Acceleration and Entanglement: a Deteriorating...

36
A Acceleration and Entanglement: a Deteriorating Relationship R.B. Mann Phys. Rev. Lett. 95 120404 (2005) Phys. Rev. A74 032326 (2006) Phys. Rev. A79 042333 (2009) Phys. Rev. A80 02230 (2009) D. Ahn P. Alsing I. Fuentes-Schuller F. Haque B.L. Hu S Y Lin N. Menicucci D. Ostapchuk G. Salton T. Tessier V. Villalba

Transcript of Acceleration and Entanglement: a Deteriorating...

Page 1: Acceleration and Entanglement: a Deteriorating Relationshipncts.ncku.edu.tw/phys/qis/100528/files/100529RB_Mann.pdf · Local Operations and Classical Communication Separable state:

AAcceleration andEntanglement:

a Deteriorating Relationship

R.B. Mann

Phys. Rev. Lett. 95 120404 (2005)

Phys. Rev. A74 032326 (2006)

Phys. Rev. A79 042333 (2009)

Phys. Rev. A80 02230 (2009)

D. AhnP. Alsing

I. Fuentes-SchullerF. HaqueB.L. HuS Y Lin

N. MenicucciD. OstapchukG. SaltonT. TessierV. Villalba

Page 2: Acceleration and Entanglement: a Deteriorating Relationshipncts.ncku.edu.tw/phys/qis/100528/files/100529RB_Mann.pdf · Local Operations and Classical Communication Separable state:

ψ = α 0 + β 1

QQubitsTThe Simplest Quantum Systems

Photon Polarization

Linear

α 2 + β 2 = 1

Bloch Sphere

= α + β

Circular

Page 3: Acceleration and Entanglement: a Deteriorating Relationshipncts.ncku.edu.tw/phys/qis/100528/files/100529RB_Mann.pdf · Local Operations and Classical Communication Separable state:

EEntanglementAlice Bob

Image copyright © Anton Zeilinger, Institute of

Experimental Physics, University of Vienna.Resource for information tasks:

teleportation,cyptography, etc.

Page 4: Acceleration and Entanglement: a Deteriorating Relationshipncts.ncku.edu.tw/phys/qis/100528/files/100529RB_Mann.pdf · Local Operations and Classical Communication Separable state:

Local Operations andClassical Communication

Separable state:

φAB

= φ1

A ⊗ ψ2

B

Cannot be prepared by LOCC

Maximal correlations whenmeasured in any basis

Entangled state:Defined as non-separable

φAB

=1

20

1

A0

2

B + 11

A1

2

B( )

Describing Entanglement

Page 5: Acceleration and Entanglement: a Deteriorating Relationshipncts.ncku.edu.tw/phys/qis/100528/files/100529RB_Mann.pdf · Local Operations and Classical Communication Separable state:

Entangled state:

α 01

A0

2

B + β 11

A1

2

B ⇒ ρ =

α 20 0 αβ *

0 0 0 0

0 0 0 0

α *β 0 0 β 2

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

DDensity MatrixQuantum State ψ ⇒ ψ ψ ≡ ρ Density Matrix

Pure State: α 0 + β 1 ⇒ ρ =α 2 αβ *

α *β β 2

⎝⎜

⎠⎟

ψ A ψ = Tr ρA[ ]Expectation Value:

Tr ρ2⎡⎣ ⎤⎦ = 1

Tr ρ2⎡⎣ ⎤⎦ < 1Mixed State:

Page 6: Acceleration and Entanglement: a Deteriorating Relationshipncts.ncku.edu.tw/phys/qis/100528/files/100529RB_Mann.pdf · Local Operations and Classical Communication Separable state:

QQuantifying Entanglement

Entropy no longer quantifies entanglement….

Schmidt decomposition

For pure states:

φAB

= ω ij i 1

Aj

2

B( )ij

∑ φAB

= ωn n 1

An

2

B( )n

Measure of entanglement: von-Neumann entropy

ρAB = φ φ S ρAB( ) = 0S ρ( ) = −Tr ρ log2 ρ[ ]Reduce

ρA = −TrB ρAB[ ] S ρA( ) = S ρB( )

No analogous Schmidtdecomposition

Problem: mixed states

ρAB = ω ijkl i j k l( )ijkl∑

Page 7: Acceleration and Entanglement: a Deteriorating Relationshipncts.ncku.edu.tw/phys/qis/100528/files/100529RB_Mann.pdf · Local Operations and Classical Communication Separable state:

MMixed State Entanglement

Necessary separability condition:

The partial transpose of the density matrix haspositive eigenvalues if the state is separable.

