Action Spectra: A Review · 2017-07-13 · dependence of the photoresponse is not linear (as is...

39
10 IUVA News / Vol. 19 No. 2 Action Spectra: A Review James R. Bolton Bolton Photosciences Inc., 628 Cheriton Cres. NW, Edmonton, AB, Canada T6R 2M5 Contact: 780.439.4709 or [email protected] Introduction and definitions Following the publication of an extensive review of the UV sensitivities of many microorganisms (Haji Malayeri, et al. 2016), it is appropriate to review the action spectra that have been determined for some of these microorganisms. Action spectra are important in analyzing data for UV experiments involving polychromatic UV lamps (e.g., medium pressure UV lamps). They are also very useful for modeling medium pressure UV systems using computational fluid dynamics (CFD)-based UV dose models. The germicidal factor [GF(λ)] or “action” of a microorganism is defined as the UV sensitivity of that microorganism at wavelength λ normalized to 1.00 at 253.7 nm (the primary emission wavelength of a low pressure UV lamp). In general terms, the action spectrum of a microorganism is a plot of GF(λ) vs. wavelength. However, there are several possible methods for determining GF(λ) from experimental data. Methods for determining germicidal factors The various methods for determining the GF(λ) values for a microorganism involve analysis of fluence (UV dose) – response curves (or photon fluence – response curves) carried out at several wavelengths. Ideally, the spectral width of the UV source should be very narrow (< 1 nm); however, in many cases, such as the use of interference filters or a monochromator with a medium pressure UV lamp, the spectral width is 10-12 nm. The best case is the use of a tunable laser, where the spectral width is <1 nm. As pointed out by Bolton et al. (2015), the rate of photochemical and photobiological processes is driven by the rate of photon absorption. Thus ideally, the GF(λ) values should be derived from plots of log(N 0 /N) vs. the photon fluence (einstein cm -2 ), where N is the number of viable microorganisms per mL at photon fluence F o,p (λ) and N 0 is number of viable microorganisms per mL at F o,p (λ) = 0. However, in most cases the GF(λ) values have been derived on an energy basis from plots of log(N 0 /N) vs. the fluence (UV dose) (mJ cm -2 ). Bolton et al. (2015) indicated that GF(λ) values derived from energy-based data can be converted to GF(λ) values derived from photon-based data by multiplying the former by (253.7/λ). Henceforth we designate GF ε (λ) as germicidal factors derived from energy-based data and GF p (λ) as germicidal factors derived from photon-based data. The various methods for the determination of GF ε (λ) values are as follows: 1. Fluence-based rate constant method Plots of log(N 0 /N) vs. the fluence often have a linear region, where one can derive a first order rate constant . GF 1ε (λ) then is defined as 2. Fixed fluence method Plots of log(N 0 /N) vs. the fluence are often non-linear. The International Union of Pure and Applied chemistry (IUPAC) (Braslavsky 2005) thus proposed that “In cases where the fluence dependence of the photoresponse is not linear (as is often the case in biological photoresponses), a plot of the photoresponse vs. fluence should be made at several wavelengths and a standard response should be chosen (e.g., two-log reduction). A plot of the inverse of the “standard response” level vs. wavelength is then the action spectrum of the photoresponse.” Thus where n is the fixed log reduction chosen (e.g., 2). Gates (1930) used this method. 3. Fluence-response mapping (curve mapping) method Coohill (1991) and Sutherland (2002) have pointed out that if the fluence-response curves at various wavelengths have a very similar fluence-response profile, then it is possible to apply a single constant that will map the fluence-response curve at given wavelength to that at 253.7 nm. This constant is 1/GF (λ). The advantage of this method is that all the data in the fluence- response curve are used to determine GF (λ). Beck et al. (2015) used this method to determine their germicidal factors. If the dataset are plots of log(N 0 /N) vs. photon fluence, the corresponding GF values are GF 1p (λ), GF 2p (λ) and GF 3p (λ), where where i = 1, 2 or 3. The choice of GF values based on fluence-response curves or those based on photon-fluence response curves depends on [1] [2] [3]

Transcript of Action Spectra: A Review · 2017-07-13 · dependence of the photoresponse is not linear (as is...

Page 1: Action Spectra: A Review · 2017-07-13 · dependence of the photoresponse is not linear (as is often the case in biological photoresponses), a plot of the photoresponse vs. fluence

10 IUVA News / Vol. 19 No. 2

Action Spectra: A ReviewJames R. BoltonBolton Photosciences Inc., 628 Cheriton Cres. NW, Edmonton, AB, Canada T6R 2M5Contact: 780.439.4709 or [email protected]

Introduction and definitionsFollowing the publication of an extensive review of the UV sensitivities of many microorganisms (Haji Malayeri, et al. 2016), it is appropriate to review the action spectra that have been determined for some of these microorganisms.

Action spectra are important in analyzing data for UV experiments involving polychromatic UV lamps (e.g., medium pressure UV lamps). They are also very useful for modeling medium pressure UV systems using computational fluid dynamics (CFD)-based UV dose models.

The germicidal factor [GF(λ)] or “action” of a microorganism is defined as the UV sensitivity of that microorganism at wavelength λ normalized to 1.00 at 253.7 nm (the primary emission wavelength of a low pressure UV lamp). In general terms, the action spectrum of a microorganism is a plot of GF(λ) vs. wavelength. However, there are several possible methods for determining GF(λ) from experimental data.

Methods for determining germicidal factorsThe various methods for determining the GF(λ) values for a microorganism involve analysis of fluence (UV dose) – response curves (or photon fluence – response curves) carried out at several wavelengths. Ideally, the spectral width of the UV source should be very narrow (< 1 nm); however, in many cases, such as the use of interference filters or a monochromator with a medium pressure UV lamp, the spectral width is 10-12 nm. The best case is the use of a tunable laser, where the spectral width is <1 nm.

As pointed out by Bolton et al. (2015), the rate of photochemical and photobiological processes is driven by the rate of photon absorption. Thus ideally, the GF(λ) values should be derived from plots of log(N0/N) vs. the photon fluence (einstein cm-2), where N is the number of viable microorganisms per mL at photon fluence Fo,p(λ) and N0 is number of viable microorganisms per mL at Fo,p(λ) = 0.

However, in most cases the GF(λ) values have been derived on an energy basis from plots of log(N0/N) vs. the fluence (UV dose) (mJ cm-2). Bolton et al. (2015) indicated that GF(λ) values derived from energy-based data can be converted to GF(λ) values derived from photon-based data by multiplying the former by (253.7/λ). Henceforth we designate GFε(λ) as germicidal factors derived from energy-based data and GFp(λ) as germicidal factors derived from photon-based data.

The various methods for the determination of GFε(λ) values are as follows:

1. Fluence-based rate constant methodPlots of log(N0/N) vs. the fluence often have a linear region, where one can derive a first order rate constant . GF1ε(λ)then is defined as

2. Fixed fluence methodPlots of log(N0/N) vs. the fluence are often non-linear. The International Union of Pure and Applied chemistry (IUPAC) (Braslavsky 2005) thus proposed that “In cases where the fluence dependence of the photoresponse is not linear (as is often the case in biological photoresponses), a plot of the photoresponse vs. fluence should be made at several wavelengths and a standard response should be chosen (e.g., two-log reduction). A plot of the inverse of the “standard response” level vs. wavelength is then the action spectrum of the photoresponse.” Thus

where n is the fixed log reduction chosen (e.g., 2). Gates (1930) used this method.

3. Fluence-response mapping (curve mapping) methodCoohill (1991) and Sutherland (2002) have pointed out that if the fluence-response curves at various wavelengths have a very similar fluence-response profile, then it is possible to apply a single constant that will map the fluence-response curve at given wavelength to that at 253.7 nm. This constant is 1/GF3ε(λ). The advantage of this method is that all the data in the fluence-response curve are used to determine GF3ε(λ). Beck et al. (2015) used this method to determine their germicidal factors.

If the dataset are plots of log(N0/N) vs. photon fluence, the corresponding GF values are GF1p(λ), GF2p(λ) and GF3p(λ), where

where i = 1, 2 or 3.

The choice of GF values based on fluence-response curves or those based on photon-fluence response curves depends on

[1]

[2]

[3]

Page 2: Action Spectra: A Review · 2017-07-13 · dependence of the photoresponse is not linear (as is often the case in biological photoresponses), a plot of the photoresponse vs. fluence

11Summer 2017

page 12 u

how the GF values are to be used. For example, if one wishes to calculate the average germicidal fluence rate over a certain range, the following equation should be used (Bolton et al. 2015)

where Eλ is the spectral irradiance (W m-2 nm-1) at wavelength λ.

