.

jpgp

hoto

grap

hie.

com

5554

PROCESS INTENSIFICATION - MULTIFUNCTIONAL DEVICES - SUPERCRIT ICAL MEDIA - SEPARATION, CONTACT & MIXING - PROCESS SAFETY - GREEN PROCESSES

1THEME

Understandinghydrodynamicstoproposemodelsandaidindesign

Theactivitieshere focuson theunderstandingand the characterizationof localhydrodynamics,mixingandtransportphenomenaoccurringininnovativeequip-mentsuchasmicroreactorsandmicrostructuredpacking,aswellasinconventionaldevices(stirredreactors,staticmixers)dealingwithcomplexmultiphaseflows.Va-

riousexperimentalandnumericaltoolsandmodelinghavebeenusedtoqualifyandquantifythepheno-mena.Significantprogresshasbeenmadeinsettingupon-linemeasurementtechniques,suchasRamanand near infrared spectroscopy as well as particleimagemicro-velocimetry(μPIV)intwo-phaseflow.

Science of two-phase flow at the micro-scale Thestudyoftwo-phaseflow–liquid-liquidandgas-

liquid–hasbeenthefocusoftheresearchactivitiesofthistheme.Theactivitieswerecarriedoutinregional,nationalandinternationalprojects(FERMATFedera-tion,ANRMIGALI (2010-2013), CNRS/ASRTprojects2009-2010and2011-2012).Theeffects of the shapeof the apparatus, the properties of the fluids and theoperatingconditionsonthe localhydrodynamicsandtherelationshipwithmasstransferhavebeenexploredbothexperimentallyandnumerically.Followingexten-siveexperimentalcampaigns,andwiththehelpofelaborateexperimentaltech-niquessuchasμPIV[1]andimageprocessing,characteristiclengthsandtimes[2]offlowwereobtained.TheconsolidationofthedataandtheclosecollaborationwithIMFTenabledthedevelopmentofmodelsforthepredictionofbubble/dropletsizesandmasstransfer[3][4].Onestrongpointofourcontributiontothisfieldis

thetransferofratherfundamentaldatatowardsprocessesandcorre-lations,whichallowedthedesignandtheimplementationofinten-sifiedprocesses(themeIntensificationMethodsandProcessSafety).

Visualization of Taylor bubble generation in a microchannel – effect of the inlet geometry (air-ethanol dispersion, QG=QL=0.8 ml/min).

Velocity fields (measured by micro PIV) in the liquid phase between two Taylor bubbles in a microchannel.

GroupLeader:JoëlleAubin

Contact,mixingandmicrostructuredtechnologies

5554

PROCESS INTENSIFICATION - MULTIFUNCTIONAL DEVICES - SUPERCRIT ICAL MEDIA - SEPARATION, CONTACT & MIXING - PROCESS SAFETY - GREEN PROCESSES

Dissolved oxygen concentration fields measured by colourimetry.

Mixing analysis using three dimensions of segregationInitiatedin2006,thisworkwascarriedoutincollaborationwiththeUniversityofAlberta(Canada)andledtoanewdefinitionofmixingbasedonthreedimensionsofsegregation(intensityofsegregation,scaleofsegregation,andexposure)whichincludesthescalesofconcentration,lengthandtime[5].

Transposingthesedimensions,whichwereoriginallydevelopedforthestudyofdemographyandecology,toapplicationsinprocessengineeringstressestheinno-vationofthisapproach.Thetheoreticaldefinitionisalsosupportedbyequationsthatdescribethephysicalphenomenaandtheexperimentalmeasurementsthatenablemixingqualitytobequantified[6].

Directly linked to other research themes of the department • Supercritical microfluidics—incollaborationwiththeresearchersworkingonthe

CO2SupercriticalProcessesresearchthemeatLGCandtheRAPSODEECentre(Albi)

andthroughnationalprojects(ANRmFSC(2009-2012).Effortshavefocusedonthecharacterisationofsupercriticalfluidflowinmicrofluidics.

• Design and characterization of innovative internals —Thedesignofinnovativemicrostructuredinternalsplaysanessentialroleinprocessesofabsorptionordis-tillationwherethedevelopmentofthegas-liquidinterfacialsurfaceareaandtheoccurrenceoftrickleflowdeterminetheperformanceoftheprocess.Atestsetupwithvisualizationbyhigh-speedcameraallowedthecharacterizationoftheliquidtrickleflowonplatesrepresen-tativeofinternalswithcounter-currentgasflow.

Contact,mixingandmicrostructuredtechnologies

ACTIVITIES2010-2015-ScienceandTechnologyforProcessIntensification-Theme1

References : u P. Zaloha, J. Kristal, V. Jiricny, N. Völkel,

C. Xuereb, J. Aubin, Chemical Engineering Science 68 (2012) 640-649.

v T. Abadie, J. Aubin, D. Legendre, C. Xuereb, Microfluidics & Nanoflui-dics, 12 (2012) 355-369

w N. Raimondi, L. Prat, C. Gourdon, J. Tasselli, Chemical Engineering Science 105 (2014) 169-178

x N. Dietrich, K. Loubière, G. Hébrard, C. Gourdon, Chemical Engineering Science 100 (2013) 172-182

y A. Kukukova, J. Aubin, S.M. Kresta, Chemical Engineering Research & Design 87 (2009) 633-647

z A. Kukukova, J. Aubin, S.M. Kresta, Canadian Journal of Chemical Engineering 89 (2011) 1122-1138

5756

PROCESS INTENSIFICATION - MULTIFUNCTIONAL DEVICES - SUPERCRIT ICAL MEDIA - SEPARATION, CONTACT & MIXING - PROCESS SAFETY - GREEN PROCESSES

Discoveringthetransferphenomenadrivingchemicalreactionsandseparation

Fluid-fluid separation is at the center of the preoccupations of this theme. Theresearchfocusesonunderstandinglocalmulticonstituentmasstransferphenomena.Also,reactiveseparationsaredesignedthroughthedevelopmentofmethodologies

favoringintensifiedtechnologiesinchemicalreactionsandseparation.Theresearchrelatedtothisthemehasledto4PhDsbeingdefendedwith3moreinprogress.Theactivitywassupportedby2ANRprojects(GASCOGNE,INVERTO),5industrial contracts (IFPEN, RHODIA, VEOLIA, CIMV, FABRE)andoneAMIprojectADEMETOTAL.

