Active Filters – an Introduction - Penn Engineeringese319/Lecture_Notes/Lec_23...ESE319...

32
ESE319 Introduction to Microelectronics 1 2008 Kenneth R. Laker updated 07Dec09 KRL Active Filters – an Introduction Active Filters 1. Continuous-time or Sampled-data 2. Employ active elements (e.g. transistors, amplifiers, op-amps) a. inductor-less (continuous-time) b. inductor-less & resistor-less (sample-data) c. gain 1in passband V in (s) V out (s) Filter circuit G(s) + - - +

Transcript of Active Filters – an Introduction - Penn Engineeringese319/Lecture_Notes/Lec_23...ESE319...

Page 1: Active Filters – an Introduction - Penn Engineeringese319/Lecture_Notes/Lec_23...ESE319 Introduction to Microelectronics 2008 Kenneth R. Laker updated 07Dec09 KRL 1 Active Filters

ESE319 Introduction to Microelectronics

12008 Kenneth R. Laker updated 07Dec09 KRL

Active Filters – an Introduction

Active Filters1. Continuous-time or Sampled-data2. Employ active elements (e.g. transistors, amplifiers, op-amps)

a. inductor-less (continuous-time)b. inductor-less & resistor-less (sample-data)c. gain ≥ 1in passband

Vin(s) V

out(s)

Filter circuitG(s)

+

--

+

Page 2: Active Filters – an Introduction - Penn Engineeringese319/Lecture_Notes/Lec_23...ESE319 Introduction to Microelectronics 2008 Kenneth R. Laker updated 07Dec09 KRL 1 Active Filters

ESE319 Introduction to Microelectronics

22008 Kenneth R. Laker updated 07Dec09 KRL

Active Filters – an Introduction

Vin(s) V

out(s)

Filter circuitG(s)

+

--

+

G s=aM s

MaM−1 sM−1....a1 sa0

sNbN−1 sN−1....b1 sb0

G s=aM sz1sz2........szM s p1s p2........s pN

M ≤ N Filter Order = N

Page 3: Active Filters – an Introduction - Penn Engineeringese319/Lecture_Notes/Lec_23...ESE319 Introduction to Microelectronics 2008 Kenneth R. Laker updated 07Dec09 KRL 1 Active Filters

ESE319 Introduction to Microelectronics

32008 Kenneth R. Laker updated 07Dec09 KRL

Ideal Filter Response Characteristics

∣G∣=∣G j∣=∣V out jV in j ∣

Stop-bandPassband Stop-band Passband

Passband

Lower Stop-band

Upper Stop-band

Stop-band

Lower Passband

Upper Passband

|G| |G|

|G| |G|

1 1

1 1

0 0

00

P P

PL PH SL SH

Low-pass (LP) High-pass (HP)

Bandpass (BP) Bandstop (BS)

Page 4: Active Filters – an Introduction - Penn Engineeringese319/Lecture_Notes/Lec_23...ESE319 Introduction to Microelectronics 2008 Kenneth R. Laker updated 07Dec09 KRL 1 Active Filters

ESE319 Introduction to Microelectronics

42008 Kenneth R. Laker updated 07Dec09 KRL

Practical Lowpass Filter SpecificationKey specs:1.2. A

max

3.4. A

min

f B=P /2

f S=S /2

Filter cost increases!1. A

max -> lower

2. Amin

-> larger3. -> larger4. -> 1 S /P

Passband Stop-band

Amax

Amin

Transition band

0

0 P Sz1 z2

selectivity factor = S

P

P

|G| (dB)

Page 5: Active Filters – an Introduction - Penn Engineeringese319/Lecture_Notes/Lec_23...ESE319 Introduction to Microelectronics 2008 Kenneth R. Laker updated 07Dec09 KRL 1 Active Filters

ESE319 Introduction to Microelectronics

52008 Kenneth R. Laker updated 07Dec09 KRL

G s=aM sz1sz2........szM s p1s p2........s pN

=>

MatLab is a good tool for this task.