On the other hand, if one wishes to calculate the average germicidal photon irradiance, the following equation should be used

where Ep,λ is the spectral photon irradiance (einstein m-2 s-1

nm-1) at wavelength λ.

As an illustration of how much variation is caused by use of the various methods, the data sets from Chen (2007) were used to generate GF values using several methods. As can be seen, there is not much difference among the methods for the GFε(λ) values. The GFp(λ) values increase at wavelengths less than 254 and decrease at wavelengths greater than 254 because of Eq. 3.

[4a]

[4b]

Table 1. Comparison of GF(λ) values for Bacillus subtilis spores using various methods (taken from data sets in Chen (2007).

Wavelength/nm GF1ε(λ)

GF2ε(λ) (2 logs) GF3ε(λ) GF1p(λ)

222 2.48 2.32 2.37 2.84

225 2.24 2.42 2.39 2.53

232 1.63 1.70 1.68 1.78

243 1.03 1.00 1.00 1.08

251 1.03 1.00 1.01 1.04

254 1.00 1.00 1.00 1.00

264 1.34 1.32 1.33 1.29

268 1.26 1.34 1.37 1.20

279 1.00 0.98 0.98 0.91

292 0.19 0.22 0.21 0.17

303 0.02 0.06 0.02 0.02

Various methods have been used to select wavelengths from a broadband UV light sources for the determination of action spectra, such as:

1. Monochromators – the early work by Gates (1930) used a quartz monochromator; however, modern monochromators are usually are grating monochromators. A good monochromator can produce a narrow beam with a width of only a few nm.

2. Interference filters – these filters can be manufactured with specific center wavelengths, so a set of filters can be used to determine an actions spectrum. The problem is that the bandwidth is 10-12 nm (full width at half height), so the action values are somewhat “smoothed” by this bandwidth.

3. Tunable laser – this method is by far the best because the bandwidth for a tunable laser is much less than 1 nm. Most of the data in Beck et al. (2015) used this method.

Action spectra data and discussionAction spectra data has been extracted from the various references either by extracting data from tables or by interpolating off charts using the Web Plot Digitizer (http://arohatgi.info/WebPlotDigitizer/app/?). The data from the literature for which action spectra have been determined are collected in an Excel file (supplementary material), which is available as a pdf in the e-version of IUVA News (posted at www.iuvanews.com).

The type of wavelength filter and the method for determining the action spectra are specified in each worksheet. The supplementary material also contains curve fits of these data

This Changes Everything

World’s Smallest UV System Demonstrating the True Power of UV-C LEDs

www.aquisense.com | +1.859.869.4700

Learn about the brand new category of UV disinfection - Micro UV™

Page 3: Action Spectra: A Review · 2017-07-13 · dependence of the photoresponse is not linear (as is often the case in biological photoresponses), a plot of the photoresponse vs. fluence

12 IUVA News / Vol. 19 No. 2

UV Photodiodes and UV-LEDsHigh reliability, high performance, and affordable UV SiC sensors, from sglux; and Deep UV-LEDs from Nikkiso. Boston Electronics is your single source for these superior UV devices.

www.boselec.com [email protected]

using the cubic spline method. The figure numbers in the following discussion refer to worksheets in the supplementary online file.

For microorganisms where more than one action spectrum study has been carried out, there are significant differences (e.g., adenovirus 2 and Bacillus subtilis spores) (see Figs. S1a and S1c), and for others they agree well (e.g., Bacillus pumilis spores, Cryptosporidium parvum, and MS2 coliphage) (see Figs. S1b, S1d and S1e). Perhaps future work will help resolve differences.

It often has been implied that microorganism action spectra match well to the DNA absorbance spectrum. However, as seen in Figures 1a-1g, this is true only for a few microorganisms (e.g., T1 and T2 coliphages). In other cases (e.g., MS2 coliphage and Adenovirus 2), the action spectra differ markedly from the DNA absorbance with sharp increases below 240 nm and an increase around 280 nm. These deviations appear to be correlated with the absorption spectra of aromatic amino acids. This could indicate a mechanism whereby these aromatic amino acids absorb UV and transmit the excitation energy to DNA nucleotides (e.g., thymine) by excitation energy transfer. n

t page 11

ReferencesBeck, S.E.; Wright, H.R.; Hargy, T.M.; Larason, T.C.; and Linden, K.G.

2015. Action spectra for validation of pathogen disinfection in medium-pressure ultraviolet (UV) systems, Water Res., 70: 27-37.

Bolton, J.R.; Mayor-Smith, I.; and Linden, K.G. 2015. Rethinking the concepts of fluence (UV dose) and fluence rate: The importance of photon-based units – A systemic review, Photochem. Photobiol., 91: 1252-1262.

Braslavsky, S.E. 2007. Glossary of terms used in photochemistry, 3rd ed., Pure Appl. Chem., 79(3): 293-465.

Cabaj, A.; Sommer, R.; Pribil, W.; and Haider, T. 2002. The spectral UV sensitivity of microorganisms used in biodosimetry, Water Sci. Technol. – Water Supply, 2(3): 175-181.

Chen, R-Z. 2007. Comparison of action spectra of microorganisms and DNA absorbance spectra for UV disinfection of Water, M.Sc. Thesis, University of Alberta, Edmonton, AB, Canada.

Chen, R-Z; Craik, S.A.; and Bolton, J.R. 2009. Comparison of the action spectra and relative DNA absorbance spectra of microorganisms: infor-mation important for the determination of germicidal fluence (UV dose) in an ultraviolet disinfection of water, Water Res., 43: 5087-5096.

Coohill, T.P. 1991, Action spectra again? Photochemistry and Photobi-ology, 54(5): 859-870.

Fluke, D.J.; Pollard, E.C. 1949. Ultraviolet action spectrum of T1 bacterio-phage, Science, 110: 274-275.

Gates, F.L. 1930. A study of the bacterial action of ultra violet light. III The absorption of ultra violet light by bacteria, J. Gen. Physiol., 14: 31-42.

Haji Malayeri, A.; Mohseni, M.; Cairns, B. and Bolton, J. 2016. Fluence required to achieve incremental log inactivation, IUVA News, 18(3).

Linden, K.G.; Shin, G.; and Sobsey, M.D. 2001. Comparative effective-ness of UV wavelengths for the inactivation of Cryptosporidium parvum oocysts in water, Water Sci. Technol., 43(12): 171-174.

Linden, K.G.; Thurston, J.; Schaefer, R.; and Malley, J.P., Jr. 2007. Enhanced UV inactivation of adenoviruses under polychromatic UV lamps,” Appl. Environ. Microbiol, 73(23): 7571-7174.

Mamane-Gravetz, H.; Linden, K.G.; Cabaj, A.; and Sommer, R. 2005. Spectral sensitivity of Bacillus subtilis spores and MS2 Coliphage for validation testing of ultraviolet reactors for water disinfection, Environ. Sci. Technol., 39(20): 7845-7852.

Rauth, A.M. 1965. The physical state of viral nucleic acid and the sensi-tivity of viruses to ultraviolet light, Biophys. J., 5(3): 257-273.

Rochelle, P.A.; Blatchley III, E.R.; Chan, P.; Scheible, O.K.; and Shen, C.Y. 2010. Challenge organisms for inactivation of viruses by ultravi-olet treatment. Final Report. Water Research Foundation and US EPA, Denver, CO.

Sutherland J.C. 2002. Biological effects of polychromatic light. Photo-chem. Photobiol., 76:164-170.

Zelle, M.R.; Hollaender, A. 1954. Monochromatic ultraviolet action spectra and quantum yields for inactivation of T1 and T2 Escherichia coli bacteriophages, J. Bacteriol., 68(2): 210-215.

