ACMA Composites 2004, rev A - Eric Greene...

153
Composites 2004 ACMA American Composites Manufacturing Association Tampa Convention Center October 7, 2004 presented by: Eric Greene, Naval Architect, Eric Greene Associates, Inc., [email protected]

Transcript of ACMA Composites 2004, rev A - Eric Greene...

Page 1: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

Composites 2004

ACMAAmerican Composites

Manufacturing Association

Tampa Convention Center

October 7, 2004

presented by:Eric Greene, Naval Architect, Eric Greene Associates, Inc., [email protected]

Page 2: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 2

O4COMPOSITESMARINE COMPOSITES

Presentation Overview Session 1 - Composite Materials & Design (2:00 - 3:00)

• Composite Materials• Design Concepts

• Structural Concepts• Design Methodology

Session 2 - Manufacturing Processes (3:00 - 3:45)• Fabrication• Joining Technologies• Facilities

Break (3:45 - 4:00)

Session 3 - Military Applications of Composites (4:00 - 4:30)• SOCOM Maritime Platforms• Other US Navy Applications

Session 4 - Performance of Composite Structures In-Service (4:30 - 5:00)• Inspection & Repair• Future Developments

Page 3: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 3

O4COMPOSITESMARINE COMPOSITES

Session 1 - Composite Materials & Design (2:00 - 3:00)

• Applications of Marine Composites

• Composite Materials

• Design Concepts• Structural Concepts• Design Methodology

Page 4: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 4

O4COMPOSITESMARINE COMPOSITES

Safety Enclosed Driver Capsule from Ron Jones Marine and Rendering ofHigh-Speed Hydroplane Built by with Prepreg Material [Ron Jones Marine]

Page 5: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 5

O4COMPOSITESMARINE COMPOSITES

161’ Motoryacht Evviva Built by AdmiralMarine [Admiral]

150-foot Omohundro carbon Fiber/EpoxyMast for 115' Ted Hood Designed ShallowDraft Sailing Yacht Built by TridentShipworks [photo by the author]

Page 6: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 6

O4COMPOSITESMARINE COMPOSITES

Samsung Built 37-meter SES Designed by Nigel Gee and Associates using aKevlar® Hybrid Reinforcement for the Hull [DuPont, Oct 1993, Marine Link]

Page 7: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 7

O4COMPOSITESMARINE COMPOSITES

1966 Hand Lay-Up Mat and Woven Roving1972 Sandwich Construction1974 Alternative Resin Development1981 Advanced Fabrication Techniques1982 Alternative Reinforcement Materials1990 Vacuum Bag Techniques2000 Infusion Methods

Manufacturing Technology Development

Page 8: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 8

O4COMPOSITESMARINE COMPOSITESMetal & Composites

Metal Composites

Material comes into theshipyard with

properties predetermined

Composites take format the shipyard,

dependent on fabricationmethods and worker skill

Page 9: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 9

O4COMPOSITESMARINE COMPOSITESSpecific Strength and Stiffness

Page 10: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 10

O4COMPOSITESMARINE COMPOSITESDirectional Properties of Composites

The strength of composite fibersare dramatically reduced as the angle

to the applied load is increased

Page 11: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 11

O4COMPOSITESMARINE COMPOSITESRule of Mixtures

Loaddistribution

betweenfiber and

matrix

Page 12: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 12

O4COMPOSITESMARINE COMPOSITESLaminate Properties

Poisson’s Ratio

Str

engt

hS

tiff

ness

Page 13: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 13

O4COMPOSITESMARINE COMPOSITESFibers

Comparative Data for Some Reinforcement Fibers

Fiber Densitylb/in3

TensileStrengthpsi x 103

TensileModuluspsi x 106

UltimateElongation

Bulk Cost2003 $/lb

E-Glass .094 500 10.5 4.8% .36-.54S-Glass .090 665 12.6 5.7% 4.00Aramid - Kevlar 49 .052 525 18.0 2.9% 19.00Spectra 900 .035 375 17.0 3.5% 20.00Polyester - COMPET .049 150 1.4 22.0% 1.75Carbon - Aerospace .062-.065 350-700 33-57 0.38-2.0% 15-100Carbon - Recreational .062-.065 550 35 1.5% 5-12

Page 14: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 14

O4COMPOSITESMARINE COMPOSITESResins

Comparative Data for Some Thermoset Resin Systems (castings)

Resin BarcolHardness

TensileStrengthpsi x 103

TensileModuluspsi x 105

UltimateElongation

Bulk Cost2003 $/lb

Orthophthalic Polyester 42 7.0 5.9 0.91% .75Isophthalic Polyester 46 10.3 5.7 2.0% .86Dicyclopentadiene (DCPD) 54 11.2 9.1 0.86% .77Vinyl Ester 35 11.5 4.9 5.5% 1.10Phenolic 45 1.8% 1.30Epoxy 86D* 8 5.3 7.7% 4.00 * Hardness value for epoxies are typically given on the “Shore D” scale

Page 15: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 15

O4COMPOSITESMARINE COMPOSITESCores

Page 16: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 16

O4COMPOSITESMARINE COMPOSITESStructural Comparison Between Metal & Composites

Material Density Tensile Strength Tensile Modulus Ultimate Elongation

lbs/ft3 psi x 103 Mpa psi x 106 Gpa %Resins Orthophthalic Polyester 76.7 7 48.3 .59 4.07 1

Isophthalic Polyester 75.5 10.3 71.1 .57 3.90 2Vinyl Ester 69.9 11-12 76-83 .49 3.38 4-5Epoxy (Gougeon Proset) 74.9 7-11 48-76 .53 3.66 5-6Phenolic 71.8 5.1 35.2 .53 3.66 2

Fibers E-Glass (24 oz WR) 162.4 500 3450 10.5 72.45 4.8S- Glass 155.5 665 4589 12.6 86.94 5.7Kevlar® 49 90 525 3623 18 124.2 2.9Carbon-PAN 109.7 350-700 2415-4830 33-57 227-393 0.38-2.0

Cores End Grain Balsa 7 1.320 9.11 .370 2.55 n/aLinear PVC (Airex R62.80) 5-6 0.200 1.38 0.0092 0.06 30Cross-Linked PVC (Diab H-100) 6 0.450 3.11 0.0174 0.12 n/aHoneycomb (Nomex® HRH-78) 6 n/a n/a 0.0600 0.41 n/aHoneycomb (Nidaplast H8PP) 4.8 n/a n/a n/a n/a n/a

Laminates Solid Glass/Polyesterhand lay-up 96 20 138 1.4 9.66 n/aGlass/Polyester Balsa Sand. 24 6 41 0.4 2.76 n/aGlass/VE PVC Sand, SCRIMP 18 6 41 0.4 2.76 n/aSolid Carbon/Epoxy fil wound 97 88 607 8.7 60 n/aCarbon/Epoxy Nomex prepreg 9 9 62 0.5 3.45 n/a

Metals ABS Grd A (ASTM 131) 490.7 58 400 29.6 204 21ABS Grd AH (ASTM A242) 490.7 71 490 29.6 204 19Aluminum (6061-T6) 169.3 45 310 10.0 69 10Aluminum (5086-H34) 165.9 44 304 10.0 69 9

Wood Douglas Fir 24.4 13.1 90 1.95 13.46 n/aWhite Oak 39.3 14.7 101 1.78 12.28 n/aWestern Red Cedar 21.2 7.5 52 1.11 7.66 n/aSitka Spruce 21.2 13.0 90 1.57 10.83 n/a

Note: The values used in this table are for illustration only and should not be used for design purposes. In general, strength is defined as yield strengthand modulus will refer to the material's initial modulus. A core thickness of 1" with appropriate skins was assumed for the sandwich laminates listed.