Separable state:

Mutual information

Total correlations quantum + classical

I ρAB( ) = S ρA( ) + S ρB( ) − S ρAB( )

To determine separability is easy

To measure entanglement is not

ρAB = α ijρAi ⊗ ρB

j

i∑

Page 8: Acceleration and Entanglement: a Deteriorating Relationshipncts.ncku.edu.tw/phys/qis/100528/files/100529RB_Mann.pdf · Local Operations and Classical Communication Separable state:

Measuring Entanglement

Logarithmic negativity N ρ( ) = log2 ρT

ED ≤ EF ≤ N Upper bound on all

entanglement!

EF = limcopies → ∞

# of maximally entangled pairs

# of pure state copies created

Entanglementof Formation

ED = lim#states → ∞

# of non-maximally entangled states

# of maximally entangled states

Entanglementof Distillation

Page 9: Acceleration and Entanglement: a Deteriorating Relationshipncts.ncku.edu.tw/phys/qis/100528/files/100529RB_Mann.pdf · Local Operations and Classical Communication Separable state:

What happens if Bob moveswith respect to Alice?

RRelativistic Entanglement

Peres,Scudo and Terno

Alsing and Milburn

Gingrich and Adami

Pachos and Solano

Inertial Frames:• Entanglement constant between inertiallymoving parties• Some degrees of freedom can be transferredto others

Our motivation: Study entanglement in this setting

Alsing and Milburn, PRL 91 180404, (2003)Non-inertial frames: Teleportation with a uniformly accelerated partner• teleportation fidelity decreases as the acceleration grows• Indication of entanglement degradation.

Page 10: Acceleration and Entanglement: a Deteriorating Relationshipncts.ncku.edu.tw/phys/qis/100528/files/100529RB_Mann.pdf · Local Operations and Classical Communication Separable state:

BBosonic EEntanglement forUUniformly Accelerated Observers

Photon 1 Photon 2

Alice Bob

Photon 1

φAB

=1

20

1

A0

2

B + 11

A1

2

B( )

φAB

= ?

Photon 2

Fuentes-Schuller/Mann

Phys. Rev. Lett. 95:120404 (2005)

Rob

Page 11: Acceleration and Entanglement: a Deteriorating Relationshipncts.ncku.edu.tw/phys/qis/100528/files/100529RB_Mann.pdf · Local Operations and Classical Communication Separable state:

Minkowski space

ds2 = dt 2 − dr2

r > t

t = a−1eaξ sinh aη( )r = a−1eaξ cosh aη( )

r < − t

t = −a−1eaξ sinh aη( )r = −a−1eaξ cosh aη( )

The quantization of fields indifferent coordinates is different!

t = a−1 sinh aτ( )r = a−1 cosh aτ( )

Rindler space

ds2 = e2aξ dη2 − dξ 2( )

Page 12: Acceleration and Entanglement: a Deteriorating Relationshipncts.ncku.edu.tw/phys/qis/100528/files/100529RB_Mann.pdf · Local Operations and Classical Communication Separable state:

The acceleratedRob

Photon 2

Unruh effect!

Rob is causally disconnectedfrom region II

cosh r =1

1 − exp −2πΩ( )

Ω =ωca

02

B0

2

B =1

cosh rtanhn r

n= 0

∑ nIn

II

The inertial Bob

Page 13: Acceleration and Entanglement: a Deteriorating Relationshipncts.ncku.edu.tw/phys/qis/100528/files/100529RB_Mann.pdf · Local Operations and Classical Communication Separable state:

02

B =1

cosh rtanhn r

n= 0

∑ nIn

II

Trace over region II

12

B =1

cosh rtanhn r

n= 0

∑ n + 1 n + 1In

II

nm = nAm

I

Page 14: Acceleration and Entanglement: a Deteriorating Relationshipncts.ncku.edu.tw/phys/qis/100528/files/100529RB_Mann.pdf · Local Operations and Classical Communication Separable state:

Always entangled forfinite acceleration!

How much entanglement?