Page 4: Action Spectra: A Review · 2017-07-13 · dependence of the photoresponse is not linear (as is often the case in biological photoresponses), a plot of the photoresponse vs. fluence

0

2

4

6

8

10

12

14

16

18

20

200 210 220 230 240 250 260 270 280 290 300

GF

Wavelength / nm

Adenovirus 2

Beck et al. (2015)

Linden et al. (2007)

DNA Absorbance

Page 5: Action Spectra: A Review · 2017-07-13 · dependence of the photoresponse is not linear (as is often the case in biological photoresponses), a plot of the photoresponse vs. fluence

0

1

2

3

4

5

6

7

8

9

10

200 210 220 230 240 250 260 270 280 290 300

GF

Wavelength / nm

Bacillus pumilis spores

Beck et al. (2015)

Rochelle et al. (2010)

Series3

Page 6: Action Spectra: A Review · 2017-07-13 · dependence of the photoresponse is not linear (as is often the case in biological photoresponses), a plot of the photoresponse vs. fluence

0.0

0.5

1.0

1.5

2.0

2.5

3.0

200 210 220 230 240 250 260 270 280 290 300

GF

Wavelength / nm

Bacillus subtilis spores

Cabaj et al. (2002)

Mamane-Gravitz et al. (2002)

Chen et al. (2009)

DNA Absorbance

Page 7: Action Spectra: A Review · 2017-07-13 · dependence of the photoresponse is not linear (as is often the case in biological photoresponses), a plot of the photoresponse vs. fluence

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

200 210 220 230 240 250 260 270 280 290 300

GF

Wavelength / nm

MS2 coliphage

Mamane-Gravitz et al. (2002)

Beck et al. (2015)

Rauth (1965)

DNA Absorbance

Page 8: Action Spectra: A Review · 2017-07-13 · dependence of the photoresponse is not linear (as is often the case in biological photoresponses), a plot of the photoresponse vs. fluence

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

200 210 220 230 240 250 260 270 280 290 300

GF

Wavelength / nm

T1 coliphage Fluke and Pollard (1949) Zelle and Hollaender (1954) DNA Absorbance

Page 9: Action Spectra: A Review · 2017-07-13 · dependence of the photoresponse is not linear (as is often the case in biological photoresponses), a plot of the photoresponse vs. fluence

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

200 210 220 230 240 250 260 270 280 290 300

GF

Wavelength / nm

Cryptosporidium parvum Beck et al. (2015) Linden et al. (2001) DNA Absorbance

Page 10: Action Spectra: A Review · 2017-07-13 · dependence of the photoresponse is not linear (as is often the case in biological photoresponses), a plot of the photoresponse vs. fluence

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

200 210 220 230 240 250 260 270 280 290 300

GF

Wavelength / nm

T2 coliphage Zelle and Hollaender (1954) Rauth (1965) DNA Absorbance

Page 11: Action Spectra: A Review · 2017-07-13 · dependence of the photoresponse is not linear (as is often the case in biological photoresponses), a plot of the photoresponse vs. fluence

Microorganism: Adenovirus 2Filter type: Tunable laserMethod: Curve mappingReference: Beck et al. (2015)

wavelength GF wavelength GF/ nm (exptl.) / nm (cubic spline)210 17.80 200 23.600220 12.00 201 23.006230 5.91 202 22.417240 0.97 203 21.831

253.7 1.00 204 21.249260 1.06 205 20.670270 1.61 206 20.093280 1.27 207 19.518290 0.61 208 18.945

209 18.372210 17.800211 17.228212 16.655213 16.082214 15.507215 14.930216 14.351217 13.769218 13.183219 12.594220 12.000221 11.402222 10.799223 10.193224 9.584225 8.972226 8.359227 7.744228 7.129229 6.514230 5.900231 5.288232 4.684233 4.095234 3.529235 2.990236 2.488237 2.027238 1.617239 1.262240 0.970241 0.746242 0.585243 0.479244 0.423245 0.408246 0.429247 0.477248 0.546249 0.630250 0.720251 0.810252 0.894253 0.963254 1.012255 1.038256 1.047257 1.047258 1.044259 1.046260 1.060261 1.091262 1.137263 1.195264 1.260265 1.330266 1.400267 1.466268 1.526269 1.575270 1.610271 1.628272 1.629273 1.616274 1.591275 1.554276 1.509277 1.456278 1.397279 1.335280 1.270281 1.205282 1.139283 1.074284 1.008285 0.942286 0.876287 0.809288 0.743289 0.677290 0.610291 0.544292 0.477293 0.411294 0.344295 0.278296 0.212297 0.146298 0.081299 0.015300 -0.050

0

5

10

15

20

25

200 210 220 230 240 250 260 270 280 290 300

GF

Wavelength / nm

Adenovirus 2

Cubic Spline Fit Data

Page 12: Action Spectra: A Review · 2017-07-13 · dependence of the photoresponse is not linear (as is often the case in biological photoresponses), a plot of the photoresponse vs. fluence

Microorganism: Adenovirus 2Filter type: Interfernce filterMethod: Rate constantReference: Linden et al. (2007)

wavelength GF wavelength GF/ nm (exptl.) / nm (cubic spline)220 5.63 215 6.600228 3.93 216 6.389239 0.80 217 6.189254 1.00 218 5.998260 1.53 219 5.812280 1.17 220 5.630289 0.70 221 5.448

222 5.262223 5.071224 4.871225 4.660226 4.435227 4.193228 3.930229 3.646230 3.345231 3.032232 2.714233 2.395234 2.082235 1.781236 1.496237 1.234238 1.000239 0.800240 0.638241 0.514242 0.423243 0.365244 0.334245 0.330246 0.348247 0.388248 0.444249 0.516250 0.600251 0.693252 0.792253 0.896254 1.000255 1.103256 1.202257 1.297258 1.384259 1.462260 1.530261 1.586262 1.630263 1.663264 1.686265 1.699266 1.703267 1.698268 1.686269 1.667270 1.641271 1.609272 1.572273 1.531274 1.486275 1.437276 1.386277 1.333278 1.279279 1.225280 1.170281 1.116282 1.063283 1.010284 0.957285 0.905286 0.854287 0.802288 0.751289 0.700290 0.649

0

1

2

3

4

5

6

7

200 210 220 230 240 250 260 270 280 290 300

GF

Wavelength / nm

Adenovirus 2

Cubic Spline Fit Data

Page 13: Action Spectra: A Review · 2017-07-13 · dependence of the photoresponse is not linear (as is often the case in biological photoresponses), a plot of the photoresponse vs. fluence

Microorganism: Bacillus pumilis sporesFilter type: ?Method: ?Reference: Rochelle et al. (2010)

wavelength GF wavelength GF/ nm (exptl.) / nm (cubic spline)220 8.84 215 8.442228 8.76 216 8.439239 2.55 217 8.491254 1.00 218 8.584260 1.31 219 8.705270 1.59 220 8.840280 1.11 221 8.975289 0.57 222 9.096

223 9.189224 9.241225 9.238226 9.166227 9.011228 8.760229 8.404230 7.955231 7.430232 6.846233 6.220234 5.570235 4.912236 4.264237 3.643238 3.066239 2.550240 2.108241 1.739242 1.437243 1.197244 1.012245 0.877246 0.787247 0.736248 0.719249 0.729250 0.761251 0.810252 0.870253 0.935254 1.000255 1.060256 1.116257 1.167258 1.216259 1.263260 1.310261 1.356262 1.402263 1.446264 1.486265 1.522266 1.552267 1.575268 1.589269 1.595270 1.590271 1.574272 1.547273 1.511274 1.467275 1.416276 1.360277 1.300278 1.238279 1.174280 1.110281 1.047282 0.985283 0.924284 0.864285 0.804286 0.745287 0.687288 0.628289 0.570290 0.512291 0.453292 0.395293 0.336294 0.276295 0.216

0

1

2

3

4

5

6

7

8

9

10

200 210 220 230 240 250 260 270 280 290 300

GF

Wavelength / nm

Bacillus pumilis spores

Cubic Spline Fit Data

Page 14: Action Spectra: A Review · 2017-07-13 · dependence of the photoresponse is not linear (as is often the case in biological photoresponses), a plot of the photoresponse vs. fluence

Microorganism: Bacillus pumilis spores ASFUVRCFilter type: Interference filtersMethod: Curve mappingReference: Beck et al. (2015)

wavelength GF wavelength GF/ nm (exptl.) / nm (cubic spline)220 9.07 215 11.367230 4.75 216 10.920244 1.53 217 10.465254 1.00 218 10.004258 1.24 219 9.538264 1.56 220 9.070270 1.30 221 8.602281 0.92 222 8.136292 0.38 223 7.675

224 7.220225 6.773226 6.338227 5.916228 5.509229 5.120230 4.750231 4.402232 4.074233 3.768234 3.481235 3.212236 2.962237 2.730238 2.514239 2.314240 2.130241 1.960242 1.804243 1.661244 1.530245 1.411246 1.305247 1.212248 1.133249 1.069250 1.020251 0.988252 0.974253 0.977254 1.000255 1.041256 1.098257 1.166258 1.240259 1.316260 1.389261 1.455262 1.509263 1.545264 1.560265 1.550266 1.519267 1.473268 1.417269 1.358270 1.300271 1.249272 1.204273 1.164274 1.129275 1.097276 1.068277 1.040278 1.012279 0.984280 0.953281 0.920282 0.883283 0.843284 0.799285 0.753286 0.704287 0.653288 0.601289 0.547290 0.492291 0.436292 0.380293 0.324294 0.268295 0.213296 0.159297 0.107298 0.056299 0.007300 -0.039