Page 17: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 17

O4COMPOSITESMARINE COMPOSITESComposite Materials Summary

• The physical properties of composite materials are a function ofprocessed reinforcement and resin combinations

• Metals are isotropic with equal properties in all directions -composites have properties that vary with direction

• Carbon fibers have excellent in-plane properties when loads alignwith fibers - E-glass laminates are more damage tolerant

• Large marine structures have traditionally been built with E-glass -long-term experience with carbon fiber is limited

Page 18: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 18

O4COMPOSITESMARINE COMPOSITESMechanical Strength

Basic• Live Loads• Dead Loads• Liquid/Tank and Cargo

Sea Environment• Hull Girder Bending• Passing Waves• Heel, Pitch and Other Ship Motions• Green Seas

Operational & Extreme• One-Time Extreme Conditions (such as flooding)

Combat (for Military Vessels)• Shock• Airblast• Small Caliber Weapons• Explosive Detonation “Structural Design Manual For Naval Surface Ships”,

NAVSEA 0900-LP-097-4010, December 1976.

Page 19: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 19

O4COMPOSITESMARINE COMPOSITESDesign Tools

10 meters 100 meters 300 meters

Exp

erie

nce

Bas

eDesign Tools Metal Ships Composite Ships

Isotropic versusAnisotropic Behavior

not applicable Quasi-IsotropicBehavior Assumedfor Large Structures

Upper Limit forClassification SocietyRules

typically 400meters

typically 60 meters

Status of Available FEAPrograms

ProgramsSpecific toShipStructuresAvailable

Dynamic, Out-of-Plane Loads not YetWell Modeled for ShipStructures

Page 20: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 20

O4COMPOSITESMARINE COMPOSITESDesign Methodology

10 meters 100 meters 300 meters

DesignMethodology

Metal Ships CompositeShips

Rule-Based DesignUsing Empirical Data

Good ExperienceBase for All Vessels

Good ExperienceBase for SmallVessels

Panel Design Basedon Slamming Loads

Only Used forSmaller Vessels andTypicallly forAluminum Only

Process Used forHigh Speed Craft

Midship SectionDesign Based onStiffness and Strength

Traditional Methodfor Large Ships

Method notGenerally Applied

Page 21: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 21

O4COMPOSITESMARINE COMPOSITESHull as a Longitudinal Girder

Vessel in HoggingCondition

Page 22: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 22

O4COMPOSITESMARINE COMPOSITESSlamming

) = DisplacementLw = LengthBw = Beam

Page 23: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 23

O4COMPOSITESMARINE COMPOSITESDesign Tool Summary

• Design tools for large marine structures are more mature formetals than composites

• Composite laminates have 26 engineering parameters that need tobe characterized with mechanical testing

• Composites do not have a “plastic” failure region - interlaminarfailures and cracking precedes catastrophic failure

• There are numerous shear, tensile and compressive failure modesfor composite structures

Page 24: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 24

O4COMPOSITESMARINE COMPOSITES

Stresses and Deflections due toMembrane Effects

Maximum In-Plane Stress inBeams Subject to Bending

Maximum Shear Stress in BeamsSubject to Bending

Bending Stresses in Panels

Page 25: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 25

O4COMPOSITESMARINE COMPOSITESHat-Stiffened Solid Laminate

SkinLow

DensityCore

Best Suited for:

• Resisting in-planeloads

• Use with thick-skinned, E-glasslaminates

• Maximumpunctureresistance

Page 26: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 26

O4COMPOSITESMARINE COMPOSITESSandwich Laminate

Skin

Skin

LowDensity

Core

Best Suited for:

• Resisting out-of-planeloads

• Use with higherstrength/modulusskins

• Maximuminsulationcharacteristics

Page 27: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 27

O4COMPOSITESMARINE COMPOSITES

Comparison of Solid & SandwichLaminates for Out-of-Plane Loads

t 2t4t

Relative Stiffness 100 700 3700

Relative Strength 100 350 925

Relative Weight 100 103 106

Page 28: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 28

O4COMPOSITESMARINE COMPOSITESCompressive Failure Modes

Critical Length for Euler Buckling FormulaBased on End Condition (above)

Compressive Failure Modes ofSandwich Laminates (left)

Page 29: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 29

O4COMPOSITESMARINE COMPOSITES

Longitudinally-Stiffened Panels in Compression

Page 30: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 30

O4COMPOSITESMARINE COMPOSITES

Transversely-Stiffened Panels in Compression

Transversely StiffenedPanel (above) andBuckling Modes (below)[Smith, BucklingProblems in the Designof Fiberglass ReinforcedPlastic Ships]

Page 31: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 31

O4COMPOSITESMARINE COMPOSITESHat Stiffeners

Example of asingle skin FRPstiffener to illustratethe designprocess takenfrom USCG NVICNo. 8-87

Page 32: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 32

O4COMPOSITESMARINE COMPOSITES

Structural Concept Summary

• Hat-stiffened, solid laminates built as monolithic structures offerthe greatest amount of primary axis reinforcements to resist hullgirder bending moments

• Solid laminates are easier to inspect for structural damage

• Sandwich laminates are the most efficient structures for resistingout-of-plane loads

• Sandwich laminates offer good insulation properties and a reserveinner skin to prevent flooding

Page 33: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 33

O4COMPOSITESMARINE COMPOSITES

Consider life-cyclerequirements of the vessel

to determine expectedwave encounter in termsof height and frequency

Design Methodology

Page 34: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 34

O4COMPOSITESMARINE COMPOSITES

USCG 47-foot Motor Lifeboat Larson 98 Model 226 LXI Advertised for Sale: “used very little”

Determine In-Service Profile

Page 35: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 35

O4COMPOSITESMARINE COMPOSITES

Consider life-cyclerequirements of the vessel

to determine expectedwave encounter in termsof height and frequency

DEVELOP DESIGN PRESSUREHull GeometryVessel SpeedIn-Service ConditionsDesign Criteria

Page 36: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 36

O4COMPOSITESMARINE COMPOSITES

Three-Dimensional Slamming Simulation by Germanischer Lloyd AG

Develop Design Pressure

Pressures Recorded by Heller and Jasper

on Patrol Craft at 28 Knots

Page 37: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 37

O4COMPOSITESMARINE COMPOSITES

Rule-Based Design Pressure

From ABS 1978 Rules for Reinforced Plastic Vessels, Section 7

Page 38: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 38

O4COMPOSITESMARINE COMPOSITES

DEVELOP DESIGN PRESSUREHull GeometryVessel SpeedIn-Service ConditionsDesign Criteria

Consider life-cyclerequirements of the vessel

to determine expectedwave encounter in termsof height and frequency

CONSTRUCTIONSolid or SandwichOne-Off or Production

Page 39: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 39

O4COMPOSITESMARINE COMPOSITESConstruction Method

Prepreg/Nomex Honeycomb Core Construction of Hydroplane at Ron Jones Marine

Hand Layup of Solid Laminate Hullat Westport Marine

Page 40: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 40

O4COMPOSITESMARINE COMPOSITESCONSTRUCTION

Solid or SandwichOne-Off or Production Consider life-cycle

requirements of the vesselto determine expected

wave encounter in termsof height and frequency

INITIAL MATERIAL SELECTIONReinforcementResinCore

DEVELOP DESIGN PRESSUREHull GeometryVessel SpeedIn-Service ConditionsDesign Criteria