Logarithmic negativity vs.acceleration parameter r

Entanglement?Check eigenvalues of positive partial transpose

λ±n =

tanh2n r

4 cosh2 r

n

sinh2 r+ tanh2 r

⎛⎝⎜

⎞⎠⎟

± Zn

⎡⎣⎢

⎤⎦⎥

Zn =n

sinh2 r+ tanh2 r

⎛⎝⎜

⎞⎠⎟

2

+4

cosh2 r

λ−n < 0

Distillable entanglement decreases

as acceleration increases

Mutual information vs cosh(r)

IAR = S ρA( ) + S ρR( ) − S ρAR( )

N ρ( ) = log2 ρT

Page 15: Acceleration and Entanglement: a Deteriorating Relationshipncts.ncku.edu.tw/phys/qis/100528/files/100529RB_Mann.pdf · Local Operations and Classical Communication Separable state:

Where did the entanglement go?

Finite accelerationthe entanglement between Alice+Rob is degradedand entanglement with region II grows

Purestate: S ρARI , II( ) = 0

Entanglement between Alice+Rob in region IWith modes in region II

S ρARI( ) = S ρRII( )

Zero accelerationAlice+Bob are maximallyentangled and there is noentanglement with region II

S ρARI( ) = 0

Alice+Rob are disentangledand entanglement withregion II is maximal

Infinite acceleration

S ρARI( ) = 1

Page 16: Acceleration and Entanglement: a Deteriorating Relationshipncts.ncku.edu.tw/phys/qis/100528/files/100529RB_Mann.pdf · Local Operations and Classical Communication Separable state:

FFermionic EEntanglement forUUniformly Accelerated Observers

Electron 1 Electron 2

Alice Bob

Electron 1

ψAB

=1

20

1

A0

2

B + 11

A1

2

B( )

ψAB

= ?

Electron 2

Alsing/Mann/Fuentes-Schuller/Tessier

Phys. Rev. A74 032326 (2006)

Rob

Page 17: Acceleration and Entanglement: a Deteriorating Relationshipncts.ncku.edu.tw/phys/qis/100528/files/100529RB_Mann.pdf · Local Operations and Classical Communication Separable state:

The acceleratedRob

Electron 2

cosr =1

1 + exp −2πΩ( ) Ω =

ωca

02

B0

2

B = cosr 0I

0II

+ sin r 1I

1II

The inertial Bob

Fermionic vacuum!

N = log2 1 + cos2 r⎡⎣ ⎤⎦

Negativity

EF = −1 + sin r

2log2

1 + sin r

2⎡⎣⎢

⎤⎦⎥

−1 − sin r

2log2

1 − sin r

2⎡⎣⎢

⎤⎦⎥

Entanglementof Formation

Page 18: Acceleration and Entanglement: a Deteriorating Relationshipncts.ncku.edu.tw/phys/qis/100528/files/100529RB_Mann.pdf · Local Operations and Classical Communication Separable state:

� �

Alice and Rob-I

Alice and anti-Rob-II

Rob-I and anti-Rob-II

Page 19: Acceleration and Entanglement: a Deteriorating Relationshipncts.ncku.edu.tw/phys/qis/100528/files/100529RB_Mann.pdf · Local Operations and Classical Communication Separable state:

IInfinite Acceleration LimitBosons� Entanglement

� goes to zero

� Mutual information� goes to 1

� State� maximally entangled to

region II

The state is only

classically

correlated

The state always has

some quantum

correlation

Fermions� Entanglement

� goes to

� Mutual information� goes to 1

� State� maximally entangled to

region II

1 2

Page 20: Acceleration and Entanglement: a Deteriorating Relationshipncts.ncku.edu.tw/phys/qis/100528/files/100529RB_Mann.pdf · Local Operations and Classical Communication Separable state:

How Robust is thisDifference?