0

2

4

6

8

10

12

200 210 220 230 240 250 260 270 280 290 300 G

F

Wavelength / nm

Bacillus pumilis spores

Cubic Spline Fit Data

Page 15: Action Spectra: A Review · 2017-07-13 · dependence of the photoresponse is not linear (as is often the case in biological photoresponses), a plot of the photoresponse vs. fluence

Microorganism: EMCFilter type: MonochromatorMethod: Rate constantReference: Rauth (1965)

wavelength GF wavelength GF/ nm (exptl.) / nm (cubic spline)225 1.37 220 1.756235 0.79 221 1.688240 0.86 222 1.614248 0.92 223 1.535266 1.21 224 1.453275 0.90 225 1.370290 0.41 226 1.287298 0.09 227 1.205303 0.03 228 1.126

229 1.052230 0.984231 0.924232 0.873233 0.832234 0.804235 0.790236 0.790237 0.802238 0.820239 0.841240 0.860241 0.874242 0.884243 0.891244 0.895245 0.899246 0.904247 0.910248 0.920249 0.934250 0.952251 0.972252 0.996253 1.021254 1.047255 1.074256 1.101257 1.127258 1.151259 1.173260 1.192261 1.208262 1.219263 1.226264 1.227265 1.222266 1.210267 1.191268 1.165269 1.134270 1.099271 1.061272 1.021273 0.980274 0.939275 0.900276 0.863277 0.829278 0.796279 0.765280 0.735281 0.705282 0.676283 0.647284 0.618285 0.587286 0.556287 0.523288 0.488289 0.450290 0.410291 0.367292 0.322293 0.277294 0.233295 0.191296 0.152297 0.118298 0.090299 0.069300 0.054301 0.044302 0.036303 0.030304 0.024305 0.016

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

200 210 220 230 240 250 260 270 280 290 300 310

GF

Wavelength / nm

EMC

Cubic Spline Fit Data

Page 16: Action Spectra: A Review · 2017-07-13 · dependence of the photoresponse is not linear (as is often the case in biological photoresponses), a plot of the photoresponse vs. fluence

Microorganism: Bacillus subtilis surface spores ATCC 6633Filter type: MonochromatorMethod: Rate constantReference: Mamane-Gravetz et al. (2002)

wavelength GF wavelength GF/ nm (exptl.) / nm (cubic spline)214 1.24230 0.98240 0.66

253.7 1.00254 1.17265 1.23280 1.16293 0.24

Cubic spline does not work

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

200 210 220 230 240 250 260 270 280 290 300

GF

Wavelength / nm

Bacillus subtilis surface spores

Page 17: Action Spectra: A Review · 2017-07-13 · dependence of the photoresponse is not linear (as is often the case in biological photoresponses), a plot of the photoresponse vs. fluence

Microorganism: Bacillus subtilis spores ATCC 6633Filter type: Interference filtersMethod: Ratee constantReference: Chen et al. (2009)

wavelength GF wavelength GF/ nm (exptl.) / nm (cubic spline)222 2.57 220 2.809225 2.22 221 2.691232 1.65 222 2.570243 1.07 223 2.449251 0.87 224 2.331254 1.00 225 2.220264 1.35 226 2.117268 1.56 227 2.023279 0.98 228 1.937292 0.22 229 1.857303 0.01 230 1.784

231 1.715232 1.650233 1.589234 1.530235 1.474236 1.420237 1.367238 1.316239 1.267240 1.217241 1.168242 1.119243 1.070244 1.020245 0.973246 0.929247 0.893248 0.866249 0.852250 0.852251 0.870252 0.906253 0.952254 1.000255 1.042256 1.077257 1.108258 1.136259 1.163260 1.191261 1.222262 1.258263 1.300264 1.350265 1.409266 1.469267 1.522268 1.560269 1.576270 1.571271 1.547272 1.507273 1.453274 1.388275 1.314276 1.234277 1.150278 1.064279 0.980280 0.899281 0.822282 0.748283 0.678284 0.612285 0.550286 0.491287 0.436288 0.385289 0.338290 0.295291 0.256292 0.220293 0.188294 0.160295 0.136296 0.114297 0.094298 0.077299 0.061300 0.047301 0.034302 0.022303 0.010304 0.000305 0.000

0.0

0.5

1.0

1.5

2.0

2.5

3.0

200 210 220 230 240 250 260 270 280 290 300 310

GF

Wavelength / nm

Bacillus subtilis spores

Cubic Spline Fit Data

Page 18: Action Spectra: A Review · 2017-07-13 · dependence of the photoresponse is not linear (as is often the case in biological photoresponses), a plot of the photoresponse vs. fluence

Microorganism: Cryptosporidium parvumFilter type: Tunable laserMethod: Curve mappingReference: Beck et al. (2015)

wavelength GF wavelength GF/ nm (exptl.) / nm (cubic spline)210 0.88 205 0.884220 0.82 206 0.881230 0.55 207 0.879240 0.54 208 0.879

253.7 1.00 209 0.879260 1.26 210 0.880270 1.14 211 0.881280 0.88 212 0.881290 0.49 213 0.881300 0.08 214 0.880

215 0.876216 0.871217 0.863218 0.852219 0.838220 0.820221 0.798222 0.773223 0.745224 0.715225 0.685226 0.655227 0.625228 0.597229 0.572230 0.550231 0.532232 0.518233 0.508234 0.502235 0.500236 0.501237 0.506238 0.514239 0.526240 0.540241 0.557242 0.578243 0.601244 0.627245 0.655246 0.686247 0.719248 0.755249 0.793250 0.833251 0.876252 0.920253 0.967254 1.015255 1.064256 1.112257 1.158258 1.199259 1.234260 1.260261 1.276262 1.283263 1.281264 1.273265 1.259266 1.240267 1.217268 1.192269 1.166270 1.140271 1.115272 1.090273 1.066274 1.042275 1.018276 0.993277 0.967278 0.940279 0.911280 0.880281 0.847282 0.812283 0.775284 0.737285 0.698286 0.657287 0.616288 0.574289 0.532290 0.490291 0.448292 0.407293 0.365294 0.324295 0.283296 0.243297 0.202298 0.161299 0.121300 0.080301 0.040

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

200 210 220 230 240 250 260 270 280 290 300 310

GF

Wavelength / nm

Cryptosporidium parvum

Cubic Spline Fit Data

Page 19: Action Spectra: A Review · 2017-07-13 · dependence of the photoresponse is not linear (as is often the case in biological photoresponses), a plot of the photoresponse vs. fluence

Microorganism: Cryptosporidium parvumFilter type: Interference filtersMethod: Fixed fluenceReference: Linden et al. (2001)

wavelength GF wavelength GF/ nm (exptl.) / nm (cubic spline)216 0.88230 0.82242 0.55255 0.54

253.7 1.00263 1.26271 1.14281 0.88290 0.49

cubic spline does not work

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

200 210 220 230 240 250 260 270 280 290 300 310

GF

Wavelength / nm

Cryptosporidium parvum

Data

Page 20: Action Spectra: A Review · 2017-07-13 · dependence of the photoresponse is not linear (as is often the case in biological photoresponses), a plot of the photoresponse vs. fluence

Microorganism: Escherishia coliFilter type: Quartz monochromatorMethod: Fluence at fixed (0.3) log inactivationReference: Gates (1930)

wavelength GF wavelength GF/ nm (exptl.) / nm (cubic spline)230.2 0.87 230 0.883237.9 0.48 231 0.818248.2 0.72 232 0.753253.7 1.00 233 0.691267.5 1.33 234 0.634280.4 0.68 235 0.582289.4 0.12 236 0.538302.2 0.04 237 0.503

238 0.478239 0.465240 0.462241 0.469242 0.485243 0.509244 0.540245 0.576246 0.617247 0.662248 0.710249 0.760250 0.811251 0.863252 0.914253 0.965254 1.015255 1.063256 1.108257 1.151258 1.191259 1.227260 1.259261 1.287262 1.310263 1.327264 1.339265 1.345266 1.344267 1.337268 1.322269 1.299270 1.270271 1.234272 1.192273 1.146274 1.094275 1.038276 0.978277 0.914278 0.848279 0.779280 0.709281 0.637282 0.564283 0.493284 0.423285 0.355286 0.292287 0.234288 0.181289 0.136290 0.099291 0.070292 0.048293 0.033294 0.023295 0.018296 0.017297 0.019298 0.022299 0.027300 0.032301 0.037302 0.040303 0.040304 0.039305 0.035

