According to Newton

23
According to Newton's first law... An object at rest will remain at rest unless acted on by an unbalanced force. An object in motion continues in motion with the same speed and in the same direction unless acted upon by an unbalanced force. This law is often called "the law of inertia". What does this mean? This means that there is a natural tendency of objects to keep on doing what they're doing. All objects resist changes in their state of motion. In the absence of an unbalanced force, an object in motion will maintain this According to Newton's third law... For every action there is an equal and opposite re-action. What does this mean? This means that for every force there is a reaction force that is equal in size, but opposite in direction. That is to say that whenever an object pushes another object it gets pushed back in the opposite direction equally hard. Let's study how a rocket works to understand Newton's Third Law. The rocket's action is to push down on the ground with the force of its powerful engines, and the reaction is that the ground pushes the rocket

Transcript of According to Newton

Page 1: According to Newton

According to Newton's first law...

An object at rest will remain at rest unless acted on by an unbalanced force. An object in motion continues in motion with the same speed and in

the same direction unless acted upon by an unbalanced force.

This law is often called "the law of inertia".

What does this mean?

This means that there is a natural tendency of

objects to keep on doing what they're doing. All objects resist changes in their state of

motion. In the absence of an unbalanced force, an object in motion will maintain

this state of motion.

Let's study the "skater" to understand this a little better.

According to Newton's third law...

For every action there is an equal and opposite re-action.

What does this mean? 

This means that for every force there is a reaction force that is equal in size, but

opposite in direction. That is to say that whenever an

object pushes another object it gets pushed back in the opposite direction

equally hard. 

Let's study how a rocket works to understand

Newton's Third Law. 

The rocket's action is to push down on the ground with the force of its powerful

engines, and the reaction is that the ground pushes the rocket upwards with

an equal force.

Page 2: According to Newton

What is the motion in this picture? 

What is the unbalanced force in this picture? 

What happened to the skater in this picture? 

This law is the same reason why you should always wear your seatbelt.

Now that you understand Newton's First Law of Motion,

let's go on to his Second Law of Motion. 

Home || Next

 

Page 3: According to Newton

According to Newton's second law...

Acceleration is produced when a force acts on a mass. The greater the mass (of the object being

accelerated) the greater the amount of force needed (to accelerate the object).

What does this mean?

Everyone unconsiously knows the Second Law. Everyone knows that heavier objects require more force to move the

same distance as lighter objects.

   

   

However, the Second Law gives us an exact relationship between force, mass,

and acceleration. It can be expressed as a mathematical equation: 

Page 4: According to Newton

 or 

FORCE = MASS times ACCELERATION

This is an example of how Newton's Second Law works:

Mike's car, which weighs 1,000 kg, is out of gas. Mike is trying to push the car to a gas station, and he makes the car go 0.05

m/s/s. Using Newton's Second Law, you can compute how much force Mike is

applying to the car.

 

Answer = 50 newtons

Page 6: According to Newton

The motion of an aircraft through the air can be explained and described by physical principals discovered over 300 years ago by Sir Isaac Newton. Newton worked in many areas of mathematics and physics. He developed the theories of gravitation in 1666, when he was only 23 years old. Some twenty years later, in 1686, he presented his three laws of motion in the "Principia Mathematica Philosophiae Naturalis." The laws are shown above, and the application of these laws to aerodynamics are given on separate slides.

Newton's first law states that every object will remain at rest or in uniform motion in a straight line unless compelled to change its state by the action of an external force. This is normally taken as the definition of inertia. The key point here is that if there is no net force acting on an object (if all the external forces cancel each other out) then the object will maintain a constant velocity. If that velocity is zero, then the object remains at rest. If an external force is applied, the velocity will change because of the force.

The second law explains how the velocity of an object changes when it is subjected to an external force. The law defines a force to be equal to change in momentum (mass times velocity) per change in time. Newton also developed the calculus of mathematics, and the "changes" expressed in the second law are most accurately defined in differential forms. (Calculus can also be used to determine the velocity and location variations experienced by an object subjected to an external force.) For an object with a constant mass m, the second law states that the force F is the product of an object's mass and its acceleration a:

F = m * a

For an external applied force, the change in velocity depends on the mass of the object. A force will cause a change in velocity; and likewise, a change in velocity will generate a force. The equation works both ways.

The third law states that for every action (force) in nature there is an equal and opposite reaction. In other words, if

Page 7: According to Newton

object A exerts a force on object B, then object B also exerts an equal force on object A. Notice that the forces are exerted on different objects. The third law can be used to explain the generation of lift by a wing and the production of thrust by a jet engine.