Determiningtheparametersrequiredforoptimalseparationprocesses

Reactive separations Multifunctionalequipmentplaysanimportantroleinprocessintensification.Ourresearchfocusesonassociatingreactionandseparationfunctionswithinthesameapparatus.Pairsofactionsthathavebeenapproachedinclude:reactivedis-tillation, reactive absorption, and, more recently, reactiveextraction. Reactive distillation,which continues to be anextremelyactivebranchofresearchstudyingthefeasibility

of operation of reactive columns, has been approached in two ways. The firstconcernstheabilitytoanalyzeandcontrolreactivedistillation[1](PhD:F.Mayra)inclosecollaborationwiththePSIdepartmentandthesecondconcernstheproductionofinnovativecatalyticpackings[2](PhD:J.Leveque).ReactiveabsorptionhasbeenstudiedinthecontextofCO

2sequestrationinapost-treatmentstep.Anrate-based

modelsuitableformulti-componentreactiveelectrolyticsystemswasdevelopedtorepresentreactiveabsorptioncolumnsandtomodelaunitfortheselectiveelimi-nationofacidgases.GeneralizedMaxwell-Stefanequationsareusedtoquantifythemulticomponentinteractionsthatoccurduringdiffusion[4].Thismodelwasvali-datedinapilotdevelopedinthelabandusedtotestseveraldifferentformulationsofsolventmixtures.Thevalidatedsimulationtoolbecameameanstopredictthereactiveabsorptionuptakeefficiencyofrealunits.Researchwascarriedoutintoreactiveextraction(PhD:B.Mizzi)withadoubleaim: transposingthemethodology

Gas-liquid contactor made of microstructured ‘foam’.

GroupLeader:MichelMeyer

Reactiveseparation2 THEME

5756

PROCESS INTENSIFICATION - MULTIFUNCTIONAL DEVICES - SUPERCRIT ICAL MEDIA - SEPARATION, CONTACT & MIXING - PROCESS SAFETY - GREEN PROCESSES

developed for reactive distillation to reactive extraction and comparing reactiveextractiontoreactivedistillationfortheseparationofafermentationproduct.

Improvingtheenergyefficiencyofprocesses

SeparationsDistillationwasusedincertain“productoriented“studies. One of the first subjects covered wasmakinguseofligno-cellulosematerials.Thiswasapproached in twodifferentways: itsdegrada-tionfirstlybytorrefaction(ANRprojectINVERTO)andsecondlybyacidattack(CIMVcontract).Thepurposeherewastodevelopthewholeseparationsequence to recover the molecules of interestand then tooptimizepurification and recyclingoftheacids.So,theinitialaimtominimizeen-ergy consumption during distillation led to thecreationofasubjectthatisgainingconsiderableimportanceinthedepartment-energyefficien-cyinseparationprocesses.The first developments concerned distillationcolumns. A study was carried out on dividingwalledcolumns(DWC)bydevelopinganoriginalmethod of pre-design using the first and onlyuniversity pilot plant in France (PhD: Nguyen).ThisactivitywillbepursuedinaSolvay-funded

appliedPhD:tostudyDWCdistillationofstronglynon-idealmixtures.Solid-liquid extraction is envisaged for the isolation of commercially interestingplantproducts.Thissubjectwascoveredinanintra-INPTBonusQualityResearchBQRproject(RUBIAEXT)andiscurrentlybeingcontinuedinaninternationalcolla-boration(PhDsL.Saqalli,N.Gardha).

Divided wall column distillation pilot.

ACTIVITIES2010-2015-ScienceandTechnologyforProcessIntensification-Theme2

References : u Mayra F. Fernandez, B. Barroso,

X.-M. Meyer, M. Meyer, M. –V. Le Lann, G. C. Le Roux, M. Brehelin, chemical engineering research and design 91 (2013) 2309–2322

v J Leveque, D Rouzineau, M Prévost, M Meyer, Chemical Engineering Sciences 64 (2009), 2607-2616

w P. Alix, L. Raynal, F. Abbe, M. Meyer, M. Prevost, D. Rouzineau CHERD vol. 89 p1658-1668 (2011)

x A Ahmadi, M Meyer, D Rouzineau, M Prévost, P Alix, N Laloue, Rigorous multicomponent reactive separations modelling : complete consideration of reaction-diffusion phenomena. Oil & Gas Science and Technology-Revue de l’IFP. Vol 65 N°5 (2010) 735-749

5958

PROCESS INTENSIFICATION - MULTIFUNCTIONAL DEVICES - SUPERCRIT ICAL MEDIA - SEPARATION, CONTACT & MIXING - PROCESS SAFETY - GREEN PROCESSES

SupercriticalCO2asasubstitutefororganicsolvents

Theactivitiesherearecenteredonthesubstitutionoforganicsolventsbysupercri-ticalCO

2tooffercleanreactionandseparationprocesses.Theexperimentallyand

theoreticallydeterminedthermodynamicbehaviorofthemixturesorsoluteswithhighpressureCO

2isatoolusedgenericallytooptimizetheseprocesses[1].

Ascientificapproachofmodelinginassociationwithexperimentation

A well-established activity TheissuesarisingwiththeuseofsupercriticalCO

2assolventinseparationorpuri-

ficationprocessescontinuetoinstigateresearch,intheformofparticipationinANRprojectsordoctoralwork.Onenotableeventduringtheperiod inquestionwastheextensionofourgroup’sdomainofinvestigation,whichtodaycoverstherangebetweenmodelingtheoperation(withaviewtoscalingupforusebyindustry)andcharacterizingtheextractsobtained.Inparticular,collaborationwiththeFacultyofPharmaceuticalSciencesofToulousenowmeansthatwecanstudytheinfluenceof the process conditions on the biological activities of the extracts obtained(anti-oxidants,anticancerdrugs)[2].Theapproachhasbeenappliedequallytotheextractionofessentialoilsandtothe recovery of lipids contained in yeast (ANR-PNRB LIPICAERO 2007-2010) [3]or inmicro-algae (BQR ALGOVAL project). Our broad experience in the domain

ofextractionalongsideourknow-howconcerningthe experimental devices is such that today thisactivityisthesubject,viatheProcessEngineeringCRITT(RegionalCenterforInnovationandTransferof Technology) supported by the laboratory, of alargenumberoftechnologytransferoperationstoSME/SMI.