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

200 210 220 230 240 250 260 270 280 290 300 310

GF

Wavelength / nm

Escherishia coli

Cubic Spline Fit Data

Page 21: Action Spectra: A Review · 2017-07-13 · dependence of the photoresponse is not linear (as is often the case in biological photoresponses), a plot of the photoresponse vs. fluence

Microorganism: MS2 coliphageFilter type: Tunable laserMethod: Curve mappingReference: Beck et al. (2015)

wavelength GF wavelength GF/ nm (exptl.) / nm (cubic spline)210 3.91 205 4.655220 2.40 206 4.505230 1.00 207 4.355240 0.57 208 4.207

253.7 1.00 209 4.058260 1.22 210 3.910270 1.10 211 3.762280 0.78 212 3.613290 0.36 213 3.465

214 3.315215 3.165216 3.015217 2.863218 2.710219 2.556220 2.400221 2.243222 2.086223 1.930224 1.776225 1.627226 1.484227 1.349228 1.222229 1.105230 1.000231 0.908232 0.829233 0.761234 0.705235 0.660236 0.624237 0.598238 0.581239 0.572240 0.570241 0.575242 0.586243 0.603244 0.625245 0.652246 0.682247 0.717248 0.754249 0.794250 0.836251 0.879252 0.924253 0.969254 1.013255 1.057256 1.099257 1.137258 1.171259 1.199260 1.220261 1.233262 1.238263 1.236264 1.229265 1.216266 1.199267 1.178268 1.154269 1.127270 1.100271 1.072272 1.043273 1.014274 0.983275 0.952276 0.920277 0.887278 0.852279 0.817280 0.780281 0.742282 0.703283 0.662284 0.621285 0.579286 0.536287 0.492288 0.448289 0.404290 0.360291 0.316292 0.272293 0.228294 0.184295 0.142296 0.099297 0.058298 0.025299 0.010300 0.005

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

200 210 220 230 240 250 260 270 280 290 300 310

GF

Wavelength / nm

MS2 coliphage

Cubic Spline Fit Data

Page 22: Action Spectra: A Review · 2017-07-13 · dependence of the photoresponse is not linear (as is often the case in biological photoresponses), a plot of the photoresponse vs. fluence

Microorganism: fdFilter type: MonochromatorMethod: Rate constantReference: Rauth (1965)

wavelength GF wavelength GF/ nm (exptl.) / nm (cubic spline)225 0.81 220 0.982235 0.55 221 0.951240 0.60 222 0.918248 0.83 223 0.883254 1.00 224 0.847265 1.19 225 0.810275 1.09 226 0.773289 0.40 227 0.737297 0.09 228 0.702302 0.02 229 0.669

230 0.638231 0.611232 0.588233 0.570234 0.557235 0.550236 0.549237 0.555238 0.565239 0.581240 0.600241 0.623242 0.648243 0.676244 0.705245 0.736246 0.767247 0.799248 0.830249 0.861250 0.890251 0.919252 0.947253 0.974254 1.000255 1.025256 1.049257 1.071258 1.092259 1.112260 1.130261 1.146262 1.160263 1.172264 1.182265 1.190266 1.195267 1.198268 1.197269 1.194270 1.187271 1.176272 1.161273 1.142274 1.118275 1.090276 1.057277 1.019278 0.977279 0.932280 0.884281 0.833282 0.781283 0.727284 0.671285 0.616286 0.561287 0.506288 0.452289 0.400290 0.350291 0.302292 0.258293 0.216294 0.178295 0.145296 0.115297 0.090298 0.070299 0.054300 0.041301 0.030302 0.020303 0.010304 0.000305 0.000

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

200 210 220 230 240 250 260 270 280 290 300 310

GF

Wavelength / nm

fd

Cubic Spline Fit Data

Page 23: Action Spectra: A Review · 2017-07-13 · dependence of the photoresponse is not linear (as is often the case in biological photoresponses), a plot of the photoresponse vs. fluence

Microorganism: φX-174Filter type: MonochromatorMethod: Rate constantReference: Rauth (1965)

wavelength GF wavelength GF/ nm (exptl.) / nm (cubic spline)225 1.25 220 1.645235 0.61 221 1.574240 0.61 222 1.497248 0.83 223 1.417254 1.00 224 1.334265 1.24 225 1.250275 1.09 226 1.166280 0.98 227 1.083289 0.43 228 1.003297 0.11 229 0.926303 0.03 230 0.855

231 0.789232 0.730233 0.680234 0.640235 0.610236 0.592237 0.584238 0.586239 0.595240 0.610241 0.630242 0.653243 0.679244 0.708245 0.738246 0.769247 0.800248 0.830249 0.859250 0.888251 0.916252 0.943253 0.971254 1.000255 1.030256 1.060257 1.089258 1.118259 1.145260 1.170261 1.193262 1.211263 1.226264 1.236265 1.240266 1.238267 1.232268 1.220269 1.206270 1.188271 1.169272 1.149273 1.128274 1.108275 1.090276 1.074277 1.057278 1.038279 1.013280 0.980281 0.937282 0.886283 0.827284 0.764285 0.697286 0.628287 0.559288 0.493289 0.430290 0.372291 0.320292 0.273293 0.231294 0.194295 0.162296 0.134297 0.110298 0.090299 0.074300 0.061301 0.049302 0.039303 0.030304 0.021305 0.011

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

200 210 220 230 240 250 260 270 280 290 300 310

GF

Wavelength / nm

fx-174

Cubic Spline Fit Data

Page 24: Action Spectra: A Review · 2017-07-13 · dependence of the photoresponse is not linear (as is often the case in biological photoresponses), a plot of the photoresponse vs. fluence

Microorganism: MS2 coliphageFilter type: MonochromatorMethod: Rate constantReference: Mamane-Gravetz et al. (2002)

wavelength GF wavelength GF/ nm (exptl.) / nm (cubic spline)214 3.22230 1.24240 0.58

253.7 1.00254 1.10265 1.06280 0.68293 0.30

Cubic spline does not work

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

200 210 220 230 240 250 260 270 280 290 300 310

GF

Wavelength / nm

MS2 coliphage

Page 25: Action Spectra: A Review · 2017-07-13 · dependence of the photoresponse is not linear (as is often the case in biological photoresponses), a plot of the photoresponse vs. fluence

Microorganism: MS2 coliphage, R17, fr and 7-SFilter type: MonochromatorMethod: Rate constantReference: Rauth (1965)

wavelength GF wavelength GF/ nm (exptl.) / nm (cubic spline)225 1.22 220 1.634235 0.56 221 1.559240 0.59 222 1.479248 0.87 223 1.395254 1.00 224 1.308265 1.13 225 1.220275 0.79 226 1.132280 0.58 227 1.045289 0.40 228 0.961298 0.09 229 0.881303 0.02 230 0.806

231 0.738232 0.678233 0.627234 0.588235 0.560236 0.545237 0.543238 0.550239 0.567240 0.590241 0.619242 0.652243 0.689244 0.727245 0.765246 0.803247 0.838248 0.870249 0.898250 0.922251 0.943252 0.962253 0.981254 1.000255 1.020256 1.041257 1.061258 1.081259 1.098260 1.114261 1.126262 1.135263 1.139264 1.137265 1.130266 1.116267 1.096268 1.070269 1.040270 1.005271 0.967272 0.925273 0.882274 0.836275 0.790276 0.743277 0.697278 0.654279 0.614280 0.580281 0.552282 0.529283 0.509284 0.493285 0.477286 0.462287 0.444288 0.424289 0.400290 0.371291 0.337292 0.300293 0.262294 0.223295 0.185296 0.149297 0.117298 0.090299 0.069300 0.052301 0.039302 0.029303 0.020304 0.011305 0.001

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

200 210 220 230 240 250 260 270 280 290 300 310

GF

Wavelength / nm

MS2 coliphage, R17, fr and 7-S

Cubic Spline Fit Data

Page 26: Action Spectra: A Review · 2017-07-13 · dependence of the photoresponse is not linear (as is often the case in biological photoresponses), a plot of the photoresponse vs. fluence