Filter Approximation – Design G(s)

|G|

Page 6: Active Filters – an Introduction - Penn Engineeringese319/Lecture_Notes/Lec_23...ESE319 Introduction to Microelectronics 2008 Kenneth R. Laker updated 07Dec09 KRL 1 Active Filters

ESE319 Introduction to Microelectronics

62008 Kenneth R. Laker updated 07Dec09 KRL

Practical Bandpass Filter Specification

SL

PL=SU

PU

SL

PL≠SU

PU

Symmetric bandpass filter

Transition bands

Passband

0 Amax

Amin

Upper Stop-band

Lower Stop-band

SL PL PU SU

SLPL0

Q=PU−PL

0

|G| (dB) Selectivity factors

Page 7: Active Filters – an Introduction - Penn Engineeringese319/Lecture_Notes/Lec_23...ESE319 Introduction to Microelectronics 2008 Kenneth R. Laker updated 07Dec09 KRL 1 Active Filters

ESE319 Introduction to Microelectronics

72008 Kenneth R. Laker updated 07Dec09 KRL

Cascade Filter DesignIf N = odd

(N- 1)/2

If N = even

G s=aM s

MaM−1 sM−1....a1 sa0

sNbN−1 sN−1....b1 sb0

=a10 sa00sb10

∏ a2i s2a1i sa0i

s2b1i sb0i=∏G i s

i = 1i = 1 i = 0

(N- 1)/2

G s=aM s

MaM−1 sM−1....a1 sa0

sNbN−1 sN−1....b1 sb0

=∏ a2i s2a1i sa0i

s2b1i sb0i=∏G i s

i = 1

N/2

i = 1

N/2

....G1(s) G2(s) G3(s) GN/2(s)Vin

VoutVo1

Vo2Vo3 Vo(N-1)/2

N = odd => G1(s) 1st order

N = even => G1(s) 2nd order

Page 8: Active Filters – an Introduction - Penn Engineeringese319/Lecture_Notes/Lec_23...ESE319 Introduction to Microelectronics 2008 Kenneth R. Laker updated 07Dec09 KRL 1 Active Filters

ESE319 Introduction to Microelectronics

82008 Kenneth R. Laker updated 07Dec09 KRL

2nd order low-pass (LP)

G s=a0

s2s0

Q0

2

∣G j0 ∣=a002

G s=a2 s

2

s2s0

Q0

2

∣G j∞∣=a22nd order bandpass (LP)

2nd order high-pass (LP)

G s=a1 s

s2s0

Q0

2

∣G j0∣=a1Q0

j

j

0

0

0

2Q

0

2Q

0

0

X

X

X

X

O

Oo

j

0

0

2Q

0

X

X

z1=∞z 2=∞

z1=0z 2=0

z 2=∞z1=0

max

|G|a002

0max

max=01− 12Q2

∣a0∣Q

021− 1

4Q2

|G|

0

∣a2∣

max=0/1− 12Q2

∣a2∣Q /1− 14Q2

00

|G|

Gmax

Gmax

0.707 Gmax

a1Q /0

a1Q /20

0 00/Q

1 2

12=02

Gmax

Filter Type s-plane zeros/poles |G|

Page 9: Active Filters – an Introduction - Penn Engineeringese319/Lecture_Notes/Lec_23...ESE319 Introduction to Microelectronics 2008 Kenneth R. Laker updated 07Dec09 KRL 1 Active Filters

ESE319 Introduction to Microelectronics

92008 Kenneth R. Laker updated 07Dec09 KRL

2nd order Notch (N)

|G|

|G|

|G|

0

0

0

2nd order LP Notch (LPN)

2nd order HP Notch (HPN)

G s=a2s2N

2

s2s0

Q0

2

N0

∣G j0 ∣=∣a2∣N2

02

∣G j∞∣=∣a2∣

G s=a2s2N

2

s2s0

Q0

2

N0

∣G j0 ∣=∣a2∣N2

02

∣G j∞∣=∣a2∣

X

X

X

X

X

X

O

O

O

O

O

O

j

j

j

0

0

0

0

0

0

0

0

0

0

0

N

N

N

N

N

N

max

max

0

2Q

0

2Q

0

2Q

Gmax

Gmax

∣a2∣

∣a2∣

∣a2∣

∣a2∣N2

02

∣a2∣N2

02

∣a2∣N2

02

∣a2∣2

1 2

12=02

Filter Type s-plane zeros/poles |G|

Page 10: Active Filters – an Introduction - Penn Engineeringese319/Lecture_Notes/Lec_23...ESE319 Introduction to Microelectronics 2008 Kenneth R. Laker updated 07Dec09 KRL 1 Active Filters