New fields of applicationUsingsupercriticalCO

2asasolventtomakeche-

mistrycleanerisaconstantfocusofthegroup’sre-search.Inparticular,thecurrentperiodsawaPhDthenaresearchcontractwiththecompanySANOFIAventistoachievethesynthesisofapharmaceu-ticalintermediateusingaFriedel-Craftsreactionin

Observation of phase transitions in a measurement cell for interphase equilibria under pressure.

Extraction Pilot 25 L -70 MPa (CRITT GPE).

GroupeLeader:SéverineCamy

Supercriticalprocesses3THEME

©IN

P-EN

SIAC

ET/

ww

w.jp

gpho

togr

aphi

e.co

m

5958

PROCESS INTENSIFICATION - MULTIFUNCTIONAL DEVICES - SUPERCRIT ICAL MEDIA - SEPARATION, CONTACT & MIXING - PROCESS SAFETY - GREEN PROCESSES

Experimental and modelled extraction kinetics.

flowmode[4]. Theproject involveda treblechallenge: substituting theorganicsolvent by CO

2, changing frombatch to continuous operation and developing a

newmodeofcatalysis(fromhomogeneoustoheterogeneous).ThegroupisalsopursuingchemistryresearchinorwithCO

2throughcarbonationstudiesoforganics

(synthesisofdimethylcarbonate)andminerals(concretechippings).

In direct connection with the other subjects of the departmentNovelinteractions:Aneventthatstoodoutintheperiod2009-2014wasthefrac-tionationofliquidmixturesusingsupercriticalCO

2incontinuousmodeinapacked

contactor.UnlikethetreatmentofsolidsbysupercriticalCO2,thefractionationof

liquidhasnotasyetbeenmassivelyadoptedbyindustryowingpartlytothefactthatitismorecomplextouse.Thecontextofthestudywasanintra-departmenttopic“Reactiveseparation”fortheaspectsconcerningfluid-liquidflowthroughthepacking.Todaythestudyfocusesonevaluatingtheperformanceofthesecontac-tors by experimental study and simulation ofmass transfer inmodelmixtures.Understandingandbeingabletocontrolthistypeofprocessisthesubjectofseve-ralrequestsforANRprojectsandparticipationsincongresses.

Supercriticalprocesses

ACTIVITIES2010-2015-ScienceandTechnologyforProcessIntensification-Theme3

References : u Y. Medina-Gonzalez, T. Tassaing, S. Camy,

J-S Condoret, J. Super Fluids, 73 (2013) 97– 107

v N. Herzi, S. Camy, J. Bouajila, P. Destrac, M. Romdhane, J.-S. Condoret, J. of Supercritical Fluids 82 (2013) 72– 82

w J. Milanesio, P. Hegel, Y. Medina-Gonzalez, S. Camy, J.-S. Condoret, J. Chem. Technol. Biotechnol. 88 (2013) 378-387

x N. Aribert, S. Camy, Y. Peres Lucchese, J.-S. Condoret, P. Cognet, Int. J. Chem. Reac. Eng., 8 (2010) A53

6160

PROCESS INTENSIFICATION - MULTIFUNCTIONAL DEVICES - SUPERCRIT ICAL MEDIA - SEPARATION, CONTACT & MIXING - PROCESS SAFETY - GREEN PROCESSES

Developingnewstrategiesforprocessintensification

Theseobjectivesaretodevelopvariousstrategiesforimplementingandcharacteri-zingintensifiedtechnologiesthataretobeusedforchemicalreactionandseparation.Thesestrategiesarebasedontheintegrationofmodelsdescribingtheoverallbe-havioroftheequipmentandmodelsrepresentingthephysicalandchemicalphe-nomenainvolved.Theapproachenablestheintegrationof(i)newreactionmedia,(ii)activationtechniquesand(iii)onlineanalyticalmonitoring.Italsoincludesthetranspositionfrombatchtocontinuousprocessesandtheassociatedscaleup/scaledownissues.Anothertopicofthisthemeconcernsprocesssafety(i.e.behaviorinfaultymode,quantitativemethodsforriskassessment).

Microreactors and activation techniques as tools for intensificationMicroreactorsarepowerfultoolsforfastdataacquisitionandthus,for the design of continuous intensified plants. This method hasbeensuccessfullyappliedtotransesterification[1],polymerizationindroplets[2],andphotochemicalsynthesis.Suchanapproachre-quiresthedevelopmentofon-linemonitoringofthereaction(nearIR, Raman, UV). Modeling the coupled phenomena that play adecisive role in the reactor (i.e. (photo)chemical reactionkineticswith transportphenomena,andpossibly radiative transfer) is thecornerstone of thismethodology. The level of experience gainedbythegroupinthisfieldhasledtovariousindustrialpartnerships(forinstance:SANOFI,PierreFabre,SEPPIC,BASF)withonecommonobjective,whichistoevaluatethefeasibilityofoperatingchemi-calsynthesesincontinuousmode.Anotherleverforintensificationreliesontheintegrationofactivationtechniquesandnewreactionmedia.Theapplicationsleadtoabetteruseofbiosourcedrawma-terialsand/ortheproductionofplatformchemicals.

Heat exchanger reactorsSincetheendofthe90s,researcharoundthemulti-functionaltech-

nologyoftheexchanger-reactorhasbeenconstantlyexpandingandhasledbothto fundamentalknowledgestudiesonthefundamentalphenomenaandalso toapplicationdrivenresearch.

Microreactors – a tool for intensification.

GroupLeader:KarineLoubière

Strategiesforintensificationandprocesssafety4THEME

©IN

P-EN

SIAC

ET/

ww

w.jp

gpho

togr

aphi

e.co

m

6160

PROCESS INTENSIFICATION - MULTIFUNCTIONAL DEVICES - SUPERCRIT ICAL MEDIA - SEPARATION, CONTACT & MIXING - PROCESS SAFETY - GREEN PROCESSES

Wedevelopedourownstrategies,basedonbothpilotscaleexperimentsandagenericmodelingandsimulationtoolabletomakeuseoftheknowledgeacquired.We proposed high-performance technological solutions that associate economicconsiderationsrightfromthedesignstage,soastobedirectlycompetitivecom-

paredtoclassicbatchreactors.Projectshave been carried out with industrialend-usersandequipmentsuppliers.[4]Severalcollaborativeprogramswereun-dertaken for pharmaceuticals synthesisofactiveprinciplesassociatingreaction,separation and isolation steps or forhazardousreactionsineithermono-ormultiphasesystems.Both thesestudiesshowed theadvan-tagesofthisinnovativetechnologyableto guarantee almost isothermal condi-tions for strongly exothermic reactionsand able to provide such high qualityproductsthatthesubsequentseparationandpurificationstepswerefacilitated.To promote this technological break-through,we contribute to the creationofademonstrationplatform(MEPI)andof a scientific and industrial network(EUROPIC),bothatEuropeanlevel.