Page 41: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 41

O4COMPOSITESMARINE COMPOSITESInitial Material Selection

Parameter E-Glass Carbon Kevlar®

Workability Good Fair FairCost Excellent Poor FairStatic Strength Good Excellent GoodDynamic Strength Good Good ExcellentElevated Temperature Performance Good Good Fair

Reinforcements

Parameter Polyester Vinyl ester EpoxyWorkability Excellent Excellent GoodCost Excellent Good FairStatic Strength Fair Good ExcellentDynamic Strength Fair Good GoodElevated Temperature Performance Fair Good Good

Resins

Parameter Balsa PVC FoamWorkability Good GoodCost Excellent GoodStatic Strength Good FairDynamic Strength Fair GoodElevated Temperature Performance Good Poor

Cores

Page 42: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 42

O4COMPOSITESMARINE COMPOSITES

BULKHEAD SPACING

LONGITUDINAL SPACING

Consider end conditions ofpanel at bulkhead and

stiffener attachment points

Optimize transverse andlongitudinal spacing

based on strength andlayout requirements

DETERMINE PANEL SIZEAspect RatiosDimensions

CONSTRUCTIONSolid or SandwichOne-Off or Production Consider life-cycle

requirements of the vesselto determine expected

wave encounter in termsof height and frequency

INITIAL MATERIAL SELECTIONReinforcementResinCore

DEVELOP DESIGN PRESSUREHull GeometryVessel SpeedIn-Service ConditionsDesign Criteria

Page 43: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 43

O4COMPOSITESMARINE COMPOSITESDetermine Panel Size

Stress Coefficient as a Function of Panel Aspect Ratio from MARINE COMPOSITES

ab

Bottom Panel Geometry ShowingAspect Ratio and End Conditions

Page 44: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 44

O4COMPOSITESMARINE COMPOSITES

BULKHEAD SPACING

LONGITUDINAL SPACING

Consider end conditions ofpanel at bulkhead and

stiffener attachment points

Optimize transverse andlongitudinal spacing

based on strength andlayout requirements

DETERMINE PANEL SIZEAspect RatiosDimensions

CONSTRUCTIONSolid or SandwichOne-Off or Production Consider life-cycle

requirements of the vesselto determine expected

wave encounter in termsof height and frequency

INITIAL MATERIAL SELECTIONReinforcementResinCore

DEVELOP DESIGN PRESSUREHull GeometryVessel SpeedIn-Service ConditionsDesign Criteria

ALLOWABLE DEFLECTIONOutfitting ConsiderationsMaterial Strain Limits

Consider Dynamicversus

Static MaterialProperties ALLOWABLE LAMINATE

STRESSIn-Plane & ShearMembrane Effects

Page 45: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 45

O4COMPOSITESMARINE COMPOSITESStresses and Deflections in Panels

Page 46: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 46

O4COMPOSITESMARINE COMPOSITES

ALLOWABLE LAMINATE STRESSIn-Plane & ShearMembrane Effects

CONSTRUCTIONSolid or SandwichOne-Off or Production Consider life-cycle

requirements of the vesselto determine expected

wave encounter in termsof height and frequency

INITIAL MATERIAL SELECTIONReinforcementResinCore

ALLOWABLE DEFLECTIONOutfitting ConsiderationsMaterial Strain Limits

Consider Dynamicversus

Static MaterialProperties

BULKHEAD SPACING

LONGITUDINAL SPACING

Consider end conditions ofpanel at bulkhead and

stiffener attachment points

Optimize transverse andlongitudinal spacing

based on strength andlayout requirements

DETERMINE PANEL SIZEAspect RatiosDimensions

DEVELOP DESIGN PRESSUREHull GeometryVessel SpeedIn-Service ConditionsDesign Criteria

COREMaterialDensityThickness

RESINStrengthUltimate Elongation

REINFORCEMENTCompositionArchitecture & ThicknessOrientation

Page 47: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 47

O4COMPOSITESMARINE COMPOSITESRefine Material Selection based on Strain Limits

First Ply Failure Based on First Play Critical Strain Limits from the ABS Guide forBuilding and Classing High-Speed Craft

Page 48: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 48

O4COMPOSITESMARINE COMPOSITESRefine Material Selection based on Stress Limits

Skin Section Modulus Based on Applied Failure Momentfrom the ABS Guide for Building and Classing High-Speed Craft

Page 49: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 49

O4COMPOSITESMARINE COMPOSITES

REINFORCEMENTCompositionArchitecture & ThicknessOrientation

RESINStrengthUltimate Elongation

COREMaterialDensityThickness

ALLOWABLE LAMINATE STRESSIn-Plane & ShearMembrane Effects

BULKHEAD SPACING

LONGITUDINAL SPACING

Consider end conditions ofpanel at bulkhead and

stiffener attachment points

Optimize transverse andlongitudinal spacing

based on strength andlayout requirements

CONSTRUCTIONSolid or SandwichOne-Off or Production Consider life-cycle

requirements of the vesselto determine expected

wave encounter in termsof height and frequency

DETERMINE PANEL SIZEAspect RatiosDimensions

INITIAL MATERIAL SELECTIONReinforcementResinCore

ALLOWABLE DEFLECTIONOutfitting ConsiderationsMaterial Strain Limits

Consider Dynamicversus

Static MaterialProperties

BOTTOMLAMINATE

DEVELOP DESIGN PRESSUREHull GeometryVessel SpeedIn-Service ConditionsDesign Criteria

Page 50: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 50

O4COMPOSITESMARINE COMPOSITESDevelop Laminate Schedule

Forces Perpendicular to PanelSurface due to Hydrostatic Pressure

and Wave Slamming Loads

Typical Laminate Designation

Page 51: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 51

O4COMPOSITESMARINE COMPOSITESDesign Summary

• Composites offer the potential to “highly engineer” a structurewhen load paths are well defined

• Long-term experience with large, composite marine structures islimited to E-glass laminates

• In-plane loads dominate for ships - out-of-plane loads drive thedesign of boats

• Sophisticated design tools for composite structures have beendeveloped for the aerospace industry but are immature for large,marine structures

Page 52: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 52

O4COMPOSITESMARINE COMPOSITES

Session 2 - Manufacturing Processes(3:00 - 3:45)

• Manufacturing Concepts

• Process Descriptions

• Joining Technologies

• Facilities

Page 53: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 53

O4COMPOSITESMARINE COMPOSITESUS Navy Processing Goals

Naval Surface Warfare Center, Carderock DivisionMarine Composites Branch, Code 655

Page 54: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 54

O4COMPOSITESMARINE COMPOSITES

Fabrication• Non-autoclave, inexpensive tooling,

low voids, high fiber content,scaleable

• Vacuum Assisted Resin Transfer Molding (VARTM)

• SCRIMP• Recirculation Molding• Low Temp Prepreg• UV Cure Resins

Materials• E-glass, S2-glass, carbon• Vinyl-ester, polyester, phenolic• Woven roving, heavy fabrics,

stitched uni, mat• Balsa, foam

Dr. Gene Camponeschi, NSWCCD

Sandwich Panel Being Fabricated byNorthrop Grumman Ship Systems

Using the SCRIMP Method

NSWCCD Approach forBuilding Superstructures

Page 55: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 55

O4COMPOSITESMARINE COMPOSITES

One-Off Construction

with WoodBatten Frame

ProductionConstructionfrom FemaleMolds

PanelConstructionwith SecondaryBonds

Manufacturing Concepts

Page 56: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 56

O4COMPOSITESMARINE COMPOSITES

Production Female MoldsThe process of creating a three-dimensional hull shape generated by adesigner on paper into a full-scale solidform that can be reproduced is called“Mold Making”

Mold - Tool used to reproduce parts

Plug - Copy of part used to produce mold

Female Mold - Concave form used toproduce convex shape

Male Mold - Mold that resembles final part.