ESE319 Introduction to Microelectronics

102008 Kenneth R. Laker updated 07Dec09 KRL

vO t =K v I t−td ⇒T j=∣T j∣e j tdIdeal transmission: ∣T j∣=K

j=− t d

=−d jd

=t dGroup Delay

2nd order All-Pass (AP)

G s=a2s2−s

0

Q0

2

s2s0

Q0

2

∣G j0 ∣=∣G j∞∣=∣a2∣

|G|

∣a2∣

0

j

00

0

X

X

O

O0

2Q0

2Q

0 0

−2

Page 11: Active Filters – an Introduction - Penn Engineeringese319/Lecture_Notes/Lec_23...ESE319 Introduction to Microelectronics 2008 Kenneth R. Laker updated 07Dec09 KRL 1 Active Filters

ESE319 Introduction to Microelectronics

112008 Kenneth R. Laker updated 07Dec09 KRL

Delay Equalization Concept

DelayEqualizerDE

Total Equalized Delay tot =CDE

Cable or Filter tot =CDE

DelayEqualizer

Cable or Filter

equalized data

delay distorted

data

Page 12: Active Filters – an Introduction - Penn Engineeringese319/Lecture_Notes/Lec_23...ESE319 Introduction to Microelectronics 2008 Kenneth R. Laker updated 07Dec09 KRL 1 Active Filters

ESE319 Introduction to Microelectronics

122008 Kenneth R. Laker updated 07Dec09 KRL

OP Amp Building Blocks

vO t =−1CR∫v I t dt0

t

V o sV i s

=−1sCR

=−int

s

int=1CR

Inverting Integrator Summer

V =−R fR1

V 1R3

R2R31

R fR1

V 2.

R2R2R3

1R fR1

V 3

v¿

v−¿

Page 13: Active Filters – an Introduction - Penn Engineeringese319/Lecture_Notes/Lec_23...ESE319 Introduction to Microelectronics 2008 Kenneth R. Laker updated 07Dec09 KRL 1 Active Filters

ESE319 Introduction to Microelectronics

132008 Kenneth R. Laker updated 07Dec09 KRL

Two-Integrator-Feedback-Loop Active FilterV hp s=

K s2

s2s0

Q 02V is=

K

1 1Q

0

s02

s2

V is

V hp s=−V hp s1Q

0

s −V hp s02

s2K V i s

V i

V hp−0

sV hp=V bp

02

s2V hp=V lp

V hp −0

sV hp

02

s2V hp

−0

s−0

s

−0

s −0

s

-1

K

1Q

=>

02

s2V hp

−0

s V hp

V iV hp

1 /Q

−1

Kint=1CR

=0

V hp sV hps 1Q

0

s V hp s02

s2=K V i s=>

02

s2V hp 0

2

s2V hp−0

sV hp

−0

sV hp

Page 14: Active Filters – an Introduction - Penn Engineeringese319/Lecture_Notes/Lec_23...ESE319 Introduction to Microelectronics 2008 Kenneth R. Laker updated 07Dec09 KRL 1 Active Filters

ESE319 Introduction to Microelectronics

142008 Kenneth R. Laker updated 07Dec09 KRL

Feedback Equations

V hp=− 1Q 0

s 02

s2 V hpK V i

Ghp s=V hp

V i=

K

1 1Q

0

s02

s2

=K s2

s20

Qs0

2

Page 15: Active Filters – an Introduction - Penn Engineeringese319/Lecture_Notes/Lec_23...ESE319 Introduction to Microelectronics 2008 Kenneth R. Laker updated 07Dec09 KRL 1 Active Filters

ESE319 Introduction to Microelectronics

152008 Kenneth R. Laker updated 07Dec09 KRL

Feedback Equations IIV hp

V i=

1

K 1Q

0

s02

s2

=K s2

s20

Qs0

2High Pass Output:

Bandpass Output:V bp

V i=−0

sV hp

V i=−

K0 s

s20

Qs0

2

Lowpass Output:V lp

V i=−0

sV bp

V i=

K02

s20

Q s02

Page 16: Active Filters – an Introduction - Penn Engineeringese319/Lecture_Notes/Lec_23...ESE319 Introduction to Microelectronics 2008 Kenneth R. Laker updated 07Dec09 KRL 1 Active Filters