� Does the number of excited modes matter?� No for fermions -- entanglement degradation is

still limited for fermions

� Yes for bosons -- entanglement loss depends onthe number of modes occupied

� Does the surviving entanglement depend onthe choice of maximally entangled state?� No

� Does spin matter?� Yes, but only quantitatively -- entanglement

degradation is greater but still does not vanish inthe large acceleration limit

Leon/Martin-Martinez

Phys.Rev. A81 032320

Leon/Martin-Martinez

1003.3550

Leon/Martin-Martinez

Phys.Rev. A80 012314

Page 21: Acceleration and Entanglement: a Deteriorating Relationshipncts.ncku.edu.tw/phys/qis/100528/files/100529RB_Mann.pdf · Local Operations and Classical Communication Separable state:

NNon-Uniform Acceleration

II

I

Costa Rev.Bras.Fis. 17 (1987) 585

Percocca/Villalba CQG 9 (1992) 307

No Timelike

Killing Vector!

a T ,X0( ) =ae2aX0

e−2aT + e2aX0⎡⎣ ⎤⎦3/2

Page 22: Acceleration and Entanglement: a Deteriorating Relationshipncts.ncku.edu.tw/phys/qis/100528/files/100529RB_Mann.pdf · Local Operations and Classical Communication Separable state:

Electron 1 Electron 2

Alice Bob

Electron 1

ψAB

=1

20

1

A0

2

B + 11

A1

2

B( )

ψAB

= ?

Electron 2

Rob

Bob

Page 23: Acceleration and Entanglement: a Deteriorating Relationshipncts.ncku.edu.tw/phys/qis/100528/files/100529RB_Mann.pdf · Local Operations and Classical Communication Separable state:

Possible Scenario

Let Vic define +ve/-ve frequency on a constant time-slice

KG eqn

Separate variables and solve

Mann/Villalba

Phys. Rev. A80 02230 (2009)

T=const

ν = Kw

Page 24: Acceleration and Entanglement: a Deteriorating Relationshipncts.ncku.edu.tw/phys/qis/100528/files/100529RB_Mann.pdf · Local Operations and Classical Communication Separable state:

Photon 2

02

B

The inertial Bob

Bob --> Rob

0k 2

B = 1 − q2

qn

n= 0

∑ nk Ink II

q =e− πνcν +

* T0( ) − cν −* T0( )

cν + T0( ) + e− πνcν − T0( )ρ =

1 − q2

2q2n

n∑ ρn

ρn = 0n 0n + 1 − q2n + 1 0n 1 n + 1

+ 1 − q2n + 1 1 n + 1 0n + 1 − q

2( ) n + 1( ) 1 n + 1 1 n + 1

Page 25: Acceleration and Entanglement: a Deteriorating Relationshipncts.ncku.edu.tw/phys/qis/100528/files/100529RB_Mann.pdf · Local Operations and Classical Communication Separable state:

NK = 0.3, w = 1

K = 0.1, w = 1

K = 0.3, w = 5

K = 0.1, w = 5

N = log2

1 − q2

2+

q2n

41 − q

2( ) Znn= 0

∑⎛

⎝⎜

⎠⎟

Zn =n q

2

1 − q2

+ q2

⎝⎜⎜

⎠⎟⎟

2

+ 4 1 − q2( )

ν = Kw

I

K = 0.1, w = 1

K = 0.3, w = 1

K = 0.3, w = 5

K = 0.1, w = 5

Dn = 1 +n 1 − q

2( )q

2

⎝⎜⎜

⎠⎟⎟

log2 1 +n 1 − q

2( )q

2

⎝⎜⎜

⎠⎟⎟

− 1 + n + 1( ) 1 − q2( )( ) log2 1 + n + 1( ) 1 − q

2( )( )

I = 1 −1

2log2 q

2( ) +1 − q

2

2q

2nDn

n= 0

Page 26: Acceleration and Entanglement: a Deteriorating Relationshipncts.ncku.edu.tw/phys/qis/100528/files/100529RB_Mann.pdf · Local Operations and Classical Communication Separable state:

Generating EntanglementHan/Olson/Dowling

Phys. Rev. A78 022302 (2008)

Mann/Ostapchuk

Phys. Rev. A79 042333 (2009)

Measurements of an accelerated

observer generate entanglement!

0M + = N exp tan r( )ckI †dk

II †( )k

∏ 0k I

+0k II

0M − = N exp − tan r( )dkI †ck

II †( )k

∏ 0k I

−0k II

+

Minkowski particle vacuum

Minkowski antiparticle vacuum

Fermions

Project onto a single particle mode

k in region I

ψ + k( ) = PkI 0

M + = sin r + cosr ak†bk

†⎡⎣ ⎤⎦ 0M +

Bogoliubov tmf

M ++++++++++++++++++++++++++++++++++++++++++++++++++++++++

S = log2 csc2 r( ) + cos2 r log2 tan2 r( )Trace over antiparticle states:

Page 27: Acceleration and Entanglement: a Deteriorating Relationshipncts.ncku.edu.tw/phys/qis/100528/files/100529RB_Mann.pdf · Local Operations and Classical Communication Separable state:

Detector ResponsesCan entanglement be used to distinguish curvature effects

from Minkowski-space heating?