You can view a short movie of "Orville and Wilbur Wright" explaining how Newton's Laws of Motion described the flight of their aircraft. The movie file can be saved to your computer and viewed as a Podcast on your podcast player.

Activities:

Guided Tours

Newton's Laws of Motion:

Navigation ..

Beginner's Guide Home Page

 

+ Inspector General Hotline+ Equal Employment Opportunity Data Posted Pursuant to the No Fear Act+ Budgets, Strategic Plans and Accountability Reports+ Freedom of Information Act+ The President's Management Agenda+ NASA Privacy Statement, Disclaimer,and Accessibility Certification

Newton's First Law

In a previous chapter of study, the variety of ways by which motion can be described (words, graphs, diagrams, numbers, etc.) was discussed. In this unit (Newton's Laws of Motion), the ways in which motion can be explained will be discussed. Isaac Newton (a 17th century scientist) put forth a variety of laws which explain why objects move (or don't move) as they do. These three laws have become known as Newton's three laws of motion. The focus of Lesson 1 is Newton's first law of motion - sometimes referred to as the law of inertia.

Newton's first law of motion is often stated as

Page 8: According to Newton

An object at rest tends to stay at rest and an object in motion tends to stay in motion with the same speed and in the same direction unless acted upon by an unbalanced force.

 

There are two parts to this statement - one which predicts the behavior of stationary objects and the other which predicts the behavior of moving objects. The two parts are summarized in the following diagram.

 

The behavior of all objects can be described by saying that objects tend to "keep on doing what they're doing" (unless acted upon by an unbalanced force). If at rest, they will continue in this same state of rest. If in motion with an eastward velocity of 5 m/s, they will continue in this same state of motion (5 m/s, East). If in motion with a leftward velocity of 2 m/s, they will continue in this same state of motion (2 m/s, left). The state of motion of an object is maintained as long as the object is not acted upon by an unbalanced force. All objects resist changes in their state of motion - they tend to "keep on doing what they're doing."

 

Suppose that you filled a baking dish to the rim with water and walked around an oval track making an attempt to complete a lap in the least amount of time. The water would have a tendency to spill from the container during specific locations on the track. In general the water spilled when:

the container was at rest and you attempted to move it the container was in motion and you attempted to stop it

the container was moving in one direction and you attempted to change its direction.

The water spills whenever the state of motion of the container is changed. The water resisted this change in its own state of motion. The water tended to "keep on doing what it was doing." The container was moved from rest to a high speed at the starting line; the water remained at rest and spilled onto the table. The container was stopped near the finish line; the water kept moving and spilled over container's leading edge. The container was forced to move in a different direction to make it around a curve; the water kept moving in the same direction

Page 9: According to Newton

and spilled over its edge. The behavior of the water during the lap around the track can be explained by Newton's first law of motion.

 

Everyday Applications of Newton's First Law

There are many applications of Newton's first law of motion. Consider some of your experiences in an automobile. Have you ever observed the behavior of coffee in a coffee cup filled to the rim while starting a car from rest or while bringing a car to rest from a state of motion? Coffee tends to "keep on doing what it is doing." When you accelerate a car from rest, the road provides an unbalanced force on the spinning wheels to push the car forward; yet the coffee (which was at rest) wants to stay at rest. While the car accelerates forward, the coffee remains in the same position; subsequently, the car accelerates out from under the coffee and the coffee spills in your lap. On the other hand, when braking from a state of motion the coffee continues forward with the same speed and in the same direction, ultimately hitting the windshield or the dash. Coffee in motion tends to stay in motion.

Have you ever experienced inertia (resisting changes in your state of motion) in an automobile while it is braking to a stop? The force of the road on the locked wheels provides the unbalanced force to change the car's state of motion, yet there is no unbalanced force to change your own state of motion. Thus, you continue in motion, sliding along the seat in forward motion. A person in motion tends to stay in motion with the same speed and in the same direction ... unless acted upon by the unbalanced force of a seat belt. Yes! Seat belts are used to provide safety for passengers whose motion is governed by Newton's laws. The seat belt provides the unbalanced force which brings you from a state of motion to a state of rest. Perhaps you could speculate what would occur when no seat belt is used.

 

 

 

There are many more applications of Newton's first law of motion. Several applications are listed below. Perhaps you could think about the law of inertia and provide explanations for each application.

Blood rushes from your head to your feet while quickly stopping when riding on a descending elevator.

The head of a hammer can be tightened onto the wooden handle by banging the bottom of the handle against a hard surface.