ESE319 Introduction to Microelectronics

162008 Kenneth R. Laker updated 07Dec09 KRL

Page 17: Active Filters – an Introduction - Penn Engineeringese319/Lecture_Notes/Lec_23...ESE319 Introduction to Microelectronics 2008 Kenneth R. Laker updated 07Dec09 KRL 1 Active Filters

ESE319 Introduction to Microelectronics

172008 Kenneth R. Laker updated 07Dec09 KRL

Implementation

Inverting Integrators

Summing Amp

V hp=−0

2

s2V hp−

1Q

0

sV hpK V i

R3

R2

R f

R1

R RC C

V hp

V bp

V lpV i

−0

sV hp=V bp

02

s2V hp=V lp

V hp=−R fR1 0

2

s2 V hpR2

R2R3 1 R fR1 −0

s V hpR3

R2R3 1 R fR1 V i

Page 18: Active Filters – an Introduction - Penn Engineeringese319/Lecture_Notes/Lec_23...ESE319 Introduction to Microelectronics 2008 Kenneth R. Laker updated 07Dec09 KRL 1 Active Filters

ESE319 Introduction to Microelectronics

182008 Kenneth R. Laker updated 07Dec09 KRL

Implementation II

V hp=−02

s2 V hp−2R2R2R3 0

s V hp2R3R2R3

V i

R f=R1Set: And compare terms:

V hp=−02

s2 V hp−1Q 0

s V hpKV i

R3R2

=2Q−1Q=R2R32R2

⇒Q=12 1 R3R2 =>

circuit symbolic Eq.

spec/numerical Eq.

V hp=−R fR1 0

2

s2 V hpR2

R2R3 1 R fR1 −0

s V hpR3

R2R3 1 R fR1 V i

Page 19: Active Filters – an Introduction - Penn Engineeringese319/Lecture_Notes/Lec_23...ESE319 Introduction to Microelectronics 2008 Kenneth R. Laker updated 07Dec09 KRL 1 Active Filters

ESE319 Introduction to Microelectronics

192008 Kenneth R. Laker updated 07Dec09 KRL

K – Q DependenceR3R2

=2Q−1

K=2R3R3R2

=2R3R2

1R3R2

= 2 2Q−112Q−1

=2− 1Q

Only Q or K can be the independent variable!

From previous slide: K=2 R3R2R3

Page 20: Active Filters – an Introduction - Penn Engineeringese319/Lecture_Notes/Lec_23...ESE319 Introduction to Microelectronics 2008 Kenneth R. Laker updated 07Dec09 KRL 1 Active Filters

ESE319 Introduction to Microelectronics

202008 Kenneth R. Laker updated 07Dec09 KRL

Design Equations

R f=R1

R3R2

=2Q−1

KQ=R3R2

=2Q−1⇒K=2− 1Q

RC= 10

Given , choose C, calculate R

Choose Rf, Calculate R1 or vice-versa.

Given Q, choose R2, calculate R3 or vice-versa.

K is fixed by choice of Q.

We have two independent parameters ( and Q, or K) and threeindependent components (C, Rf (or R

1), and R2(or R

3)).

0=2 f 0

0

Page 21: Active Filters – an Introduction - Penn Engineeringese319/Lecture_Notes/Lec_23...ESE319 Introduction to Microelectronics 2008 Kenneth R. Laker updated 07Dec09 KRL 1 Active Filters

ESE319 Introduction to Microelectronics

212008 Kenneth R. Laker updated 07Dec09 KRL

RestrictionsSince

When Q = 1/2:

V hp

V i=

K s2

s22002=

K s2

s0 2

We have 2 real and equal poles.

For Q > 1/2, we are restricted to complex conjugate poles.

K=2− 1Q 0⇒Q1/2

Page 22: Active Filters – an Introduction - Penn Engineeringese319/Lecture_Notes/Lec_23...ESE319 Introduction to Microelectronics 2008 Kenneth R. Laker updated 07Dec09 KRL 1 Active Filters

ESE319 Introduction to Microelectronics

222008 Kenneth R. Laker updated 07Dec09 KRL

Adding Finite Zeros – (Notches)To be able to create notches in the response, we need anothersumming amplifier:

Where the weighted inputs come from the highpass,bandpass, and lowpass outputs of the feedback circuit.