Release Agent - A compound applied to themold that allows a cured part to be removed

Plug

Mold on Plug

FinishedSurfaces

Page 57: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 57

O4COMPOSITESMARINE COMPOSITESCNC Cut Plugs Improve Plug Fabrication

Vectorworks CNC Milling Machine

CAD to CNC opens newpossibilities in boat design

and engineering

Page 58: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 58

O4COMPOSITESMARINE COMPOSITESLarge Female Molds

Two Part Female Mold Large Female Mold with Stiffeners

Page 59: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 59

O4COMPOSITESMARINE COMPOSITES

Bulkhead

DeckAdhesive

Interior Corner Detail

Process developed under MARITECH BAA 94-44

Modular Topside Construction

Page 60: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 60

O4COMPOSITESMARINE COMPOSITESHull Construction using Modular Panels

ModularPanel Secondary

Bond

Visby Class Corvette , Captain Thomas Engevall, US Naval Institute Proceedings, March 1999

Modular hull construction with panels results ingreater control over panel quality

Overall hull girder strength is dependent upon thequality of secondary bonds

Page 61: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 61

O4COMPOSITESMARINE COMPOSITES

Manufacturing Concept Summary

• Monolithic hull construction from a large mold currently haspractical limits around 65 meters

• Monolithic construction results in the strongest hull girderstrength resulting from continuous reinforcement along the lengthof the vessel

• Modular construction with panels affords greater QA/QC potentialat the component level but places a premium on assembly andjoining technology

• Modular construction is attractive for topside structure thatrequires very flat surfaces and is not subject to “global” loads

Page 62: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 62

O4COMPOSITESMARINE COMPOSITESManufacturing Processes

• Chopper Gun Technology

• Hand Layup of Rolled Goods

• Sandwich Construction

• Vacuum Bagging Techniques

• Closed Molding– Infusion Methods– RTM

• Prepreg Construction

• Preform Technology

Page 63: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 63

O4COMPOSITESMARINE COMPOSITESChopper Gun Technology

Roving Chopper

Resin and catalyst nozzles

Cutting wheel with blades

Roving Chute

Feed wheelOptional Inserts

Optional Inserts

Roving guideTensioning Wheel

Page 64: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 64

O4COMPOSITESMARINE COMPOSITESHand Lay-Up

Workers Laminate Side of Large Hull

Workers Consolidate Reinforcements fromImpregnator

Page 65: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 65

O4COMPOSITESMARINE COMPOSITESImpregnator-Assisted Open Molding

Schematic of Impregnator Impregnator on Overhead Gantryfor Open Molding of Large Hulls

at Westport Shipyard

Page 66: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 66

O4COMPOSITESMARINE COMPOSITES

Sandwich Construction

Typical Sandwich Construction Details

Sandwich construction requires addedattention to areas of stress concentration

Page 67: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 67

O4COMPOSITESMARINE COMPOSITES

Sandwich Construction Installation Goals

• Establish a consistent bondline (thickness of bedding compoundor resin-rich chopped strand mat between core and skins),

• Eliminate voids in the bondline and the core,

• Ensure that bedding material co-cures with resin used to primethe core,

• Use plain sheets with bleeder holes instead of kerfed sheets where possible,

• Build a test panel to ensure that proper materials and process variables are being used, and

• Limit the exposure time of the core to wet resin and bedding compound.

Page 68: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 68

O4COMPOSITESMARINE COMPOSITESVacuum Bagging

Vacuum BagSealant Tape

Vacuum Valve(Through BagConnection)

Quick Disconnect

Vacuum Bagging FilmHose

Breather/Bleeder

Release Film

Peel Ply

MoldRelease

PressureSensitive Tape

Illustration courtesy of AIRTECH

Laminate

Page 69: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 69

O4COMPOSITESMARINE COMPOSITESInfusion Methods

Manufacturing composite parts by “Infusion” methods implies that resinis transported by vacuum to dry reinforcement in a closed-moldprocess. Configuration of molds and methods for transporting resindistinguish each individual process. Some advantages that all infusionmethods have over open mold hand lay-up are:

• Improved part consistency as wet-out is not dependent on theskill of the laminator,

• Better work environment because resin isn’t being handleddirectly

• Reduced hazardous air pollutants (HAPs) in the form of styrene

• Ability to achieve higher fiber content laminates

Page 70: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 70

O4COMPOSITESMARINE COMPOSITESSurface Infusion

SCRIMP™ is a patented surface infusion process that uses avacuum bag that is placed over the dry lay-up and sealed to the tool.The part is then placed under vacuum and resin is introduced intothe part via a resin inlet port and distributed through the laminate viaa flow medium and series of channels, saturating the part.

Schematic of the Patented SCRIMPTM Surface Infusion Method

A Deck being Infusedby the SCRIMPTM Method

Page 71: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 71

O4COMPOSITESMARINE COMPOSITESInterlaminar Infusion

Interlaminar infusion introduces the resin at the center of the laminatestack, instead of the surface. As a result, the infusion media becomespart of the finished product.

Boat Hull BeingFabricated Using

the InterlaminarInfusion Method

Page 72: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 72

O4COMPOSITESMARINE COMPOSITES

Resin Transfer Molding (RTM)

Resin Transfer Molding (RTM) uses high pressure to introduce resininto two-sided molds. The RTM process can be highly automated forquick cycle times and to handle the bulky tooling associated with theprocess.

RTM molds are typically bulky in nature to handle the relatively highpressures associated with this process. Steel or aluminum materialsare usually used to produce molds that are designed for multiplecycles without maintenance. The molds usually incorporatealignment pins or some sort of location method to assure the toolsself locate in the proper position every time. The molds are typicallyclamped together using hydraulic presses or bars and clamps. Dueto the high costs associated with the tooling, this process is typicallyreserved for high volume parts.

Page 73: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 73

O4COMPOSITESMARINE COMPOSITESPrepreg Construction

Prepreg Material Placedin Mold

Prepreg Material ConsolidatedPrior to Cure

Page 74: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 74

O4COMPOSITESMARINE COMPOSITESPreform Technology

A preform is an assembly of dry reinforcementheld together some way in a form that closelyresembles the final geometry. In the case ofpreforms used for boat stiffeners, the fiber isheld in place by an expanded foam core.