Processsafetyisakeyissueinintensificationstrategies

Scientificandtechnicalexpertiseareusedtodevelopmethodsfor(i)quantitativeriskassessment,(ii)thedevelopmentoftoolsforsafeprocessoperation,and(iii)theanalysisofaccidentmodels.Moreover,anoriginalapproach(dynamicsimula-tionandexperiment)hasbeendevelopedtoevaluatetheintrinsicsafetyofheatexchangerreactors[5].

Compact heat-exchanger reactor.

Strategiesforintensificationandprocesssafety

ACTIVITIES2010-2015-ScienceandTechnologyforProcessIntensification-Theme4

References : u Richard, R., Dubreuil, B., Prat, L., Thie-

baud-Roux, S., Development of continuous processes for vegetable oil alcoholysis in microfluidic devices, (2013) OCL Journal, 20 (1), pp. 23-32.

v M. Dorobantu Bodoc, L. Prat, C. Xuereb, C. Gourdon, T. Lasuye, On-line Monitoring of Vinyl Chloride Polymerization Reaction using Raman Spectroscopy, Chemical Engineering and Technology, 35 (4), 705-712, 2012.

w Aillet T., Loubière K., Dechy- Cabaret O., Prat L. (2015), Impact of the diffusion limitations in micro-photoreactors. AIChE Journal 61 (4) 1284–1299

x Anxionnaz-Minvielle Zoé, Cabassud Michel, Gourdon Christophe, Tochon Patrice Influence of the meandering channel geometry on the thermo-hydraulic performances of an intensified heat exchanger/reactor Chemical Engineering and Processing: Process Intensification, Volume 73, November 2013, Pages 67-80

y Marin Gallego J C, Olivier- Maget N., Hetreux G., Gabas N., Cabassud M. (2014), Towards the Modelling of a Heat-Exchanger Reactor by a Dynamic Approach, The Canadian Journal of Chemical Engineering, vol 9999, 1-14

S Y S T E M I C A P P R O A C H - I N N O V A T I V E D E S I G N - M U L T I-C R I T E R I O N O P T I M I Z A T I O N - E C O-D E S I G N - O P T I M A L O P E R A T I O N

SCIENTIFICDEPARTMENT:

6362

ProcessSystemsEngineering

Asystemicapproachformodeling,simulatingandoptimizingcomplexsystems

Relyinguponamodeling-simulationcenteredapproach,theresearchactivitiesofthedepartment,recognizedinternationallybytheacronymPSE(ProcessSystemsEngineering),dealwiththedesignandtheoptimaloperationofsystemscomposed

ofinterconnectedentities.Theindustrialsystemsstudiedcoverthewhole range of space and time scales,from themolecule to theextendeden-terprise through the unit operation, theproductionunitandtheindustrialsite,in-cludingconnectionwithitssupplychainand itsmarkets. The aim is to developgenericmodels,andassociatedmethodsandtoolsinordertoevaluatetheperfor-manceof thesystemstudied in techni-cal,economic,environmentalandenergyefficiencyterms.The applications are related to currentsocietaldemands:energy,treatmentofeffluent,agrofood,recyclingandoptimi-

zationof resourceuse. Thegeneralapproach isbasedonasystemicstudy tounderstandthesystemsbeinginvestigated,tomakeuseofthemintheformofmodelsandtoemploytheminanindustrialandsocio-economiccontextawareofwhatsustainabledevelopmentimplies.Thehighestlevelofeachlogisticchainincludesdecision-makingthatusesthemethodsandtoolsofindustrialenginee-ring. The lowest level concerns the design of molecules or of products withpropertiestargetingaparticularuseviamolecularandappliedthermodynamicsimulation.Finally,theintermediatelevelsaimatdesignandoptimaloperationof intensified equipment, and of sustainable processes as well as integratedproduct-processdesign.

Process simulation flowsheet for an heat integrated process for the synthesis of aromatic compounds.

REPRENDRE ICI

S Y S T E M I C A P P R O A C H - I N N O V A T I V E D E S I G N - M U L T I-C R I T E R I O N O P T I M I Z A T I O N - E C O-D E S I G N - O P T I M A L O P E R A T I O N

ACTIVITIES2010-2015-ProcessSystemsEngineering

6362

High-performancemethodsandtools

Inthedepartment,thephaseofpreliminarydesignisgovernedbyan inductiveapproach relyingupon thein-depth observation of existing data, and upon theassessmentofthebehaviorofthesystemandtheas-sociatedneeds.Theapproachthenbecomesdeductiveinamodelingphase,whichaimstoestablishgenericmethods thatdescribe the system itself andalso itscontext.This is followedwithsimulationandoptimi-zationphases.Theexperimentalphases,whichenablethehypothesestobeconfirmedandthemodelvali-dated,arecarriedoutincollaborationwithacademicorindustrialpartners.Thedeductivephasesinvariablyinvolve the use of methods and tools: thermodyna-mics,numericalresolution,multi-goaloptimization,decisionsupporttoolsandda-tabases.Thedepartmenthasthesupportofextremelyefficientinternalsoftwaretools,eitherdevelopedinthepastandwhichledtothecreationofProSimCo.Ltd.,ormorerecently:methodforenergyintegrationandexergyanalysis,IBSSsoftwareforinverseformulationofamolecule,ITSolverforaidinfindingnoveltechnologicalsolutions,MultiGen formulti-objectiveoptimization,ProdHys fordynamichybridsimulationofprocesses, ExOptim for thedeterminationofoptimalexperimentalstrategies.Thecomplexityinherenttothemathematicalmodelsdevelopedarisesfromthesizeofthesystemsofequations,timeconstantsverydifferentfromthephenomenamodeledwithinasinglemodel,andthehandlingofstrongnon-linea-rity,discontinuities,multi-scaleandcombinatorialnatureofthesystemsstudied.This iswhypartoftheactivity isdevotedtothe improvementoftheefficiencyofnumericalmodels for the resolutionofproblemsand thepropositionofnewadvancednumericalmethodsornewmethodsforassisteddesign.