V hp

V bp

V lp

V o

Page 23: Active Filters – an Introduction - Penn Engineeringese319/Lecture_Notes/Lec_23...ESE319 Introduction to Microelectronics 2008 Kenneth R. Laker updated 07Dec09 KRL 1 Active Filters

ESE319 Introduction to Microelectronics

232008 Kenneth R. Laker updated 07Dec09 KRL

Notch CreationAll the output point transfer functions contain the samedenominator, so only the numerator terms will be affected:

G s=− RFRH V hpRFRBV bp

RFRLV lp

G s=−KRF /RH s

2−RF /RB0 sRF /RL02

s20 /Q s02

For a notch at , no connection is made to Vbp, i.e. =N

RL

RFRHRB

V hp

V bp

V lp

V o

RB=∞

Page 24: Active Filters – an Introduction - Penn Engineeringese319/Lecture_Notes/Lec_23...ESE319 Introduction to Microelectronics 2008 Kenneth R. Laker updated 07Dec09 KRL 1 Active Filters

ESE319 Introduction to Microelectronics

242008 Kenneth R. Laker updated 07Dec09 KRL

Page 25: Active Filters – an Introduction - Penn Engineeringese319/Lecture_Notes/Lec_23...ESE319 Introduction to Microelectronics 2008 Kenneth R. Laker updated 07Dec09 KRL 1 Active Filters

ESE319 Introduction to Microelectronics

252008 Kenneth R. Laker updated 07Dec09 KRL

“Big Picture” Filter Design Tasks1. Design G(s) from filter specs.2. Determine filter structure (block diagram) to realize G(s).3. Determine filter circuit(s) to implement structure.4. Determine component values.

Filter Design CAD Tools on the Market1. MatLab - Mathworks2. FILTER PRO – Texas Instruments3. Aktiv Filter – New Wave Instruments4. Filter Lab – Microchip5. Filter Wiz Pro – Schematica6. FilterCAD – Linear Technology

Page 26: Active Filters – an Introduction - Penn Engineeringese319/Lecture_Notes/Lec_23...ESE319 Introduction to Microelectronics 2008 Kenneth R. Laker updated 07Dec09 KRL 1 Active Filters

ESE319 Introduction to Microelectronics

262008 Kenneth R. Laker updated 07Dec09 KRL

Page 27: Active Filters – an Introduction - Penn Engineeringese319/Lecture_Notes/Lec_23...ESE319 Introduction to Microelectronics 2008 Kenneth R. Laker updated 07Dec09 KRL 1 Active Filters

ESE319 Introduction to Microelectronics

272008 Kenneth R. Laker updated 07Dec09 KRL

Page 28: Active Filters – an Introduction - Penn Engineeringese319/Lecture_Notes/Lec_23...ESE319 Introduction to Microelectronics 2008 Kenneth R. Laker updated 07Dec09 KRL 1 Active Filters

ESE319 Introduction to Microelectronics

282008 Kenneth R. Laker updated 07Dec09 KRL

Page 29: Active Filters – an Introduction - Penn Engineeringese319/Lecture_Notes/Lec_23...ESE319 Introduction to Microelectronics 2008 Kenneth R. Laker updated 07Dec09 KRL 1 Active Filters

ESE319 Introduction to Microelectronics

292008 Kenneth R. Laker updated 07Dec09 KRL

R2n=R fn=R1n=10

Page 30: Active Filters – an Introduction - Penn Engineeringese319/Lecture_Notes/Lec_23...ESE319 Introduction to Microelectronics 2008 Kenneth R. Laker updated 07Dec09 KRL 1 Active Filters

ESE319 Introduction to Microelectronics

302008 Kenneth R. Laker updated 07Dec09 KRL

Page 31: Active Filters – an Introduction - Penn Engineeringese319/Lecture_Notes/Lec_23...ESE319 Introduction to Microelectronics 2008 Kenneth R. Laker updated 07Dec09 KRL 1 Active Filters

ESE319 Introduction to Microelectronics

312008 Kenneth R. Laker updated 07Dec09 KRL

Page 32: Active Filters – an Introduction - Penn Engineeringese319/Lecture_Notes/Lec_23...ESE319 Introduction to Microelectronics 2008 Kenneth R. Laker updated 07Dec09 KRL 1 Active Filters

ESE319 Introduction to Microelectronics

322008 Kenneth R. Laker updated 07Dec09 KRL

(MFM)