Microorganism: PolomaFilter type: MonochromatorMethod: Rate constantReference: Rauth (1965)

wavelength GF wavelength GF/ nm (exptl.) / nm (cubic spline)225 0.71 220 0.905235 0.54 221 0.877240 0.84 222 0.841254 1.00 223 0.800265 1.42 224 0.756275 1.19 225 0.710280 0.81 226 0.664289 0.39 227 0.620298 0.10 228 0.579303 0.03 229 0.543

230 0.515231 0.495232 0.486233 0.489234 0.507235 0.540236 0.589237 0.650238 0.717239 0.782240 0.840241 0.886242 0.921243 0.945244 0.961245 0.970246 0.974247 0.974248 0.971249 0.968250 0.966251 0.967252 0.972253 0.982254 1.000255 1.026256 1.060257 1.099258 1.142259 1.187260 1.233261 1.279262 1.322263 1.361264 1.394265 1.420266 1.437267 1.446268 1.445269 1.435270 1.417271 1.389272 1.353273 1.308274 1.253275 1.190276 1.118277 1.041278 0.962279 0.883280 0.810281 0.744282 0.685283 0.632284 0.584285 0.541286 0.501287 0.463288 0.426289 0.390290 0.353291 0.317292 0.280293 0.245294 0.211295 0.179296 0.149297 0.123298 0.100299 0.081300 0.065301 0.052302 0.041303 0.030304 0.019305 0.008

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

200 210 220 230 240 250 260 270 280 290 300 310 G

F

Wavelength / nm

Poloma

Cubic Spline Fit Data

Page 27: Action Spectra: A Review · 2017-07-13 · dependence of the photoresponse is not linear (as is often the case in biological photoresponses), a plot of the photoresponse vs. fluence

Microorganism: Qbeta coliphageFilter type: Tunable laserMethod: Curve mappingReference: Beck et al. (2015)

wavelength GF wavelength GF/ nm (exptl.) / nm (cubic spline)210 3.58 205 4.253220 2.25 206 4.119230 1.11 207 3.985240 0.58 208 3.850

253.7 1.00 209 3.715260 1.24 210 3.580270 1.10 211 3.445280 0.72 212 3.310290 0.38 213 3.175

214 3.041215 2.907216 2.774217 2.642218 2.510219 2.380220 2.250221 2.122222 1.995223 1.871224 1.750225 1.632226 1.518227 1.408228 1.303229 1.204230 1.110231 1.023232 0.943233 0.870234 0.804235 0.746236 0.695237 0.653238 0.620239 0.595240 0.580241 0.574242 0.576243 0.587244 0.604245 0.629246 0.658247 0.693248 0.732249 0.775250 0.820251 0.868252 0.916253 0.966254 1.015255 1.063256 1.108257 1.150258 1.187259 1.217260 1.240261 1.254262 1.260263 1.259264 1.250265 1.236266 1.217267 1.192268 1.164269 1.133270 1.100271 1.065272 1.029273 0.991274 0.953275 0.914276 0.875277 0.835278 0.796279 0.758280 0.720281 0.683282 0.647283 0.612284 0.578285 0.544286 0.510287 0.477288 0.445289 0.412290 0.380291 0.348292 0.315293 0.283294 0.250295 0.216296 0.182297 0.148298 0.113299 0.077300 0.040

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

200 210 220 230 240 250 260 270 280 290 300 310 G

F

Wavelength / nm

Qbeta coliphage

Cubic Spline Fit Data

Page 28: Action Spectra: A Review · 2017-07-13 · dependence of the photoresponse is not linear (as is often the case in biological photoresponses), a plot of the photoresponse vs. fluence

Microorganism: Salmonella typhimurium LT2 SL3770Filter type: Interference filtersMethod: Rate constantReference: Chen et al. (2009)

wavelength GF wavelength GF/ nm (exptl.) / nm (cubic spline)222 1.36 220 1.522225 1.12 221 1.442232 0.70 222 1.360243 0.59 223 1.279251 0.79 224 1.198254 1.00 225 1.120264 1.09 226 1.045268 1.06 227 0.974279 0.76 228 0.908292 0.29 229 0.847303 0.04 230 0.791

231 0.742232 0.700233 0.665234 0.638235 0.616236 0.600237 0.589238 0.583239 0.580240 0.579241 0.582242 0.585243 0.590244 0.595245 0.603246 0.614247 0.631248 0.655249 0.689250 0.733251 0.790252 0.860253 0.933254 1.000255 1.052256 1.089257 1.114258 1.127259 1.132260 1.129261 1.122262 1.111263 1.100264 1.090265 1.082266 1.076267 1.069268 1.060269 1.047270 1.030271 1.010272 0.987273 0.960274 0.932275 0.900276 0.867277 0.833278 0.797279 0.760280 0.722281 0.684282 0.646283 0.608284 0.569285 0.531286 0.494287 0.457288 0.421289 0.386290 0.353291 0.320292 0.290293 0.261294 0.234295 0.209296 0.185297 0.162298 0.140299 0.119300 0.099301 0.079302 0.059303 0.040304 0.021305 0.001

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

200 210 220 230 240 250 260 270 280 290 300 310 G

F

Wavelength / nm

Salmonella typhimurium

Cubic Spline Fit Data

Page 29: Action Spectra: A Review · 2017-07-13 · dependence of the photoresponse is not linear (as is often the case in biological photoresponses), a plot of the photoresponse vs. fluence

Microorganism: Staphylococcus aureusFilter type: Quartz monochromatorMethod: Fluence at fixed (0.3) log inactivationReference: Gates (1930)

wavelength GF wavelength GF/ nm (exptl.) / nm (cubic spline)225 0.84 220 1.0337

230.2 0.64 221 0.9997234.5 0.56 222 0.9625237.9 0.60 223 0.9230248.3 0.93 224 0.8819253.7 1.00 225 0.8400267.5 1.04 226 0.7981280.4 0.80 227 0.7570289.4 0.47 228 0.7175296.7 0.15 229 0.6803302.2 0.03 230 0.6463

231 0.6164232 0.5915233 0.5730234 0.5622235 0.5602236 0.5670237 0.5815238 0.6023239 0.6284240 0.6587241 0.6920242 0.7274243 0.7638244 0.8003245 0.8357246 0.8690247 0.8993248 0.9254249 0.9465250 0.9629251 0.9758252 0.9860253 0.9945254 1.0023255 1.0100256 1.0175257 1.0246258 1.0312259 1.0371260 1.0423261 1.0464262 1.0495263 1.0513264 1.0517265 1.0506266 1.0478267 1.0431268 1.0364269 1.0277270 1.0170271 1.0043272 0.9898273 0.9734274 0.9552275 0.9353276 0.9137277 0.8905278 0.8657279 0.8393280 0.8115281 0.7823282 0.7516283 0.7193284 0.6854285 0.6498286 0.6123287 0.5729288 0.5315289 0.4880290 0.4424291 0.3952292 0.3475293 0.3004294 0.2551295 0.2126296 0.1741297 0.1405298 0.1123299 0.0886300 0.0682301 0.0501302 0.0333303 0.0167304 0.0000305 0.0000

0.0

0.2

0.4

0.6

0.8

1.0

1.2

200 210 220 230 240 250 260 270 280 290 300 310 G

F

Wavelength / nm

Staphylococcus aureus

Cubic Spline Fit Data

Page 30: Action Spectra: A Review · 2017-07-13 · dependence of the photoresponse is not linear (as is often the case in biological photoresponses), a plot of the photoresponse vs. fluence

Microorganism: T1 coliphageFilter type: Quartz monochromatorMethod: Rate constantReference: Fluke and Pollard (1949)

wavelength GF wavelength GF/ nm (exptl.) / nm (cubic spline)

224.5 0.38 220 0.088234.4 0.76 221 0.144

240 0.47 222 0.206248 0.52 223 0.273

253.7 1.00 224 0.344265 1.20 225 0.415269 1.06 226 0.486276 0.95 227 0.553280 0.95 228 0.616289 0.28 229 0.671297 0.17 230 0.717313 0.02 231 0.753

232 0.775233 0.782234 0.772235 0.743236 0.698237 0.642238 0.581239 0.521240 0.468241 0.427242 0.398243 0.383244 0.382245 0.394246 0.422247 0.464248 0.522249 0.594250 0.677251 0.767252 0.857253 0.944254 1.022255 1.089256 1.144257 1.189258 1.223259 1.247260 1.261261 1.266262 1.262263 1.250264 1.230265 1.203266 1.169267 1.131268 1.092269 1.055270 1.023271 0.996272 0.974273 0.959274 0.949275 0.946276 0.950277 0.959278 0.968279 0.968280 0.951281 0.912282 0.853283 0.778284 0.693285 0.602286 0.511287 0.423288 0.343289 0.277290 0.228291 0.194292 0.172293 0.162294 0.158295 0.160296 0.165297 0.170298 0.172299 0.173300 0.171301 0.167302 0.161303 0.154304 0.145305 0.134306 0.123307 0.110308 0.096309 0.082310 0.067311 0.051312 0.035313 0.019314 0.003315 0.000

