Achieving the Multiple Description Rate-Distortion Region ...junchen/CISS05_lattice.pdf · Gaussian...

21
Achieving the Multiple Description Rate-Distortion Region with Lattice Quantization Jun Chen, Chao Tian, Toby Berger, Sheila Hemami ECE, Cornell University Ithaca, NY CISS March 16-18, 2005

Transcript of Achieving the Multiple Description Rate-Distortion Region ...junchen/CISS05_lattice.pdf · Gaussian...

Page 1: Achieving the Multiple Description Rate-Distortion Region ...junchen/CISS05_lattice.pdf · Gaussian MD Rate-Distortion Region Let U1 = X+T0 +T1; U2 = X+T0 +T2; where (T1;T2), T0,

Achieving the Multiple Description

Rate-Distortion Region with Lattice

Quantization

Jun Chen, Chao Tian, Toby Berger, Sheila Hemami

ECE, Cornell University

Ithaca, NY

CISS March 16-18, 2005

Page 2: Achieving the Multiple Description Rate-Distortion Region ...junchen/CISS05_lattice.pdf · Gaussian MD Rate-Distortion Region Let U1 = X+T0 +T1; U2 = X+T0 +T2; where (T1;T2), T0,

Outline

• Practical Multiple Description Schemes.

• Successive Quantization and Quantization Splitting.

• Gaussian Multiple Description Rate-Distortion Region.

• Gram-Schmidt Orthogonalization.

• Simulate GS Orthogonalization by Sequential Quantization.

• Conclusion.

1

Page 3: Achieving the Multiple Description Rate-Distortion Region ...junchen/CISS05_lattice.pdf · Gaussian MD Rate-Distortion Region Let U1 = X+T0 +T1; U2 = X+T0 +T2; where (T1;T2), T0,

Practical Multiple Description Schemes

• MD Scalar/Vector Quantization: Vaishampayan et al.

¦ Index Assignment ¦ Lattice/Sublattice

• Entropy-Coded Dithered Lattice Quantizers (ECDQs): Frank-

Dayan & Zamir 02.

¦ Amenable to Analysis

• Correlating Transforms: Orchard et al. 97, Pradhan & Ram-

chandran 00, Goyal & Kovacevic 01.

¦ Vector Sources

2

Page 4: Achieving the Multiple Description Rate-Distortion Region ...junchen/CISS05_lattice.pdf · Gaussian MD Rate-Distortion Region Let U1 = X+T0 +T1; U2 = X+T0 +T2; where (T1;T2), T0,

EGC* Region

Ri ≥ I(X;Ui), i = 1,2,

R1+R2 ≥ I(X;U1) + I(X;U2) + I(U1;U2|X).

PSfrag replacements

R1

R2

V1

V2

EGC* Region

3

Page 5: Achieving the Multiple Description Rate-Distortion Region ...junchen/CISS05_lattice.pdf · Gaussian MD Rate-Distortion Region Let U1 = X+T0 +T1; U2 = X+T0 +T2; where (T1;T2), T0,

Successive Quantization

PSfrag replacements

R1

R2

V1

V2

EGC* Region

• Dominant Face: R1+R2 = I(X;U1)+ I(X;U2)+ I(U1;U2|X).

• V1: R1 = I(X;U1), R2 = I(X, U1;U2).

V2: R1 = I(X, U2;U1), R2 = I(X;U2).

4

Page 6: Achieving the Multiple Description Rate-Distortion Region ...junchen/CISS05_lattice.pdf · Gaussian MD Rate-Distortion Region Let U1 = X+T0 +T1; U2 = X+T0 +T2; where (T1;T2), T0,

Quantization Splitting

• For any rate pair (R1, R2) on the dominant face, there exists

a random variable U ′2 with (X, U1)→ U2 → U ′

2 such that

R1 = I(X, U ′2;U1),

R2 = I(X;U ′2) + I(X, U1;U2|U

′2).

Quantization Order: U ′2 → U1 → U2.

¦ If U ′2 is independent of U2, then

R1 = I(X;U1), R2 = I(X,U1;U2),

which are the coordinates of V1.

¦ If U ′2 = U2, then

R1 = I(X,U2;U1), R2 = I(X,U2),

which are the coordinates of V2.

5

Page 7: Achieving the Multiple Description Rate-Distortion Region ...junchen/CISS05_lattice.pdf · Gaussian MD Rate-Distortion Region Let U1 = X+T0 +T1; U2 = X+T0 +T2; where (T1;T2), T0,

Gaussian MD Rate-Distortion Region

Let

U1 = X + T0 + T1,

U2 = X + T0 + T2,

where (T1, T2), T0, X are zero-mean, jointly Gaussian and independent, and E(T1T2) =−σT1σT2. Let Xi = E(X|Ui) = αiUi (i = 1,2), and X3 = E(X|U1, U2) = β1U1 + β2U2. SetE(X − Xi)

2 = Di, i = 1,2,3, then

σ2T0

=D3σ

2X

σ2X−D3

,

σ2Ti

=Diσ

2X

σ2X−Di

−D3σ

2X

σ2X−D3

, i = 1,2.