Page 75: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 75

O4COMPOSITESMARINE COMPOSITESManufacturing Methods Summary

• Long-term experience with composite hull structures in the 20 - 50meter size range is based on hand lay-up construction methods

• Infusion methods have demonstrated the ability to produce lowcost, high quality composite naval structures

• Aerospace manufacturing methods, such as prepreg technology,are not suitable for large marine structures because of materialprocessing requirements

• All composite processing methods are highly dependent uponskill of the worker

Page 76: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 76

O4COMPOSITESMARINE COMPOSITESJoining of Composite Panels

Page 77: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 77

O4COMPOSITESMARINE COMPOSITESAdhesively Bonded Joints

Structural adhesives, such as methacrylate and epoxy aregaining wider acceptance in the boat building industry for thefollowing reasons:

• Little or no surface preparation required beyond cleansurface

• Bonds are more durable than structural putties.

• Product dispensing equipment makes handling easier

• Labor savings can offset higher material cost (as compared to structural putties mixed in the shop)

Page 78: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 78

O4COMPOSITESMARINE COMPOSITESHull-to-Deck JointsThere are about as many specific ways to create an effective hull-to-deckjoint as there are builders. Whether adhesive or fiberglass is used tocreate the watertight joint, some basic principles should be kept in mind:

• The effectiveness of the joint will be proportional to the width of themating surface area so care should be exercised when trimming hull and deck flanges

• Adhere to prescribed flange and tabbing laminate schedule

• Building good joints in tight corners is difficult - use structural putties

• Flat mating surfaces will create a consistent bondline

• Some adhesives do not require sanding of mating surfaces. However, mating surface should always be clean regardless of bonding method

Page 79: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 79

O4COMPOSITESMARINE COMPOSITESJoining Composites to Metals

Page 80: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 80

O4COMPOSITESMARINE COMPOSITES

Joining Technology Summary

• In-plane strength of secondary bonds can never match theprimary laminate

• Automation techniques not as mature as metalconstruction

• Surface preparation, laminating environmental conditionsand worker skill significantly influence the strength ofcomposite material structural joints

Page 81: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 81

O4COMPOSITESMARINE COMPOSITES

Typical Composite Ship Construction Facility

Hull Assembly Building

Materials Storage

TradeShops

Outfitting

Hull Assembly BuildingRepresents Major ShipyardCapital Investment:

• Facility must supportmultiple hulls -10,000 m2 minimum

• Atmosphericemissions control tomeet local standardsrequired

• Environmentallycontrolled facilityrequired, includingHVAC, centralvacuum and firesuppression

Page 82: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 82

O4COMPOSITESMARINE COMPOSITESTypical Composite Boat Construction Facility

Page 83: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 83

O4COMPOSITESMARINE COMPOSITES

10 meters

Steel Vessels Composite Vessels

Appr

oxim

ate

Num

ber o

f Shi

pyar

d Fa

cilit

ies

Wor

ldw

ide

10

100

1000

100 meters 300 meters

Notional Worldwide NavalComposite Construction Capability

Page 84: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 84

O4COMPOSITESMARINE COMPOSITESFacilities Summary

• Laminating must be done in an environmentally controlled facility,including HVAC, central vacuum and fire suppression

• Infrastructure shipyard improvements may also include:

Raw material storage areaHAZMAT containment areaAcetone reclamation areaQA/Test Facility

• Composite construction facilities must be segregated from steelshipbuilding operations due to contamination and fire hazards

Page 85: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 85

O4COMPOSITESMARINE COMPOSITES

Break: (3:45 - 4:00)

Page 86: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 86

O4COMPOSITESMARINE COMPOSITES

Military Applications of Composites (4:00 - 4:30)

• Primary Hull Structure• SOCOM Maritime Platforms• Boats & Minehunters

• Superstructure

• Foils and Appendages• Surface Ships• Submarines

• Shipboard Components

Session 3

Page 87: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 87

O4COMPOSITESMARINE COMPOSITES

11- Meter RIBSOCOM Platforms

Length: 36 feetSpeed: 45 knots+

Displacement: 18,500 pounds (full load)Number in Inventory: 72

Builder: United States Marine, New Orleans, LAYears Manufactured: 1998 - present

Resin System: Vinyl EsterFiber System: E-glass & Kevlar

Core: Linear & Cross-Linked PVCManufacturing Process: Hand Layup, vacuum assist

Page 88: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 88

O4COMPOSITESMARINE COMPOSITES

Light Patrol Boat (PBL)SOCOM Platforms

Length: 25 feetSpeed: 30 knots+

Displacement: 6,500 poundsBuilder: Boston Whaler

Resin System: polyesterFiber System: E-glassCore (if used): urethane

Manufacturing Process: Hand layup, injected core

Page 89: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 89

O4COMPOSITESMARINE COMPOSITES

River Patrol Boat (PBR)SOCOM Platforms

Length: 32 feetSpeed: 30 knots +

Displacement: 17,500 poundsNumber in Inventory: 24

Builder: United Boatbuilders, Bellingham, WAYears Manufactured: 500 built starting in 1966

Resin System: polyesterFiber System: E-glassCore (if used): none

Manufacturing Process: Hand layup

Page 90: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 90

O4COMPOSITESMARINE COMPOSITES

Swimmer Delivery VehicleSOCOM Platforms

Length: 22 feetSpeed: 6 knotsBuilder: Composites by Columbia Research Corporation, Panama City, FL

Resin System: Vinyl esterFiber System: E-glassCore (if used): PVC

Manufacturing Process: Hand layup with vacuum assist for cores

Page 91: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 91

O4COMPOSITESMARINE COMPOSITES

Advanced Swimmer Delivery SystemSOCOM Platforms

Northrop Grumman’s 65-footAdvanced SEAL Delivery System

Length: 65 feetSpeed: 8 knots+

Displacement: 110,000 poundsNumber in Inventory: 1

Builder: Composites by Goodrich, Jacksonville, FLYears Manufactured: 2001

Resin System: Vinyl ester, rubber toughened for noseFiber System: E-glass with some carbon (carbon being phased out)

Manufacturing Process: VARTM and prepreg for nose

Page 92: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 92

O4COMPOSITESMARINE COMPOSITES

BoatsPrimary Structure

Members ofInshore

Boat UnitSeventeen

(IBU 17)Patrol theWaters of

ApraHarbor,

Guam

At sea Aboard USS BlueRidge (LCC 19) Sailors

Practice Deployment of Ship’sSmall Boats

Page 93: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 93

O4COMPOSITESMARINE COMPOSITESPrimary Structure

OSPREY Class Minehunter

Page 94: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 94

O4COMPOSITESMARINE COMPOSITESSuperstructure

Helicopter Hanger for DDG 51 Flt IIA

Composite Helicopter Hanger for DDG 51 Flight IIA Destroyer Built at Northrop Grumman Ship Systems’ Gulfport Facility

Scheduled to be Installed on DDG 100

Page 95: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 95

O4COMPOSITESMARINE COMPOSITES

Arrangement of GRP DeckhouseProposed for the SSTDP SealiftShip [Scott Bartlett, NSWC]

French LA FAYETTEClass Frigate ShowingArea Built with Balsa-Cored Composites[DCN Lorient, France]