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

200 210 220 230 240 250 260 270 280 290 300 310 320

GF

Wavelength / nm

T1 coliphage

Cubic Spline Fit Data

Page 31: Action Spectra: A Review · 2017-07-13 · dependence of the photoresponse is not linear (as is often the case in biological photoresponses), a plot of the photoresponse vs. fluence

Microorganism: T1 coliphageFilter type: Quartz monochromatorMethod: Rate constantReference: Zelle and Hollaender (1954)

wavelength GF wavelength GF/ nm (exptl.) / nm (cubic spline)222 1.34 220 1.474230 0.83 221 1.407238 0.55 222 1.340249 0.87 223 1.273254 1.00 224 1.206266 1.06 225 1.139281 0.62 226 1.074297 0.14 227 1.010303 0.04 228 0.948

229 0.888230 0.830231 0.775232 0.724233 0.677234 0.636235 0.602236 0.576237 0.558238 0.550239 0.552240 0.564241 0.584242 0.610243 0.642244 0.677245 0.716246 0.756247 0.796248 0.834249 0.870250 0.902251 0.931252 0.957253 0.979254 1.000255 1.019256 1.035257 1.050258 1.062259 1.071260 1.078261 1.083262 1.084263 1.083264 1.079265 1.071266 1.060267 1.046268 1.028269 1.007270 0.984271 0.958272 0.930273 0.900274 0.868275 0.835276 0.801277 0.765278 0.729279 0.693280 0.656281 0.620282 0.584283 0.548284 0.513285 0.478286 0.444287 0.411288 0.379289 0.347290 0.317291 0.288292 0.260293 0.233294 0.207295 0.183296 0.161297 0.140298 0.121299 0.103300 0.086301 0.070302 0.055303 0.040304 0.025305 0.010

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

200 210 220 230 240 250 260 270 280 290 300 310 G

F

Wavelength / nm

T1 coliphage

Cubic Spline Fit Data

Page 32: Action Spectra: A Review · 2017-07-13 · dependence of the photoresponse is not linear (as is often the case in biological photoresponses), a plot of the photoresponse vs. fluence

Microorganism: T1UV coliphageFilter type: Tunable laserMethod: Curve mappingReference: Beck et al. (2015)

wavelength GF wavelength GF/ nm (exptl.) / nm (cubic spline)210 3.30 205 4.144220 1.76 206 3.982230 0.99 207 3.816240 0.53 208 3.646

253.7 1.00 209 3.473260 1.27 210 3.300265 1.41 211 3.127270 1.37 212 2.954280 0.96 213 2.784290 0.48 214 2.618

215 2.456216 2.300217 2.152218 2.011219 1.880220 1.760221 1.651222 1.553223 1.464224 1.382225 1.308226 1.239227 1.174228 1.111229 1.051230 0.990231 0.929232 0.868233 0.808234 0.751235 0.698236 0.649237 0.607238 0.572239 0.546240 0.530241 0.524242 0.529243 0.543244 0.564245 0.593246 0.628247 0.669248 0.713249 0.761250 0.811251 0.862252 0.914253 0.965254 1.015255 1.062256 1.107257 1.150258 1.192259 1.232260 1.270261 1.307262 1.341263 1.370264 1.394265 1.410266 1.417267 1.416268 1.407269 1.392270 1.370271 1.343272 1.312273 1.277274 1.238275 1.196276 1.151277 1.105278 1.057279 1.009280 0.960281 0.911282 0.863283 0.815284 0.766285 0.719286 0.671287 0.623288 0.575289 0.528290 0.480291 0.432292 0.385293 0.337294 0.289295 0.241

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

200 210 220 230 240 250 260 270 280 290 300 310 G

F

Wavelength / nm

T1UV coliphage

Cubic Spline Fit Data

Page 33: Action Spectra: A Review · 2017-07-13 · dependence of the photoresponse is not linear (as is often the case in biological photoresponses), a plot of the photoresponse vs. fluence

Microorganism: T2 coliphageFilter type: Quartz monochromatorMethod: Rate constantReference: Zelle and Hollaender (1954)

wavelength GF wavelength GF/ nm (exptl.) / nm (cubic spline)222 1.13 220 1.255230 0.71 221 1.193238 0.69 222 1.130249 0.98 223 1.067254 1.00 224 1.005266 1.25 225 0.944281 0.93 226 0.887297 0.12 227 0.834303 0.04 228 0.786

229 0.745230 0.710231 0.683232 0.664233 0.653234 0.648235 0.650236 0.658237 0.671238 0.690239 0.713240 0.741241 0.770242 0.802243 0.834244 0.865245 0.896246 0.923247 0.947248 0.966249 0.980250 0.987251 0.991252 0.992253 0.994254 1.000255 1.011256 1.026257 1.046258 1.068259 1.093260 1.119261 1.145262 1.171263 1.195264 1.217265 1.236266 1.250267 1.260268 1.264269 1.264270 1.259271 1.250272 1.236273 1.217274 1.195275 1.168276 1.138277 1.103278 1.065279 1.024280 0.978281 0.930282 0.878283 0.824284 0.768285 0.710286 0.651287 0.593288 0.534289 0.476290 0.420291 0.366292 0.315293 0.267294 0.223295 0.183296 0.149297 0.120298 0.097299 0.079300 0.066301 0.070302 0.055303 0.040304 0.025305 0.010

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

200 210 220 230 240 250 260 270 280 290 300 310 G

F

Wavelength / nm

T2 coliphage

Cubic Spline Fit Data

Page 34: Action Spectra: A Review · 2017-07-13 · dependence of the photoresponse is not linear (as is often the case in biological photoresponses), a plot of the photoresponse vs. fluence

Microorganism:T2 coliphageFilter type: MonochromatorMethod: Rate constantReference: Rauth (1965)

wavelength GF wavelength GF/ nm (exptl.) / nm (cubic spline)225 0.58 220 0.714235 0.41 221 0.692240 0.53 222 0.667248 0.83 223 0.639254 1.00 224 0.610265 1.14 225 0.580275 1.01 226 0.550289 0.38 227 0.521297 0.08 228 0.493303 0.02 229 0.468

230 0.446231 0.428232 0.415233 0.406234 0.405235 0.410236 0.423237 0.442238 0.467239 0.497240 0.530241 0.565242 0.603243 0.641244 0.680245 0.719246 0.757247 0.794248 0.830249 0.863250 0.895251 0.924252 0.951253 0.976254 1.000255 1.022256 1.042257 1.061258 1.078259 1.093260 1.106261 1.117262 1.126263 1.133264 1.138265 1.140266 1.140267 1.138268 1.133269 1.125270 1.114271 1.100272 1.083273 1.062274 1.038275 1.010276 0.978277 0.943278 0.905279 0.864280 0.820281 0.774282 0.727283 0.679284 0.629285 0.579286 0.529287 0.478288 0.429289 0.380290 0.332291 0.287292 0.243293 0.203294 0.166295 0.132296 0.104297 0.080298 0.062299 0.048300 0.038301 0.030302 0.025303 0.020304 0.015305 0.010

0.0

0.2

0.4

0.6

0.8

1.0

1.2

200 210 220 230 240 250 260 270 280 290 300 310 G

F

Wavelength / nm

T2 coliphage

Cubic Spline Fit Data

Page 35: Action Spectra: A Review · 2017-07-13 · dependence of the photoresponse is not linear (as is often the case in biological photoresponses), a plot of the photoresponse vs. fluence

Microorganism: T7 coliphageFilter type: Tunable laserMethod: Curve mappingReference: Beck et al. (2015)

wavelength GF wavelength GF/ nm (exptl.) / nm (cubic spline)210 1.80 205 2.079220 1.22 206 2.022230 0.63 207 1.966240 0.51 208 1.910

253.7 1.00 209 1.855260 1.31 210 1.800270 1.49 211 1.745280 0.92 212 1.690290 0.46 213 1.634