With these σ2Ti

(i = 0,1,2), it is straightforward to verify that

I(X;Ui) =1

2log

σ2X

Di

i = 1,2,

I(X;U1) + I(X;U2) + I(U1;U2|X)

=1

2log

σ2X

D3

+1

2log

(σ2X−D3)

2

(σ2X−D3)2 −

[√(σ2

X−D1)(σ2

X−D2)−

√(D1 −D3)(D2 −D3)

]2 .

6

Page 8: Achieving the Multiple Description Rate-Distortion Region ...junchen/CISS05_lattice.pdf · Gaussian MD Rate-Distortion Region Let U1 = X+T0 +T1; U2 = X+T0 +T2; where (T1;T2), T0,

The Correlation of Quantization Errors

We may view U1 and U2 as two different quantization of X.

U1 = X + T0+ T1,

U2 = X + T0+ T2,

E[(U1 −X)(U2 −X)] = E[(T0+ T1)(T0+ T2)]

= σ2T0− σT1

σT2

=D3σ

2X

σ2X −D3

√(D1σ

2X

σ2X −D1

−D3σ

2X

σ2X −D3

)(D2σ

2X

σ2X −D2

−D3σ

2X

σ2X −D3

)

6= 0.

It is hard to design two quantizers with quantization errors cor-

related in a desired manner.

7

Page 9: Achieving the Multiple Description Rate-Distortion Region ...junchen/CISS05_lattice.pdf · Gaussian MD Rate-Distortion Region Let U1 = X+T0 +T1; U2 = X+T0 +T2; where (T1;T2), T0,

Successive Quantization and GS Orthogonalization

• GS Orthogonalization on (X, U1, U2).

B0 = X,

B1 = U1 − E(U1|X) = U1 −X,

B2 = U2 − E(U1|X, U1) = U2 − a1X − a2U1.

• Successive Quantization for V1.

R1 = I(X;U1) = I(X;X +B1),

R2 = I(X, U1;U2) = I(E(U2|X, U1);U2)

= I(a1X + a2U1; a1X + a2U1+B2).

8

Page 10: Achieving the Multiple Description Rate-Distortion Region ...junchen/CISS05_lattice.pdf · Gaussian MD Rate-Distortion Region Let U1 = X+T0 +T1; U2 = X+T0 +T2; where (T1;T2), T0,

Graph Representation of Successive Quantization

PSfrag replacements

X

X1

X2

X3

U1

U2

B1

B2a1

a2

α1

α2

β1

β2

+

+

+ +

×

×

×

× ×

×

9

Page 11: Achieving the Multiple Description Rate-Distortion Region ...junchen/CISS05_lattice.pdf · Gaussian MD Rate-Distortion Region Let U1 = X+T0 +T1; U2 = X+T0 +T2; where (T1;T2), T0,

Quantization Splitting and GS Orthogonalization

• U ′2 = U2+ T3.

• GS Orthogonalization on (X, U ′2, U1).

B0 = X,

B1 = U ′1 − E(U ′

2|X) = U ′2 −X,

B2 = U1 − E(U1|X, U ′2) = U1 − b1X − b2U

′2.

• Quantization Splitting.

R1 = I(X, U ′2;U1) = I(E(U1|X, U ′

2);U1)

= I(b1X + b2U′2; b1X + b2U

′2+ B2),

R2 = I(X;U ′2) + I(X, U1;U2|U

′2)

= I(X;X + B1) + I(X, U1;U2|U′2).

10

Page 12: Achieving the Multiple Description Rate-Distortion Region ...junchen/CISS05_lattice.pdf · Gaussian MD Rate-Distortion Region Let U1 = X+T0 +T1; U2 = X+T0 +T2; where (T1;T2), T0,

GS Orthogonalization on (U ′2, X, U1, U2)

B0 = U ′2,

B1 = X − E(X|B0) = X − b3B0,

B2 = U1 − E(U1|B0)− E(U1|B1) = U1 − b4B0 − b5B1,

B3 = U2 − E(U2|B0)− E(U2|B1)− E(U2|B2)

= U2 − b6B0 − b7B1 − b8B2.

I(X, U1;U2|U′2)

= I(b3B0+B1, b4B0+ b5B1+B2; b6B0+ b7B1+ b8B2+B3|B0)

= I(B1, b5B1+B2; b7B1+ b8B2+B3)

= I(b7B1+ b8B2; b7B1+ b8B2+B3).

Note: b7B1+b8B2 = (b7−b5b8)X+b8U1+(b3b5b8−b3b7−b4b8)U′2.