The activities of the PSE department are organized in four themes: 1.Functionalanalysisofproductsandprocesses:genericmethodsand tools formodelingandsimulation.2.Assistanceforinnovativedesignofsystems3.Multi-objectiveoptimizationfortheeco-designofindustrialsystems4.Controlandmonitoringofindustrialsystems

Headofthedepartment:Stéphane NEGNY

Permanentmembers: Catherine Azzaro-Pantel | Jean-Pierre Belaud | Marianne Boix | Laurent Cassayre | Serge Domenech | Philippe Duquenne | Florian Fabre | Pascal Floquet | Vincent Gerbaud | Gilles Hétreux | Xavier Joulia | Jean-Marc Le Lann | Xuan Meyer | Ludovic Montastruc | Stéphane Negny | Hervé Pingaud | Nataliya Shcherbakova | Raphaële Théry Hétreux | Iréa Touche

Experimental and simulated composition profiles in a reactive distillation column.

Optimization of the hydrogen supply chain in France.

6564

S Y S T E M I C A P P R O A C H - I N N O V A T I V E D E S I G N - M U L T I-C R I T E R I O N O P T I M I Z A T I O N - E C O-D E S I G N - O P T I M A L O P E R A T I O N

1THEME

Developingmodelsandtoolsfortheintegrateddesignoftheproductsandprocessesoftomorrow

Theaimofthisworkgroupistodevelopknowledgebasedmodelsandgenerictoolsformodelingandsimulationatmacroscopicandmicroscopicscales(molecu-larandmesoscopicsimulation)indifferentsoftwareenvironments.Theyareused

tostudy,forinstance,processesofagglomeration,reactionsystemsinequilibriumorcontrolledkinetics,biologicalandnutritionalsys-tems,equilibriumsbetween liquidandvaporphases(azeotropes,pinch), liquid-liquidand liquidsolidphases(idealorpolymorphicsolidphases),ortodesignefficientecofriendlyprocesses.Amongtheseactivities,theComputerAidedMolecularandProductDesignactivityisanexampleofthePSIapproachtointegrationprocessesandphenomenaoccurringatsmallscalesforthedesignofinnova-tiveprocesses.

Synthesissoftware:theeco-compatiblemoleculesrevolutionisonitsway

A virtual laboratory for the formulation of real biosolventsTheformulationofsubstitutesolventsfromagro-resourcesimpliescarbonchemistrythatisdoublysustainableinitsabilitytoreplace

resourcesoffossiloriginandinitspotentialtolimitdegradationoftheenviron-ment,safetyandhealth(ESH).ThenewmoleculesmustsatisfytighterESHspe-cificationsjustasmuchastheymustsatisfyrequirementsfortheusualfunctionalproperties.Todealwiththismulti-objectiveproblem,thecommonstrategyforthe

synthesisofnovelmoleculesbytrialanderror,whichstartswiththe rawmaterial and thenattempts to improve theproducts tosuitthedesiredapplications,provestobeinefficient.IntheANRprojectInBioSynSolv,wefavoradualcomputerbasedapproachtoformulationusingpredictivetools.The virtual laboratory is based on property prediction methodsthatexploitamatrix-type informationof thepotential candidatemolecules. A multi-objective performance function assesses thedifferencebetweenthepredictedvaluesandthespecificationsthatencompass the target values of the functional properties of theproduct, the properties related to the use of themolecule in a

“Coarse Grain” of DPD simulation of microcrystalline cellulose (red) and polyethylene glycol (yellow) in water (transparent).

Maximum temperature Azeotrope in an aqueous solution of strong acid.

Functionalanalysisofproductsandprocesses:genericmethodsandtoolsformodelingandsimulation

GroupLeader:VincentGerbaud

6564

S Y S T E M I C A P P R O A C H - I N N O V A T I V E D E S I G N - M U L T I-C R I T E R I O N O P T I M I Z A T I O N - E C O-D E S I G N - O P T I M A L O P E R A T I O N

manufacturingprocessandthoserelatedtotheESHimpact.Thisallowstoevaluatethecandidatemoleculesby two in silicoapproaches:bottom-upand top-down.The bottom-up approach uses GRASS, a program for computer-assisted synthe-sis to imagine the molecules that could be produced by applying eco-compa-tiblechemicalreactionsfrombio-sourcedsynthons.Thetop-downapproachusesIBSS,softwarefor“inverseformulation”where,targetingasetofspecifications,candidatemoleculesarebuiltfromchemicalbricks,someofwhichareproducedfrom biosourced synthons [1]. Ultimately, real laboratory experiments validatesthefeasibilityofthemoleculesproposedinsilico:developmentofeco-synthesisprocesses,measurement of the actual properties of the realmolecules, testinginrealconditionsofuse.TheInBioSynSolvprojecthasledtotheidentificationofsynthonsfromsectorsbasedonrenewablerawmaterial,thegenerationofacata-logueofeco-compatiblesynthesisroutes,thedevelopmentofalibraryofmodelsforthepredictionofpropertiesusedintheperformancefunctions.Integrationintotwosoftwareprototypes,IBSSfortop-downformulationofmoleculesandGRASSforpurpose-orientedchemicalsynthesis,hasledtothepatenteddevelopmentofanewclassofbiosolventmolecules[2].Finally,duringherdoctoralwork(2009-2012)JulietteHeintzconstructedaformalmodelofthedecision-makingprocesses.Itmakesuseoftheexpertiseofallthoseinvolvedinaprojectfortheformulationofanovelmoleculetoguaranteeasolutionthatrespectsalltheconstraintsplacedonthechemicalcompany[3].

Functionalanalysisofproductsandprocesses:genericmethodsandtoolsformodelingandsimulation

Architecture of the IBSS software devoted to Computer Aided Product Design from renewable molecules.