Superstructure

Page 96: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 96

O4COMPOSITESMARINE COMPOSITES

Forward Director RoomBuilt by Northrop

Grumman’s El SegundoFacility as Technology

Demonstrator for DDG 51under ManTech Funding

DDG 51 Forward Director RoomSuperstructure

Page 97: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 97

O4COMPOSITESMARINE COMPOSITES

Surface ShipsFoils & Appendages

Composite MCM Rudder Built by StructuralComposites Shown During Shock Trials

Composite Rudder under Developmentfor Naval Surface Combatants

Page 98: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 98

O4COMPOSITESMARINE COMPOSITES

SubmarinesFoils & Appendages

AdvancedCompositeSailEnvisionedfor VirginiaClassSubmarines(top left) and1/4-ScalePrototypeBuilt bySeemannComposites(bottom left)

Composite Submarine BowDome Produced by

Goodrich Composites

Page 99: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 99

O4COMPOSITESMARINE COMPOSITES

Structural Machinery Functional Topside Superstructure Piping Shafting OverwrapsMasts Pumps Life Rails/LinesStacks Valves HandrailsFoundations Heat Exchangers Bunks/LockersDoors Strainers Tables/WorktopsHatches Ventilation Ducts InsulationLiferails Fans, Blowers PartitionsStanchions Weather Intakes Seachest StrainersFairings Propulsion Shafts Deck GratingBulkheads Tanks Stair TreadsPropellers Gear Cases Grid GuardsControl Surfaces Diesel Engines Showers/UrinalsTanks Electrical Enclosures Wash BasinsLadders Motor Housings Water ClosetsGratings Condenser Shells Mast Stays/Lines

Proposed Shipboard Applications for Composites

Page 100: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 100

O4COMPOSITESMARINE COMPOSITES

Bulkheads, Nonstructural

Priority Medium

Opportunity Opportunity to reduce cost and weight whileimproving fire resistance

TechnicalIssues

Fire, cost, supportability

Previous Work Currently use Nomex/phenolic sandwich

Return onInvestment

Medium

Webcore Hybrid Fabric-Web/Strut-Web

Core with Pre-AttachedFabric Proposed for Navy

SBIR Door Project

Page 101: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 101

O4COMPOSITESMARINE COMPOSITES

CHT Systems

Priority High

Opportunity Eliminate severe corrosion and makemaintenance easier

TechnicalIssues

Fire; integrate with existing system elements

Previous Work Navy has fielded prototype compositesystems. The U.S. Navy is now specifyingGRP (fiberglass) piping and ladders for useinside the CHT tank, as this material holdsup extremely well in the sewageenvironment.

Return onInvestment

Medium

U.S. Navy Type III Marine SanitationDevice [US Navy ShipboardEnvironmental Information

Clearinghouse]

Page 102: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 102

O4COMPOSITESMARINE COMPOSITES

Deck Grating

Priority High

Opportunity Eliminate corrosion and related maintenanceand safety issues

TechnicalIssues

Fire and strength

Previous Work ERM-7 has fielded composite grating on 4ships; numerous unauthorized replacementsin the fleet.

NAVSEA Drwg 803-6983499, GRP DeckGrating specifies MODAR resin – partsexpected to be in supply system late FY 03

Return onInvestment

High

Composite Deck Grating onFFG-58 USS Samuel B. Roberts

Page 103: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 103

O4COMPOSITESMARINE COMPOSITES

Electrical Enclosures

Priority High

Opportunity Reduce corrosion and related maintenance

TechnicalIssues

Fire and impact resistance

Previous Work ERM-7 is in the process of certifying ULTEM2300 electrical enclosures

Return onInvestment

High

Typical Corrosion-Related Failure(above) and ULTEM 2300 Box

Molded by Glenair (below)

Page 104: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 104

O4COMPOSITESMARINE COMPOSITES

Fairings

Priority High

Opportunity Metal rope guards difficult to replaceunderwater

TechnicalIssues

Fastener interface

Previous Work Composite propulsion shaft rope guardsinstalled on Aircraft Carriers showing:

• Less than ½ the cost and weight oforiginal Cu-Ni

• Bolt-on vs. weld-on• Easy waterborne removal/install gives full

access to stave bearings & zincs

Return onInvestment

High

Installed CompositeFairwaters (NAVSEA 05M3)

Page 105: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 105

O4COMPOSITESMARINE COMPOSITES

Fans & Blowers

Priority High

Opportunity Reduced corrosion, easier to maintain &quieter

TechnicalIssues

Fire, operability and strength

Previous Work NAVSEA PMS 400D32 is pursuingcomposite fans via SBIR & ManTechprograms

Return onInvestment

High

Typical Axial Fan

Page 106: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 106

O4COMPOSITESMARINE COMPOSITES

Foundations

Priority High

Opportunity Severe corrosion on saltwater pumpfoundations is major maintenance issue andcontributes to machinery vibration; potentialto make machinery "quieter"

TechnicalIssues

Fire and shock

Previous Work Brunswick Defense built a filament-woundfoundation that was tested at NSWCCD

Return onInvestment

Medium

Filament Wound MachineryFoundation by Brunswick Defense

Page 107: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 107

O4COMPOSITESMARINE COMPOSITES

Helicopter Hanger Doors

Priority High

Opportunity Reduced corrosion maintenance andmachinery maintenance from less weight

TechnicalIssues

Strength and fire resistance

Previous Work Seemann Composites and BIW havedeveloped a composite helicopter door forDDG 51 Flt IIA. A composite helicopterhanger is scheduled to be installed on DDG-100.

Return onInvestment

Medium

Composite Helicopter Hanger First ArticleDoor (above) and Operational Test Jig

(below) [Seemann Composites]

Page 108: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 108

O4COMPOSITESMARINE COMPOSITES

Louvers

Priority High

Opportunity Reduce maintenance and improve stealth

TechnicalIssues

Cost, certification and durability

Previous Work Composite louvers developed for the DDG51 class destroyers

Return onInvestment

High

Radar Absorbing Composite LouverDeveloped for the

DDG 51 Class Destroyers

Page 109: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 109

O4COMPOSITESMARINE COMPOSITES

Masts

Priority Medium

Opportunity Improve equipment supportability

TechnicalIssues

Cost

Previous Work AEM/S on USS Radford and LPD-17

Return onInvestment

Low

Advanced Enclosed Mast Systemfor LPD 17 Class Ships

Page 110: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 110

O4COMPOSITESMARINE COMPOSITES

Piping

Priority High

Opportunity Eliminate corrosion related maintenance:reduce weight & vibration

TechnicalIssues

Cost and fire

Previous Work Numerous offshore installations and Navyprototypes waiting congressional plus-up

Return onInvestment

High

Ameron’s Bondstrand® 2000USN MIL-P-24608 Pipe Assembly Weighs 3.6 pounds

Compared to 6.8 pounds for CuNi

FIBERBOND® Pipe Shown to Withstand2000ºF Fires [EDO Specialty Plastics]

Page 111: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 111

O4COMPOSITESMARINE COMPOSITES

Plenums

Priority High

Opportunity Eliminate severe corrosion and associatedmaintenance

TechnicalIssues

Cost and fire

Previous Work Plastic turning vanes have been fielded on alimited basis

Return onInvestment

HighProposed FFG Composite Plenum for1180 CFM Nat Supply Aux Mchry Rm #3, Helo Hgr #2, 1-278-2-Q

Page 112: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 112

O4COMPOSITESMARINE COMPOSITES

Propellers

Priority Low

Opportunity Potential to make propellers quieter

TechnicalIssues

Strength and cost

Previous Work Existing systems for large yachts and R&Dwork on underwater propulsors