11

Page 13: Achieving the Multiple Description Rate-Distortion Region ...junchen/CISS05_lattice.pdf · Gaussian MD Rate-Distortion Region Let U1 = X+T0 +T1; U2 = X+T0 +T2; where (T1;T2), T0,

Graph Representation of Quantization Splitting

PSfrag replacements

X

X1

X2

X3

U1

U2

U′2

B1

B2

B3

b∗1

b∗2

b∗3

b∗4

b∗5

b∗6

××

×

× ×

×

×

×

×

×

++

+

++

+

+

α1

α2

β1

β2

12

Page 14: Achieving the Multiple Description Rate-Distortion Region ...junchen/CISS05_lattice.pdf · Gaussian MD Rate-Distortion Region Let U1 = X+T0 +T1; U2 = X+T0 +T2; where (T1;T2), T0,

Entropy-Coded Dithered Lattice QuantizationPSfrag replacements

X

X

Y

Z −Z

Qn(·) E DR

N = −Z

ECDQ

• Qn(X+ Z)− Z ∼ X+N.• R = H(Qn(X+ Z)|Z) = I(X;Y) = h(Y)− h(N).

13

Page 15: Achieving the Multiple Description Rate-Distortion Region ...junchen/CISS05_lattice.pdf · Gaussian MD Rate-Distortion Region Let U1 = X+T0 +T1; U2 = X+T0 +T2; where (T1;T2), T0,

Simulate GS Orthogonalization by Sequential(Dithered) Quantization

I0 = X1,

I1 = X2 − a1X1,

I2 = X3 − a2X1 − a3X2,...

Let Zi have the same variance as Ii, i = 1,2, · · · . Construct thefollowing sequential (dithered) quantization system.

X1 = X1,

X2 = Q1(a1X1+ Z1)− Z1,

X3 = Q2(a2X1+ a3X2+ Z2)− Z2,...

(X1, X2, · · · , ) and (X1, X2, · · · ) have the same covariance matrix.

14

Page 16: Achieving the Multiple Description Rate-Distortion Region ...junchen/CISS05_lattice.pdf · Gaussian MD Rate-Distortion Region Let U1 = X+T0 +T1; U2 = X+T0 +T2; where (T1;T2), T0,

Successive Quantization — Additive Noise

PSfrag replacements

X

X1

X2

X3

U1

U2

B1

B2a1

a2

α1

α2

β1

β2

+

+

+ +

×

×

×

× ×

×

15

Page 17: Achieving the Multiple Description Rate-Distortion Region ...junchen/CISS05_lattice.pdf · Gaussian MD Rate-Distortion Region Let U1 = X+T0 +T1; U2 = X+T0 +T2; where (T1;T2), T0,

Successive Quantization — ECDQ

PSfrag replacements

X

X1

X2

X3

W1

W2

ECDQ1

ECDQ2

a1

a2

α1

α2

β1

β2

+

+

×

×

×

×

××

16

Page 18: Achieving the Multiple Description Rate-Distortion Region ...junchen/CISS05_lattice.pdf · Gaussian MD Rate-Distortion Region Let U1 = X+T0 +T1; U2 = X+T0 +T2; where (T1;T2), T0,

Quantization Splitting — Additive Noise

PSfrag replacements

X

X1

X2

X3

U1

U2

U′2

B1

B2

B3

b∗1

b∗2

b∗3

b∗4

b∗5

b∗6

××

×

× ×

×

×

×

×

×

++

+

++

+

+

α1

α2

β1

β2

17

Page 19: Achieving the Multiple Description Rate-Distortion Region ...junchen/CISS05_lattice.pdf · Gaussian MD Rate-Distortion Region Let U1 = X+T0 +T1; U2 = X+T0 +T2; where (T1;T2), T0,

Quantization Splitting — ECDQ

PSfrag replacements

X

X1

X2

X3

W1

W2

W′2ECDQ1

ECDQ2

ECDQ3

b∗1

b∗2

b∗3

b∗4

b∗5

b∗6

××

×

× ×

×

×

×

×

×

+

+

+

+

α1

α2

β1

β2

18

Page 20: Achieving the Multiple Description Rate-Distortion Region ...junchen/CISS05_lattice.pdf · Gaussian MD Rate-Distortion Region Let U1 = X+T0 +T1; U2 = X+T0 +T2; where (T1;T2), T0,

Property and Performance

• Achieve the whole Gaussian MD rate-distortion region as the

dimension of the (optimal) lattice quantizers becomes large.

• For general smooth sources, the performance no worse than

that for an i.i.d. Gaussian source with the same variance.

• Asymptotically optimal at high resolution for general smooth

sources.

• Universal in the sense that it only needs the information of the

first and second order statistics of the source.

• For the scalar case, the central and side distortion product is

2.596 dB away from the information theoretic distortion product;

2.5 dB if timesharing of vertices is used.

19

Page 21: Achieving the Multiple Description Rate-Distortion Region ...junchen/CISS05_lattice.pdf · Gaussian MD Rate-Distortion Region Let U1 = X+T0 +T1; U2 = X+T0 +T2; where (T1;T2), T0,

Conclusion

• A Framework for Practical MD Quantization Systems

¦ Successive Quantization (Splitting) → Ordering

¦ GS Orthogonalization → Sufficient Statistics

¦ ECDQ → Practical Implementation

• Generalization to the n-Channel Case (Venkataramani et al.

03, Pradhan et al. 04).

¦ Successive Quantization (Splitting) ¦ Contra-polymatroid ¦ Duality

• MMSE Estimation and Lattice Coding/Quantization (Erez &

Zamir 04). Shannon meets Wiener (Forney 03,04).

20