ACTIVITES2010-2015-ProcessSystemsEngineering-Theme1

References : u J. Heintz, J-P. Belaud, N. Pandya, M. Teles Dos

Santos, V. Gerbaud Computer aided product design tool for sustainable chemical product development. Computers & Chemical Engineering, 71, 362–376, 2014.

v M. Bergez-Lacoste, S. Thiebaud-Roux, P. de Caro, J-F. Fabre, V. Gerbaud, Z. Mouloungui From chemical platform molecules to new biosolvents : Design engineering as substitution methodology. Biofuels, Bioproducts & Biorefining., 8, 438-441, 2014.

w J. Heintz, J. P. Belaud, V. Gerbaud, (2014), Chemical enterprise model and decision-making framework for sustainable chemical product design, Computers in Industry, 65 (3), 505-520.

6766

S Y S T E M I C A P P R O A C H - I N N O V A T I V E D E S I G N - M U L T I-C R I T E R I O N O P T I M I Z A T I O N - E C O-D E S I G N - O P T I M A L O P E R A T I O N

Establishingconfirmedmethodsandtoolsfortransfertoindustry

Managingtechnologicalinnovationimpliesdevelopingmethodsandtoolstodesignsustainableprocesses.Innovativedesignusesmodelengineeringandknowledgemanagement for instancethroughcollaborativewebtools. ItusesTRIZmethods[1]orcase-basedreasoning,oritdevelopsgenericmethodssuchastheinverseformulationofproductsandofprocessesandcombinedpinchandexerganalysis.

Itacceleratesthedevelopmentofnewproductsandprocessesanddealswithrecyclingissues.

Energyefficiencyofindustrialsites:towardsintegratedmanagementofenergyandproduction

Over the last seven years the PSE department hasconcentrateditseffortsontheapplicationofgenericmethodstooptimizingtheenergyefficiencyofindus-trialsitesandtodevelopingtheassociatedcomputeraided tools. Thesemethods concern the analysis of

asystemduringthephasesofitsdesignandsteadyimprovementaswellastheretrofitoperationofaunitthatisalreadyrunning.Amongthestudiescarriedout,letusmentionthecontributiontothedevelopmentofasoftwaretoolfortheopti-mizationofprocessexergy(1),butalsothedevelopmentofanapproachdevotedto running industrial systemsbasedon the conjointmanagementofproductionandofenergy(2).(1)Exergyanalysisisahigh-performanceapproachtoevaluateinefficiencyinasystemandpointtheengineertowardstechnologicalsolutionsto

reachbetterenergyefficiency.Itishoweverdifficulttogetexergyanalysisadoptedbyindustrythroughlackofsoftwaretoolsforitsimplementation.Aimingtomakeupforthisdeficiency,ourstudies(PhD:AliGhannadzadeh2012–ANRCOOPERE2,2012-2015–PhD:StéphaneGourmelon,2015)havecontributedtodevelopingage-neric methodology for exergy analysis [2] and to implementingit in a commercial tool (ProSimPlus®). The studies consisted ofproposingageneric formulation for thecalculationof theexergyofmasstransport,formalizingthesystematiccalculationofexergybalancesintheProSimPlus®processsimulatorandimplementingagenericmethodforthecalculationoftheexergyefficiencyofa

ITSolver - Collaborative tool for assistance in computer-aided design.

Towards a combined approach “Exergy analysis, Pinch analysis”.

GroupLeader:RaphaëleThery-Hétreux

Innovativeassistedsystemsdesign2THEME

6766

S Y S T E M I C A P P R O A C H - I N N O V A T I V E D E S I G N - M U L T I-C R I T E R I O N O P T I M I Z A T I O N - E C O-D E S I G N - O P T I M A L O P E R A T I O N

simpleunitoperationorofawholeprocess[3].(2)Forrunningawholeplant,stu-diesaimingtomanageproductionandenergyalltogetherhavebeenundertaken(PhD:MujtabaAgha,2009)bothforcontinuousprocessesorganizedincampaignsand for batch processes [4]. Unlike continuous processes operating in a steadystateregime,theenergyconsumptionandthe“hot”and“cold”currentsarenotstable in time.Theproblemis thentoestablishasequenceofproductiontaskscompatiblewithall the limitationsofan industrialsite:manufacturing“recipe”,capacityoftheutilitiespoolandpotentialforenergytransferbetweenheatsourcesandsinks.Themethodologyimplementedleadsfirstlytodefiningtheframeworkformodelingtheseissues(ExtendedResourceTaskNetworkframework)[5]andsecondlytoimplementingthemodelofmixedlinearprogrammingwhichallowsittoberesolved.Thismethodologyisorientedtowardsthein-builtmass-energymanagementoftheprocesses.Ithasopenedthewaytostudiesaimingtoextendpinchanalysistoindustrialprocessesoperatingsemi-continuously(ADEMEprojectPIVICI,2011-2013).Overall,thestudiescarriedoutduringthelastfouryearshavelaidthebasisforamethodologydevotedtothediagnosisandoptimizationofenergyinindustrialsitesrelyingonintelligentlylinkingpinchtechnologyandexergyanalysis.

Innovativeassistedsystemsdesign

Grassmann Diagram, a useful tool for the exergy analysis of processes.

ACTIVITIES2010-2015-ProcessSystemsEngineering-Theme2

References : u S. Negny, J. Barragan Ferrer, J.M. Le Lann, G.

Cortes Robles, Eco-Innovative Design Method for Process Engineering, Computer and Chemical Engineering, 2012, vol 45, pp 137-151.

v Ghannadzadeh A., R. Thery-hé-treux, O. Baudouin, P. Baudet, P. Floquet, X. Joulia (2012) General Methodology for Exergy Balance in ProSimPlus Process Simulator, Energy, 44, 1, 38-59, 2012

w Gourmelon S., Hétreux R., Floquet P., Baudet P., Baudouin (2014) Premises for a combined Exergy and Pinch Optimization within ProSimPlus® simulator, Proceedings of the 24th European Symposium on Computer Aided Process Enginee-ring – ESCAPE 24, June 15-18 2014, Budapest, Hungary.

x Agha M., Théry R., Hétreux G., HAït A., Le Lann J.M. (2010) Inte-grated production and utility system approach for optimizing industrial unit operations, 2010, Energy, Vol. 35, pp. 611-627

y Théry Hétreux R., Hétreux G., Agha M., HAït A., Le Lann J.M (2012) The Extended Resource Task Network : a framework for the combined of batch processes and CHP plants, 2012, International Journal of Production Research, Vol.50, N°3, pp 623-646

6968

S Y S T E M I C A P P R O A C H - I N N O V A T I V E D E S I G N - M U L T I-C R I T E R I O N O P T I M I Z A T I O N - E C O-D E S I G N - O P T I M A L O P E R A T I O NGroupLeader:CatherineAzzaro-Pantel

Multi-objectiveoptimizationfortheeco-designofindustrialsystems3

THEME

Towardsnewproductswithalimitedenvironmentalimpact

Thistopictargetsthedevelopmentandtheimplementationofmono-objectiveormulti-objectiveoptimizationstrategieslinkedtodecision-makingprocessesbasedon both deterministic and stochastic methods. They are used for technico-eco-nomic and environmental optimization aiming at optimal design of continuous

orbatchunitsormoregenerallythedesignofsupplychainsknownas“green”orforthedesignofwaterorenergynetworksmutualizedbetweenseveral sitesofproduction.