214 1.578215 1.521216 1.463217 1.404218 1.344219 1.283220 1.220221 1.155222 1.090223 1.024224 0.959225 0.896226 0.835227 0.777228 0.723229 0.674230 0.630231 0.592232 0.561233 0.536234 0.516235 0.502236 0.494237 0.490238 0.492239 0.499240 0.510241 0.526242 0.546243 0.569244 0.597245 0.628246 0.662247 0.698248 0.738249 0.780250 0.824251 0.869252 0.917253 0.965254 1.015255 1.065256 1.116257 1.166258 1.215259 1.264260 1.310261 1.354262 1.395263 1.431264 1.463265 1.488266 1.506267 1.517268 1.518269 1.509270 1.490271 1.459272 1.418273 1.368274 1.312275 1.250276 1.185277 1.117278 1.050279 0.983280 0.920281 0.861282 0.806283 0.755284 0.707285 0.661286 0.618287 0.577288 0.537289 0.498290 0.460291 0.422292 0.383293 0.343294 0.302295 0.259

0.0

0.5

1.0

1.5

2.0

2.5

200 210 220 230 240 250 260 270 280 290 300 310 G

F

Wavelength / nm

T7 coliphage

Cubic Spline Fit Data

Page 36: Action Spectra: A Review · 2017-07-13 · dependence of the photoresponse is not linear (as is often the case in biological photoresponses), a plot of the photoresponse vs. fluence

Microorganism: T7m coliphageFilter type: Tunable laserMethod: Curve mappingReference: Beck et al. (2015)

wavelength GF wavelength GF/ nm (exptl.) / nm (cubic spline)210 2.12 205 2.516220 1.33 206 2.437230 0.65 207 2.358240 0.48 208 2.279

253.7 1.00 209 2.199260 1.13 210 2.120270 0.94 211 2.041280 0.70 212 1.961290 0.44 213 1.882

214 1.803215 1.724216 1.645217 1.566218 1.487219 1.409220 1.330221 1.252222 1.174223 1.098224 1.024225 0.952226 0.883227 0.818228 0.757229 0.701230 0.650231 0.605232 0.566233 0.533234 0.506235 0.486236 0.471237 0.464238 0.462239 0.468240 0.480241 0.499242 0.524243 0.554244 0.589245 0.627246 0.668247 0.712248 0.757249 0.802250 0.847251 0.891252 0.934253 0.974254 1.011255 1.043256 1.072257 1.095258 1.113259 1.125260 1.130261 1.129262 1.122263 1.109264 1.092265 1.071266 1.047267 1.022268 0.995269 0.967270 0.940271 0.914272 0.889273 0.864274 0.840275 0.817276 0.793277 0.770278 0.747279 0.724280 0.700281 0.676282 0.651283 0.625284 0.600285 0.574286 0.547287 0.521288 0.494289 0.467290 0.440291 0.413292 0.386293 0.359294 0.333295 0.306

0.0

0.5

1.0

1.5

2.0

2.5

3.0

200 210 220 230 240 250 260 270 280 290 300 310

GF

Wavelength / nm

T7m coliphage

Cubic Spline Fit Data

Page 37: Action Spectra: A Review · 2017-07-13 · dependence of the photoresponse is not linear (as is often the case in biological photoresponses), a plot of the photoresponse vs. fluence

Microorganism: VSWFilter type: MonochromatorMethod: Rate constantReference: Rauth (1965)

wavelength GF wavelength GF/ nm (exptl.) / nm (cubic spline)225 0.99 220 1.240230 0.74 221 1.195235 0.59 222 1.147240 0.58 223 1.096248 0.75 224 1.043254 1.00 225 0.990265 1.07 226 0.937275 0.72 227 0.884280 0.59 228 0.833289 0.31 229 0.785297 0.07 230 0.740302 0.03 231 0.699

232 0.664233 0.633234 0.609235 0.590236 0.578237 0.572238 0.570239 0.574240 0.580241 0.589242 0.601243 0.617244 0.635245 0.658246 0.684247 0.715248 0.750249 0.790250 0.832251 0.876252 0.920253 0.962254 1.000255 1.033256 1.061257 1.083258 1.101259 1.112260 1.119261 1.120262 1.116263 1.106264 1.091265 1.070266 1.044267 1.014268 0.980269 0.943270 0.905271 0.866272 0.827273 0.789274 0.753275 0.720276 0.691277 0.664278 0.639279 0.615280 0.590281 0.564282 0.536283 0.507284 0.477285 0.445286 0.413287 0.379288 0.345289 0.310290 0.274291 0.239292 0.204293 0.171294 0.141295 0.113296 0.089297 0.070298 0.056299 0.046300 0.039301 0.034302 0.030303 0.026304 0.021305 0.014

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

200 210 220 230 240 250 260 270 280 290 300 310 G

F

Wavelength / nm

VSW

Cubic Spline Fit Data

Page 38: Action Spectra: A Review · 2017-07-13 · dependence of the photoresponse is not linear (as is often the case in biological photoresponses), a plot of the photoresponse vs. fluence

Microorganism: VacciniaFilter type: MonochromatorMethod: Rate constantReference: Rauth (1965)

wavelength GF wavelength GF/ nm (exptl.) / nm (cubic spline)225 0.51 220 0.590230 0.43 221 0.569235 0.32 222 0.551248 0.74 223 0.536254 1.00 224 0.522265 1.22 225 0.510275 0.71 226 0.498289 0.32 227 0.484297 0.06 228 0.469303 0.02 229 0.451

230 0.430231 0.405232 0.379233 0.354234 0.333235 0.320236 0.317237 0.322238 0.337239 0.359240 0.387241 0.421242 0.460243 0.503244 0.548245 0.595246 0.644247 0.692248 0.740249 0.786250 0.831251 0.874252 0.917253 0.958254 1.000255 1.041256 1.082257 1.120258 1.154259 1.185260 1.210261 1.229262 1.241263 1.244264 1.237265 1.220266 1.192267 1.153268 1.107269 1.055270 0.998271 0.938272 0.878273 0.818274 0.762275 0.710276 0.664277 0.624278 0.589279 0.558280 0.531281 0.506282 0.484283 0.462284 0.442285 0.421286 0.399287 0.375288 0.349289 0.320290 0.287291 0.252292 0.215293 0.179294 0.144295 0.111296 0.083297 0.060298 0.043299 0.032300 0.025301 0.022302 0.020303 0.020304 0.020305 0.018

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

200 210 220 230 240 250 260 270 280 290 300 310 G

F

Wavelength / nm

Vaccinia

Cubic Spline Fit Data

Page 39: Action Spectra: A Review · 2017-07-13 · dependence of the photoresponse is not linear (as is often the case in biological photoresponses), a plot of the photoresponse vs. fluence

Microorganism: Absorbance of DNA from Salmonella typhimurium LT2 SL3770Filter type:Method: AbsorbanceReference: Chen (2007)

wavelength GF wavelength GF/ nm (exptl.) / nm (cubic spline)200 1.71 200 1.705205 1.65 201 1.701210 1.42 202 1.696215 1.11 203 1.686220 0.79 204 1.671225 0.56 205 1.648230 0.47 206 1.616235 0.50 207 1.576240 0.62 208 1.529245 0.77 209 1.478250 0.93 210 1.422

253.7 1.00 211 1.364255 1.02 212 1.304260 1.03 213 1.242265 0.94 214 1.179270 0.81 215 1.114275 0.65 216 1.048280 0.49 217 0.982285 0.33 218 0.917290 0.20 219 0.854295 0.10 220 0.793300 0.04 221 0.736

222 0.683223 0.635224 0.593225 0.557226 0.529227 0.507228 0.491229 0.480230 0.474231 0.472232 0.474233 0.480234 0.490235 0.503236 0.520237 0.541238 0.564239 0.590240 0.618241 0.647242 0.678243 0.709244 0.742245 0.774246 0.806247 0.838248 0.869249 0.898250 0.925251 0.949252 0.970253 0.989254 1.004255 1.017256 1.026257 1.032258 1.034259 1.032260 1.026261 1.015262 1.001263 0.983264 0.963265 0.941266 0.918267 0.894268 0.868269 0.841270 0.813271 0.783272 0.752273 0.720274 0.687275 0.654276 0.620277 0.587278 0.553279 0.519280 0.486281 0.453282 0.421283 0.390284 0.360285 0.330286 0.302287 0.274288 0.248289 0.222290 0.198291 0.175292 0.153293 0.133294 0.115295 0.098296 0.083297 0.070298 0.059299 0.048300 0.037

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

200 210 220 230 240 250 260 270 280 290 300 310

GF

Wavelength / nm

Absorbance of DNA from Salmonella typhimurium

Cubic Spline Fit Data