A brick is painlessly broken over the hand of a physics teacher by slamming it with a hammer. (CAUTION: do not attempt this at home!)

To dislodge ketchup from the bottom of a ketchup bottle, it is often turned upside down and thrusted downward at high speeds and then abruptly halted.

Page 10: According to Newton

Headrests are placed in cars to prevent whiplash injuries during rear-end collisions.

While riding a skateboard (or wagon or bicycle), you fly forward off the board when hitting a curb or rock or other object which abruptly halts the motion of the skateboard.

Try This At Home

Acquire a metal coat hanger for which you have permission to destroy. Pull the coat hanger apart. Using duct tape, attach two tennis balls to opposite ends of the coat hanger as shown in the diagram at the right. Bend the hanger so that there is a flat part which balances on the head of a person. The ends of the hanger with the tennis balls should hang low (below the balancing point). Place the hanger on your head and balance it. Then quickly spin in a circle. What do the tennis balls do?

Newton's Second Law

Newton's first law of motion predicts the behavior of objects for which all existing forces are balanced. The first law - sometimes referred to as the law of inertia - states that if the forces acting upon an object are balanced, then the acceleration of that object will be 0 m/s/s. Objects at equilibrium (the condition in which all forces balance) will not accelerate. According to Newton, an object will only accelerate if there is a net or unbalanced force acting upon it. The presence of an unbalanced force will accelerate an object - changing either its speed, its direction, or both its speed and direction.

Newton's second law of motion pertains to the behavior of objects for which all existing forces are not balanced. The second law states that the acceleration of an object is dependent upon two variables - the net force acting upon the object and the mass of the object. The acceleration of an object depends directly upon the net force acting upon the object, and inversely upon the mass of the object. As the force acting upon an object is increased, the acceleration of the object is increased. As the mass of an object is increased, the acceleration of the object is decreased.

Page 11: According to Newton

 

Newton's second law of motion can be formally stated as follows:

The acceleration of an object as produced by a net force is directly proportional to the magnitude of the net force, in the same direction as the net force, and inversely proportional to the mass of the object.

This verbal statement can be expressed in equation form as follows:

a = Fnet / m

The above equation is often rearranged to a more familiar form as shown below. The net force is equated to the product of the mass times the acceleration.

Fnet = m * a

In this entire discussion, the emphasis has been on the net force. The acceleration is directly proportional to the net force; the net force equals mass times acceleration; the acceleration in the same direction as the net force; an acceleration is produced by a net force. The NET FORCE. It is important to remember this distinction. Do not use the value of merely "any 'ole force" in the above equation. It is the net force which is related to acceleration. As discussed in an earlier lesson, the net force is the vector sum of all the forces. If all the individual forces acting upon an object are known, then the net force can be determined. If necessary, review this principle by returning to the practice questions in Lesson 2.

 

Consistent with the above equation, a unit of force is equal to a unit of mass times a unit of acceleration. By substituting standard metric units for force, mass, and acceleration into the above equation, the following unit equivalency can be written.

The definition of the standard metric unit of force is stated by the above equation. One Newton is defined as the amount of force required to give a 1-kg mass an acceleration of 1 m/s/s.

The Fnet = m • a equation is often used in algebraic problem-solving. The table below can be filled by substituting into the equation and solving for the unknown quantity. Try it yourself and then use the click on the buttons to view the answers.

Page 12: According to Newton

Net Force

(N)

Mass

(kg)

Acceleration

(m/s/s)

1. 10 2

2. 20 2

3. 20 4

4. 2 5

5. 10 10

The numerical information in the table above demonstrates some important qualitative relationships between force, mass, and acceleration. Comparing the values in rows 1 and 2, it can be seen that a doubling of the net force results in a doubling of the acceleration (if mass is held constant). Similarly, comparing the values in rows 2 and 4 demonstrates that a halving of the net force results in a halving of the acceleration (if mass is held constant). Acceleration is directly proportional to net force.

Furthermore, the qualitative relationship between mass and acceleration can be seen by a comparison of the numerical values in the above table. Observe from rows 2 and 3 that a doubling of the mass results in a halving of the acceleration (if force is held constant). And similarly, rows 4 and 5 show that a halving of the mass results in a doubling of the acceleration (if force is held constant). Acceleration is inversely proportional to mass.