Modelingandsimulationforprocessesconsuminglessenergy

Eco-design: an integrated approach associating mo-deling, analysis of the life cycle and multi-objective optimizationTraditionally,thedesignofprocesseshasbeenguidedbytechnicalandmicro-economicconsiderations.Howe-

ver, thesetwotypesofcriterionareno longersufficientandtheenvironmentalcriteria,whichratherappearedasconstraints,mustnowconstituteanintegralpartoftheeco-designapproach.Ithasthusbecomenecessarytotakeintoaccounttheenvironmentalaspectsfromtheverymomenttheproduct,theprocessorthesys-temisdesigned,andlikewiseduringallthestagesofitslifecycle,whichbroadenstheboundariesoftheclassicalfieldofinvestigationofProcessEngineering.One

keypointconsistsoftakingintoaccountcriteriathatarenu-merousandoftenantagonistic.

Thesestudies,carriedoutduring thePhDworkofFernandoMorales Mendoza (2013) continuing those of Adama Ouat-tara(2011)[1] ledtothedevelopmentofamethodologicalgenericframeworkofeco-designforchemicalprocessesasso-ciatingtraditionalprocesssimulationandmodelingtools(e.g.ProSimPlus,HYSYS,COCO,Ariane),lifecycleassessment(LCA),multi-objectiveoptimizationbasedongeneticalgorithmsandfinallymulti-criteriontoolsforaidindecisionmaking(ELECTRE,PROMETHEE,M-TOPSIS).

Example of methodological and generic framework for the eco-design of processes.

Example of a Pareto front for a cost-impact bi-criterion analysis concerning the effect of a process on the ozone layer.

6968

S Y S T E M I C A P P R O A C H - I N N O V A T I V E D E S I G N - M U L T I-C R I T E R I O N O P T I M I Z A T I O N - E C O-D E S I G N - O P T I M A L O P E R A T I O N

Multi-objectiveoptimizationfortheeco-designofindustrialsystems

Theapproachproposedhereenables thegeneralization,automationandopti-mizationof theevaluationofenvironmental impactat theearlystagesof thedesignofachemicalprocess.Threemainstepsareinvolved:thefirsttwoinvolvethephasesofinventoryanalysisthroughmassandenergybudgetsandenviron-mentalevaluationbyLCA.Theproblemofthelackofinformationorofinaccura-ciesinthestandardLCAdatabasesfortheproductionofenergy,especiallysteamenergy,was the focusofparticularattention.Onesolution thatwasproposedwastheuseofaprocesssimulatorforutilitiesproduction(Ariane,ProSimSA)tocontinue feeding theenvironmentaldatabase taking intoaccountvariations intheoperationconditionsorinthetypesofprocessused.“Energy”sub-moduleswerethusproposedtocalculatetheemissionsconcerningtheimpactcausedbytheuseofenergyinprocesses.Thethirdstepestablishesthelinkbetweenthefirst two steps and themulti-objective optimization,which involves economicand environmental criteria. It leads to solutions located on the Pareto front.The best compromises are chosen using decision-making assistancemethods.Theprocessofbiodieselproductionfromve-getable oils was used as an illustration. Amulti-levelstrategywasemployedtoanaly-zetheantagonisticbehaviorofthecriteria.

The principles of this methodology are thebasis of a collaboration with the STLO foreco-design in the agro-food sector (PhD:MartialMadoumier,started2012)andforitsapplicationtoprocessestoconcentrateordrymilk.Theywereusedforthedesignoflargephotovoltaicparks(collaborationwiththela-boratory Laplace, BQR PRES OSSOLEMIO andPhD:JorgeRaulPerezGallardo,2013)[2].

Eco-design of a solar PV power system connected to the mains network.

ACTIVITIES2010-2015-ProcessSystemsEngineering-Theme3

References : u Ouattara A., Pibouleau L.,

Azzaro-Pantel C., Domenech S., Baudet P., Yao B., Economic and environmental strategies for process design, Computers & Chemical Engineering, Volume 36, 10 January 2012, Pages 174-188

v J.R. Perez-Gallardo, C. Azzaro-Pantel, S. Astier, S. Domenech, A. Aguilar-Lasserre, Ecodesign of photovoltaic grid-connected systems, Renewable Energy, Volume 64, April 2014, Pages 82-97

7170

S Y S T E M I C A P P R O A C H - I N N O V A T I V E D E S I G N - M U L T I-C R I T E R I O N O P T I M I Z A T I O N - E C O-D E S I G N - O P T I M A L O P E R A T I O N

Conciliatingtechnicalandeconomicconsiderationsofsustainableproductionanddevelopment

Incontrasttothepreviousthemesthatfocusontheactivityofdesign,thisgroupfocusesonthedevelopmentofadvancedmethodologiesandstrategiesforrunningandimproving(retrofit)industrialsystemsinoperation.Thetechniquesusedareprimarilybasedonthecombinatorialoptimizationandthedynamicsimulationofprocesses.Theyareusedtodefineefficientpoliciesforrunningtheplant(tacticalandoperational),processesandnetworks(heat,energy,etc.)thatsatisfythetech-nicalandeconomicrequirementsinherenttoproduction(quality,productiontime,flexibility,cost,etc.)whilestillkeepinglowtheenvironmentalimpactoftheplant.Thus,fortheprocessestoconsumelessenergyandbecleaner,thescopeofthisthemeisbroad,coveringarangeofactivitiesfromschedulingandenergyintegra-tionofbatchprocessestothecontrollabilityofoperations.