Return onInvestment

Low

The Contur® Propeller withExchangeable Composite Blades

Offered by AIR Fertigung-Technologie GmbH, Germany

Page 113: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 113

O4COMPOSITESMARINE COMPOSITES

Propulsion Shafting

Priority Medium

Opportunity Reduce vibration, weight and corrosionmaintenance

TechnicalIssues

Interface to metal couplings and cost

Previous Work Commercially available for high speed craft,NSWC Annapolis prototype work on AOE &subs

Return onInvestment

Medium

33 inch Diameter Filament WoundSection of Propulsion Shafting

Developed by DTRC, Annapolis forTesting to Meet AOE-ClassPerformance Requirements

[George Wilhelmi]

Page 114: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 114

O4COMPOSITESMARINE COMPOSITES

Pump Internals

Priority High

Opportunity Increase mean time between failure andreduce time to repair

TechnicalIssues

Standardization of U.S. Navy pumppopulation

Previous Work ERM-7 has fielded composite pumpinternals on 19 ships

Return onInvestment

High

Navy Shock-Qualified CompositePump Internals Built by Flowserve

Page 115: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 115

O4COMPOSITESMARINE COMPOSITES

Pumps

Priority High

Opportunity Reduce corrosion, much quicker to repairand quieter

TechnicalIssues

Cost and standardization of U.S. Navy pumppopulation

Previous Work ERM-7 has funded production of 1 sizepump, ManTech effort pending

Return onInvestment

High

Navy Shock-Qualified CompositePump Built by Flowserve and Installed

as Part of the Navy’sSMARTSHIP Program

Page 116: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 116

O4COMPOSITESMARINE COMPOSITES

Saltwater Piping

Priority High

Opportunity Potential to reduce corrosion, fouling andvibration problems

TechnicalIssues

Fire & certification

Previous Work Many offshore installations and proposedU.S. Navy use pending congressional plus-up

Return onInvestment

High Composite Pipe Installedin Severe Saltwater ShipEnvironment (Ameron®)

Page 117: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 117

O4COMPOSITESMARINE COMPOSITES

Seachest Strainers

Priority High

Opportunity Reduce corrosion and integrate antifoulingagent

TechnicalIssues

Integrate effective, environmentally-friendlyantifouling

Previous Work PMS 400F funding pilot program

Return onInvestment

High

Fouled SeachestStrainer (top) Cutout

(middle) andPrototype

Composite Strainer(bottom)

Page 118: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 118

O4COMPOSITESMARINE COMPOSITES

Topside Superstructure

Priority Medium

Opportunity Potential for in-situ repair of chronicaluminum deckhouse corrosion areas

TechnicalIssues

Fire and bond to aluminum

Previous Work Numerous prototype systems developedincluding MARITECH, Helo Hanger andManTech projects

Return onInvestment

Low

MARITECH CompositeSuperstructure Project Built by

Structural Composites and Ingallsusing Adhesive Technology

Page 119: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 119

O4COMPOSITESMARINE COMPOSITES

Valves

Priority High

Opportunity Potential to extend service life, andsignificantly reduce maintenance andadverse mission impacts of corrosion-pronemetal components by using compositematerials. Potential to eliminate hydroblastcleaning of CHT system valves

TechnicalIssues

Shock qualification and fire

Previous Work Composite valves have passed shock test(NAVSEA drwg 803-6983491) and installedon 6 ships. The Capital Investment forLabor program plans on a major carrier CHTsystem installation.

Return onInvestment

High

Composite Ball-ValveFamily Developed by

NSWCCD

Page 120: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 120

O4COMPOSITESMARINE COMPOSITES

Vent Screens

Priority High

Opportunity Eliminate corrosion related maintenance andimprove operability

TechnicalIssues

Fire

Previous Work ERM-7 has fielded composite vent screenson 13 ships. NAVSEA drwg 803-6983500,Vent Screen, GRP Installation and Detailswill lead to MODAR screens in the supplysystem by the end of FY 03.

Return onInvestment

High

Example of VentScreen Fielded by

ERM-7

Page 121: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 121

O4COMPOSITESMARINE COMPOSITES

Ventilation Ducting

Priority High

Opportunity Eliminate corrosion related maintenance;improve ship air quality and improve shipavailability

TechnicalIssues

Cost

Previous Work NSWCCD and ManTech have fieldedprototype systems

Return onInvestment

High

Prototype Composite VentilationDuct System Built by Boeing and

Structural Composites Installed on theUSS Samuel B. Roberts, FFG-58

Page 122: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 122

O4COMPOSITESMARINE COMPOSITESNaval Composites Application Summary

• U.S. Navy Focused on Vacuum Assisted Resin TransferMolding (VARTM) and other Closed Mold Methods toEnsure Environmentally-Compliant, High-Quality Parts

• Major Drivers Towards the use of Composites on NavyShips are: Corrosion Avoidance, Reduced Weight; Sensor Integration; and Increased Stealth

• Fire Performance Remains the Largest Obstacle, Although Cost is Increasingly Being Considered

• Procurement Process and Retrofit Opportunities RemainDifficult to Navigate - Supplier Partnerships Necessary

Page 123: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 123

O4COMPOSITESMARINE COMPOSITES

Performance of Marine CompositeStructures In-Service (4:30 - 5:00)

• Inspection Methods

• Sources & Types of Damage

• Repair Methods

• Future Developments• Manufacturing• Shock Mitigation

Session 4

Page 124: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 124

O4COMPOSITESMARINE COMPOSITESInspection of Marine Composite Structures

• Visual Inspection is Still the Primary Method forDetecting Failures

• Failures in Cored Construction can be Detectedby “Tap Testing” or “Weight Gain”

• Minor Surface Damage may not Necessarily Affect Performance of the Platform

• Boat Units Should Develop an Inspection Regimen that is Platform Specific

Page 125: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 125

O4COMPOSITESMARINE COMPOSITES

Examples of Gel Coat Cracking

Cracks influencedby surroundinglaminate

Radial CrackPattern

Parallel CrackPattern

Crack caused byhole or other stressconcentration

Typical Failures Found in Composite BoatsMost failures are from:

• Inadequate design

• Improper selection of materials

• Poor workmanship

Most common failures:

• Gel coat cracking

• Core separation from skin insandwich construction

• Blisters on underwater portionof hull

Page 126: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 126

O4COMPOSITESMARINE COMPOSITES

DeckLoading

HullTorsion

HullTorsion

PeelStress

PeelStress

SideShell

Loading

HullBendingMoment

Hull-to-Deck Joint Stresses

Page 127: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 127

O4COMPOSITESMARINE COMPOSITES

CompartmentFlooding

Loads

LoadingTransferredFrom Deck

Hydrostatic, Slamming and

Blocking Loads

PeelStress

Shear Stresses

StressConcentrations

Bulkhead Attachment Stresses

Page 128: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 128

O4COMPOSITESMARINE COMPOSITES

HullBendingMoment

StressConcentrations

Stiffener Stresses

Page 129: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 129

O4COMPOSITESMARINE COMPOSITES

FlexuralLoading

Tension andCompression

StressConcentrations

Shear Stresses

Sandwich-to-Solid Transition Stresses

Page 130: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 130

O4COMPOSITESMARINE COMPOSITES

Tension and

Compression

Stress

Concentrations

Secondary Bonded Joint Stress

Page 131: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 131

O4COMPOSITESMARINE COMPOSITES

Types of Failures in Bolted Joints

Page 132: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 132

O4COMPOSITESMARINE COMPOSITES

•Bulkhead

•Deck

•Tape

•Adhesive

Adhesively Bonded Joint Stress

Page 133: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 133

O4COMPOSITESMARINE COMPOSITESDeck Hardware Stresses

Page 134: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 134

O4COMPOSITESMARINE COMPOSITES

WaterIntrusion

OverturningMoment

HydrostaticForce

ShearStress

StressConcentrations

Through-Hull Penetration Stress

Page 135: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 135

O4COMPOSITESMARINE COMPOSITESChine & Spray Strake Stress

Page 136: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 136

O4COMPOSITESMARINE COMPOSITESNondestructive Evaluation of Composite Ship Structures