The analysis of the table data illustrates that an equation such as Fnet = m*a can be a guide to thinking about how a variation in one quantity might effect another quantity. Whatever alteration is made of the net force, the same change will occur with the acceleration. Double, triple or quadruple the net force, and the acceleration will do the same. On the other hand, whatever alteration is made of the mass, the opposite or inverse change will occur with the acceleration. Double, triple or quadruple the mass, and the acceleration will be one-half, one-third or one-fourth its original value.

 

As stated above, the direction of the net force is in the same direction as the acceleration. Thus, if the direction of the acceleration is known, then the direction of the net force is also known. Consider the two oil drop diagrams below for an acceleration of a car. From the diagram, determine the direction of the net force which is acting upon the car. Then click the buttons to view the answers. (If necessary, review acceleration from the previous unit.)

ewton's Third Law

Page 13: According to Newton

A force is a push or a pull upon an object which results from its interaction with another object. Forces result from interactions! As discussed in Lesson 2, some forces result from contact interactions (normal, frictional, tensional, and applied forces are examples of contact forces) and other forces are the result of action-at-a-distance interactions (gravitational, electrical, and magnetic forces). According to Newton, whenever objects A and B interact with each other, they exert forces upon each other. When you sit in your chair, your body exerts a downward force on the chair and the chair exerts an upward force on your body. There are two forces resulting from this interaction - a force on the chair and a force on your body. These two forces are called action and reaction forces and are the subject of Newton's third law of motion. Formally stated, Newton's third law is:

For every action, there is an equal and opposite reaction.

The statement means that in every interaction, there is a pair of forces acting on the two interacting objects. The size of the forces on the first object equals the size of the force on the second object. The direction of the force on the first object is opposite to the direction of the force on the second object. Forces always come in pairs - equal and opposite action-reaction force pairs.

A variety of action-reaction force pairs are evident in nature. Consider the propulsion of a fish through the water. A fish uses its fins to push water backwards. But a push on the water will only serve to accelerate the water. Since forces result from mutual interactions, the water must also be pushing the fish forwards, propelling the fish through the water. The size of the force on the water equals the size of the force on the fish; the direction of the force on the water (backwards) is opposite the direction of the force on the fish (forwards). For every action, there is an equal (in size) and opposite (in direction) reaction force. Action-reaction force pairs make it possible for fish to swim.

Consider the flying motion of birds. A bird flies by use of its wings. The wings of a bird push air downwards. Since forces result from mutual interactions, the air must also be pushing the bird upwards. The size of the force on the air equals the size of the force on the bird; the direction of the force on the air (downwards) is opposite the direction of the force on the bird (upwards). For every action, there is an equal (in size) and opposite (in direction) reaction. Action-reaction force pairs make it possible for birds to fly.

Consider the motion of a car on the way to school. A car is equipped with wheels which spin backwards. As the wheels spin backwards, they grip the road and push the road backwards. Since forces result from mutual interactions, the road must also be pushing the wheels forward. The size of the force on the road equals the size of the force on the wheels (or car); the direction of the force on the road (backwards) is opposite the direction of the force on the wheels (forwards). For every action, there is an equal (in size) and opposite (in direction) reaction. Action-reaction force pairs make it possible for cars to move along a roadway surface.

 

Check Your Understanding

1. While driving down the road, a firefly strikes the windshield of a bus and makes a quite obvious mess in front of the face of the driver. This is a clear case

Page 14: According to Newton

of Newton's third law of motion. The firefly hit the bus and the bus hits the firefly. Which of the two forces is greater: the force on the firefly or the force on the bus?

 

 

 

2. For years, space travel was believed to be impossible because there was nothing which rockets could push off of in space in order to provide the propulsion necessary to accelerate. This inability of a rocket to provide propulsion is because ...

a. ... space is void of air so the rockets have nothing to push off of.

b. ... gravity is absent in space.

c. ... space is void of air and so there is no air resistance in space.

d. ... nonsense! Rockets do accelerate in space and have been able to do so for a long time.

 

 

 

3. Many people are familiar with the fact that a rifle recoils when fired. This recoil is the result of action-reaction force pairs. A gunpowder explosion creates hot gases which expand outward allowing the rifle to push forward on the bullet. Consistent with Newton's third law of motion, the bullet pushes backwards upon the rifle. The acceleration of the recoiling rifle is ...

a. greater than the acceleration of the bullet.

b. smaller than the acceleration of the bullet.

c. the same size as the acceleration of the bullet.

 

 

 

4. In the top picture (below), Kent Budgett is pulling upon a rope which is attached to a wall. In the bottom picture, the Kent is pulling upon a rope which is attached to an elephant. In each case, the force scale reads 500 Newtons. Kent is pulling ...