Methodologiestoquantifyandoptimizeperformance

Including energy efficiency considerations in the operation of continuous and batch processes Closelyrelatedtothedomainstudiedintheme2[1],similarstudieswereextendedtothescaleoftheproductionsite[2].Inparticular,theyconcerntheuseofsche-dulingstrategiesthatexplicitlytakeintoaccounttheenergyissues(operationofpowerstations,thecharacteristicsofthealreadyinstalledheatexchangernetwork,theavailabilityofutilities,contractorswishes,etc.)inordertoimprovetheoverallperformanceofthesystem(productivity,energyefficiency,etc.).Thesemethodolo-gies,whichareorientedtowardsintegratedmanagementofenergyandmass,arefirstlybasedonformalmodeling(ExtendedResourceTaskNetworkframework)andsecondlyonmathematicalprogramming[2].

Integration of controllability and diagnosticability of reactive distillation columns right from the design phaseReactivedistillation,whichconsistsofassociatingreactionandseparation inthesamevessel,providesanexcellentexampleofprocess intensification.However,thisassociationseriouslycomplicatesthedynamics,themonitoringandthecontroloftheprocess,creatingabarriertoitsadoptionbyindustry.Theseaspectsmustbeconsidered right fromthedesignphase toavoid thecolumnfrombecomingdifficulttocontrol.Duringourinvestigations,methodologydevelopedattheLGC

Quantifying and optimizing performance.

Running processes.

GroupLeader:GillesHétreux

Operatingandmonitoringindustrialsystems4

THEME

7170

S Y S T E M I C A P P R O A C H - I N N O V A T I V E D E S I G N - M U L T I-C R I T E R I O N O P T I M I Z A T I O N - E C O-D E S I G N - O P T I M A L O P E R A T I O N

Methods and tools used in design to integrate the ability to monitor and diagnose reactive distillation columns.

wasextendedtoincludecontrollabilityanddiagnosticabilityconsiderations.Thedesignphasestudiestheresiduecurvesandreactiveseparation,identifiestheoperationalparametersandproposesdifferentcolumnconfigurationsthatrespectthespecifications.Thebestconfigurationischosenbasedoncontrollabilitycriteriathrough theanalysisofvariousquantitativeandqualitative indicatorsaccessiblethroughsimulationofcontinuousorbatchregimes.Whenappliedtotheproductionofethylacetate, themethodology revealed thesensitiveelementsandshowedthat it is possible to act on the three degrees of freedom of the double feedreactivecolumntoreachtheindustrialspecifications.Thevariablescontrolledareselected inspecificsections,similar fordifferentcolumnconfigurations.Thedia-gnosticabilitystudy,achievedusingtheLAMDAlogic-basedclassification,showedthattheuseofcompositionsensorswasthebestsolution,thoughtheircostlimitstheirusebyindustry.Similarresultscanbeobtainedbyusingagreaternumberofthermocouplesplacedjudiciouslythroughtheset-up[3].

ACTIVITIES2010-2015-ProcessSystemsEngineering-Theme4

References : u G. Hétreux, R. Thery, (2013) Article : « Efficacité

énergétique : l’intégration des systèmes industriels » de l’ouvrage « L’énergie à découvert », 310 pages, CNRS, I.S.B.N. : 978-2-271-07678-6

v R. Thery, G. Hétreux, M. Agha, A. Hait, Jm Lelann, (2012) The Extended Task Resource Network : a framework for the combined schedu-ling of batch processes and CHP plant, International Journal of Production Research, Taylor & Francis, Vol. 50, Issue 3, pp 623-646

w Figueiredo-Fernandez M, Barroso B, Meyer XM, Meyer M, Le Lann MV, Carillo-Leroux G, Brehelin M. (2013) Experiments and dynamic modeling of a reactive distillation column for the production of ethyl acetate by considering the heterogeneous catalyst pilot complexi-ties, Chemical Engineering Research and design, 91, 2309–2322

Directors: BéatriceBiscans,PatriceBacchin,XavierJoulia

Coordinator: AlicePichot

LGC Editorial Board: BéatriceBiscans,PatriceBacchin,XavierJoulia,AlicePichot,OlivierMasbernat,KarineGroenen-Serrano,Marie-HélèneManero,ClaireAlbasi,LaurentPrat,StéphaneNégny,Jean-françoisLahitte,YannickHallez,SébastienTeychené,MichelineAbbas,PierreChamelot,ThéodoreTzedakis,PierreGros,CarineJulcour,MehrdjiHemati,CarolineAndriantsiferana,AnnieLeszkowics,ChristineRoques,PatriciaTaillandier,FlorenceMathieu,BenjaminErable,MarionAillet,ClaireJoannis-Cassan,JoëlleAubin,MichelMeyer,SéverineCamy,KarineLoubière,VincentGerbaud,Raphaële,Thery-Hétreux,CatherineAzzaro-Pantel,GillesHétreux,FabienChauvet,RichardGuilet,ColinButler.

Graphics: Cé[email protected]

Printing: ImprimerieEscourbiac-September2015

www.lgc.cnrs.fr

TOULOUSE

SAINT-ORENS-DE-GAMEVILLE

RAMONVILLESAINT-AGNE

TOURNEFEUILLE

COLOMIERS

BLAGNAC

AÉROPORT

L’UNION

BALMA

SNCF

CASTANET-TOLOSAN

1

3

24

2 CAMPUS UNIVERSITÉ PAUL SABATIERFaculté de Sciences et Ingénierie118, route de Narbonne - 31062 Toulouse cedex 4Tél. : +33 (0)5 61 55 67 99 - Fax +33 (0)5 61 55 61 39

CAMPUS INP-ENSIACET4 allée Emile Monso - CS 84234 31432 Toulouse cedex 4Tél. : +33 (0)5 34 32 36 00 - Fax : +33 (0)5 34 32 37 00

1 CAMPUS INP-ENSATAvenue Agrobiopole BP 32607 - 31326 Castanet-Tolosan cedexTél. : +33 (0)5 34 32 39 00 - Fax : +33 (0)5 34 32 39 01

3

CAMPUS UNIVERSITÉ PAUL SABATIERFaculté des Sciences Pharmaceutiques35, chemin des maraîchers - 31062 Toulouse cedex 4Tél. : +33 (0)5 62 25 68 60 - Fax : +33 (0)5 61 25 95 72

4

PAUL-SABATIER Faculté des Sciences PharmaceutiquesINP-ENSIACET PAUL-SABATIER Faculté de Sciences et Ingénierie INP-ENSAT