Bar-Cohen, Nondestructive Evaluation (NDE) of Fiberglass Marine Structures, US Coast Guard report CG-D-02-91

0% 10% 20% 30% 40% 50% 60% 70%

Tap Testing

Ultrasonics

FokkerBondtester

Bondascope 2100

MIA 2500

Radiography

Thermography

Dielectric Constant

Effectiveness of Various Potential NDE Methods

Defects Considered:• Impact Damage• Voids• Dry Fibers• Through Cracks• Delamination• Uncured Resin• Excessive Core Filling• Gap Between Stiffener and Web• Sheared Stiffener

Page 137: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 137

O4COMPOSITESMARINE COMPOSITES

• Damage from In-Service Loads• In-Water Operational Loads• Trailering, Hauling and Blocking Loads

• Fatigue Loads• Wave Encounter• Machinery Induced

• Impact with Foreign Objects

• Fire

• Environmental Effects• Water Absorption• UV and Temperature Degradation

Sources of Marine Composite Damage

Page 138: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 138

O4COMPOSITESMARINE COMPOSITESStatic vs. Dynamic Damage Tolerance

Page 139: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 139

O4COMPOSITESMARINE COMPOSITESImpact Scenarios & Structural Evaluation

Schematic Diagram of Dynamic PanelTesting Pressure Table [Reichard]

Instron’s Dynatup®8100 Series DropWeight Impact TestSystem Can HandleImpact Energies upto 20,500 ft-lbs andImpact Velocities upto 22 ft/s

Wave Impact(left) and ShipImpact (right)

Page 140: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 140

O4COMPOSITESMARINE COMPOSITES

Fire Performance Issues

Flame SpreadThe rate that flame travels along the surface

Fire ResistanceThe ability of a boundary to contain a fire

Time-to-IgnitionTime required before a combustible material ignites

Heat Release RateThe heat release of a material is measures theamount of fuel that a combustible material contributes to a fire

Structural IntegrityHull, deck and bulkheads must support design loadsduring and after a fire

Composite Panels being Tested to ISO 9705 as per the International Maritime Organization

Page 141: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 141

O4COMPOSITESMARINE COMPOSITESIntermediate-Scale Fire Testing

Lighting of Burner to Start ModifiedISO 9705 Room Corner Test

at VTEC Laboratories

Schematic of ISO 9705 Room CornerTest to Determine Flame Spread and

Smoke Generation

Page 142: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 142

O4COMPOSITESMARINE COMPOSITES

Full-Scale Fire Testing

Test Arrangement for Burn ThroughResistance of 10 x 10 - foot Panel

Full-Scale Fire Test forHelicopter Hanger Project

with Fire Protection Around Doorfor Fire Test Only

Page 143: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 143

O4COMPOSITESMARINE COMPOSITES

Blistering and Water Absorption

Layer A = Paint or gel coatLayer B = interlayerLayer C = laminate

Measured/Predicted Material“Knockdown” Strength basedon Moisture Uptake (Springer)

Page 144: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 144

O4COMPOSITESMARINE COMPOSITES

Elevated In-Service Temperature

Surface Temperaturesto 80 degrees C

Page 145: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 145

O4COMPOSITESMARINE COMPOSITESDamage Assessment

Damages can be found either by visual inspection, probing, orhammer sounding of the structure. Damage can be found fromindicators such as the following:

• Cracked or chipped paint of abrasion of the surface.• Distortion of a structure or support member.• Unusual build-up or presence of moisture, oil, or rust.• Structure that appears blistered or bubbled and feels soft

to the touch.• Surface and penetrating cracks, open fractures, and

exposed fibers.• Gouges.• Debonding of joints.

Page 146: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 146

O4COMPOSITESMARINE COMPOSITESDamage Repair

Typical Composite MaterialRepair Techniques

Laminate Peeler usedto Repair SevereBlister Damage

Page 147: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 147

O4COMPOSITESMARINE COMPOSITES

• In-plane properties are always degraded for repaired compositestructures

• 20:1 scarf repairs are more effective than repairs made involvingless area

• Special skills, materials and environmental controls required foreffective repairs

• Aerospace level repair methods not envisioned for marine structures

• Single-skin, E-glass laminates are easier to repair than carbonfiber and sandwich constructions

Marine Composite Repair Summary

Page 148: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 148

O4COMPOSITESMARINE COMPOSITESFuture Manufacturing Methods

Advanced Interlaminar Infusion

• Thicker Laminates

• Center Out Process Advantage

• Embedded LO/EMI

• Damping Layers– Noise– Vibration– Shock

• Damage Tolerance

Page 149: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 149

O4COMPOSITESMARINE COMPOSITESFuture Manufacturing Methods

Infusion Challenges

• Tool Loading

• Resin Technology– Cure on Demand (COD)

• Inclusion of Framing– Preforms

• Preform Laminates

• Kit Cut Laminates

• Bag System

Page 150: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 150

O4COMPOSITESMARINE COMPOSITESFuture Manufacturing Methods

• Infusion Bag is Sprayed in Place

• Inclusion of Preform Frames and Resin Feeder System

• Bag Becomes Interior Surface

Spray-Bag Process

• ADVANTAGES– Reduced Cost– Elimination of Interior Gel Coat– Process Risk Reduction– Reduction in Expendables– Ship Applications Would use Bag as Fire Protection System

Page 151: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 151

O4COMPOSITESMARINE COMPOSITESComposite Structure for Shock Mitigation

Schematic of CoupledHydroelastic Impact Modelwith Variable Impact Velocityby Vorus et al

Wave Impact

Hull-to-DeckConnection

Personnel Reaction Force

Page 152: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 152

O4COMPOSITESMARINE COMPOSITESSummary and Conclusions

• Composite structures can be highly “engineered”

• Structural integrity is dependent upon worker skill

• The US continues to lead the world in the developmentof marine composite fabrication technologies

• Emerging manufacturing technologies will permit “environmentally compliant” fabrication of platforms

• Future maritime platforms can improve shock mitigationand durability using a combination of compositestructural design and process development

Page 153: ACMA Composites 2004, rev A - Eric Greene Associatesericgreeneassociates.com/images/ACMA_Composites_2004_Course.pdf · NAVSEA 0900-LP-097-4010, December 1976. page 19 MARINE COMPOSITES

page 153

O4COMPOSITESMARINE COMPOSITES

Acknowledgments

This Composites Workshop was gearedspecifically to the needs of the US MarineManufacturer. The Workshop wasdeveloped by Eric Greene Associates,Inc. with support from the US Navy andthe American Composites ManufacturersAssociation (ACMA). Special thanks goto Mary Richman, CCT of the ACMA.