Page 15: According to Newton

a. with more force when the rope is attached to the wall.

b. with more force when the rope is attached to the elephant.

c. the same force in each case.

 Isaac Newton stated three laws of motion.

The first law deals with forces and changes in velocity. For just a moment, let us imagine that you can apply only one force to an object. That is, you could choose push the object to the right or you could choose to push it to the left, but not to the left and right at the same time, and also not up and to the right at the same time, and so on.

Under these conditions the first law says that if an object is not pushed or pulled upon, its velocity will naturally remain constant. This means that if an object is moving along, untouched by a force of any kind, it will continue to move along in a perfectly straight line at a constant speed.

This also means that if an object is standing still and is not contacted by any forces, it will continue to remain motionless. Actually, a motionless object is just a special case of an object that is maintaining constant velocity. Its velocity is constantly 0 m/s.

Page 16: According to Newton

Now, what about if there is more than one force on the object? You really can push an object, say, to the left and down at the same time, so, what happens then?

Under these conditions we must realize that a group of forces on an object adds up so that all the forces appear to the object as one force. This one force that is the sum of all the forces is called the net force. The word net in this context means total. It is this net force that may change the velocity of the object. Let us look at some examples.

Imagine that two forces act at the same time on an object. One is a very strong force to the left, and the other is a weaker force to the right. These two forces add up to one net force. Since the force to the left is stronger, the net force is to the left. This net force to the left will cause the velocity of the object to change. The object experiences this one net force as if this was the only force pushing it, although, actually, there are two separate forces present. Next let us see what happens when two forces act, but they are equal in strength.

Imagine that two forces, one up and one down, push on an object, and imagine that the two forces are the same size. These two forces add up as before, but this time one of them does not overpower the other. They cancel each other out. So, in this example the net force is zero. It is as though no forces were really acting on the object. Under these conditions the velocity of the object would not change. If it was moving in a straight line at constant speed before the two forces were applied, then it would continue to move in a straight line at constant speed after these two equal and opposite forces were applied. If it was standing still before the application of these forces, it would continue to stand still afterwards.

The net force is the total force. It could be the sum of two forces or more than two forces. If only one force acts upon an object, then this one force would be the net force. If the net force on an object is zero, then the object experiences no velocity change. If the net force on an object is not zero, then the object will show a change in velocity.

Lastly, this net force must be external to the object. The net force can not come from the object itself. You could not, for example, put on ice skates, stand on a frozen pond, push on your back by reaching around with your arms, and expect to get going. Although if someone else came up from behind and gave a you a shove, then your velocity would change.

But skaters do get going all by themselves, so, how does that happen? Well, that answer is in Newton's third law of motion.

Newton's first law of motion contains the same information as Galileo's explanation of inertia.

To see this law in action go to the following VRML 2.0 world.

Newton's First Law Demonstration

Page 17: According to Newton

You will find an object there upon which you can apply a force. You can apply only one force on the object at a time. The object's velocity will only change while this one force is being applied. The VRML world looks like this picture:

The object to be moved floats in the center of the world. There are six dark arrows touching it. Each arrow represents a force that can be activated upon the object. One arrow points in the positive x direction (to the right), another points in the positive y direction (upward), and so on. Click and hold down the mouse on one of the boxes in the foreground to activate the force that is described by the label on the box. The corresponding arrow on the object will turn white, and a force in its direction will be applied.

Notice that with no net force on the object, its velocity does not change. The only way to change the velocity is to apply a non-zero net force. If the object drifts away, either use your browser viewpoint options to get a better look or hit the Reset button. That button will bring the object back to its original position.

saac Newton's Second Law of MotionIsaac Newton's Laws of Motion Physics Contents Index Home

Newton's second law of motion explains how an object will change velocity if it is pushed or pulled upon.

Firstly, this law states that if you do place a force on an object, it will accelerate, i.e., change its velocity, and it will change its velocity in the direction of the force.

Page 18: According to Newton

Secondly, this acceleration is directly proportional to the force. For example, if you are pushing on an object, causing it to accelerate, and then you push, say, three times harder, the acceleration will be three times greater.

Thirdly, this acceleration is inversely proportional to the mass of the object. For example, if you are pushing equally on two objects, and one of the objects has five times more mass than the other, it will accelerate at one fifth the acceleration of the other.

Isaac Newton's Third Law of MotionIsaac Newton's Laws of Motion Physics Contents Index Home

The third law states that for every force there is an equal and opposite force. For example, if you push on a wall, it will push back on you as hard as you are pushing on it.