ΩHI τ( ) = η τ( )φ x τ( )( ) eiΩτ σ + + e− iΩτ σ −( )

detector

worldlinecoupling

�φ +

1

6Rφ = 0

Gibbons/Hawking

Phys. Rev. D15 2738 (1977)

A single detector can’t

distinguish these 2

possibilities

ρ = A 1 1 + 1 − A( ) 0 0

D+ x, ′x( ) = φ τ( )φ ′τ( ) = −T 2

4 sinh2 πT t − ′t − iε( )( )

A = dτ−∞

∫ d ′τ−∞

∫ η τ( )η ′τ( )e− iΩ τ − ′τ( )D+ x, ′x( )

Compare:

• Minkowski space at finite temperature T

• de Sitter space with expansion rate κ=2πT ds

2 = −dt 2 + d�xid

�x

ds2 = −dt 2 + e−2κ td

�xid

�x

What about

2 detectors?

Page 28: Acceleration and Entanglement: a Deteriorating Relationshipncts.ncku.edu.tw/phys/qis/100528/files/100529RB_Mann.pdf · Local Operations and Classical Communication Separable state:

Menicucci/Ver Steeg

Phys. Rev. D79 042007 (2009)

N = max X − A,0( )

X = −2 dτd ′τ′τ <τ

∫ η τ( )η ′τ( )e− iΩ τ + ′τ( )D+ x, ′x( )

amplitude detector clicks

amplitude for virtual particle exchange

Negativity

x = t + ′ty = t − ′t − iε

DMink+ x, ′x( ) = −

T

8πLcoth πT L − y( )( )⎡⎣

+ coth πT L − y( )( )⎤⎦

DdS+ x, ′x( ) = −

T

4π 2

sinh2 πTy( )π 2T 2

− e2πTxL2⎛⎝⎜

⎞⎠⎟

−1

Page 29: Acceleration and Entanglement: a Deteriorating Relationshipncts.ncku.edu.tw/phys/qis/100528/files/100529RB_Mann.pdf · Local Operations and Classical Communication Separable state:

Now compare 2 uniformly accelerated detectorsMann/Menicucci/Salton

Page 30: Acceleration and Entanglement: a Deteriorating Relationshipncts.ncku.edu.tw/phys/qis/100528/files/100529RB_Mann.pdf · Local Operations and Classical Communication Separable state:

������������ ����������������� ���� ������ ����������� ��������������� �

�������

��� ����

��������� �

Same acceleration

Page 31: Acceleration and Entanglement: a Deteriorating Relationshipncts.ncku.edu.tw/phys/qis/100528/files/100529RB_Mann.pdf · Local Operations and Classical Communication Separable state:

Opposite acceleration

same

acceleration

opposite

acceleration

Page 32: Acceleration and Entanglement: a Deteriorating Relationshipncts.ncku.edu.tw/phys/qis/100528/files/100529RB_Mann.pdf · Local Operations and Classical Communication Separable state:

Alice and Rob each have a detector that couples to a scalar field

Driven Damped Harmonic Oscillator

Frequency ΩDamping Coefficient ∼ λ2

0

Iterate over retarded mutual influences in powers of λ0

Compute Correlation Matrix V = RμRν = AB RμRν AB + 0 RμRν 0

detectors vacuumRμ = QA ,PA ,QB ,PB{ }

Σ = det VPT + i�2

M⎛⎝⎜

⎞⎠⎟

Entanglement

< 0

Hu/Haque/Lin/Mann/Ostapchuk

V PT = ΛVΛ

Λ =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

⎜⎜⎜⎜

⎟⎟⎟⎟

M =

0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0

⎜⎜⎜⎜

⎟⎟⎟⎟

Page 33: Acceleration and Entanglement: a Deteriorating Relationshipncts.ncku.edu.tw/phys/qis/100528/files/100529RB_Mann.pdf · Local Operations and Classical Communication Separable state:

Σ = det VPT + i

�2

M⎛⎝⎜

⎞⎠⎟

a = 1

Page 34: Acceleration and Entanglement: a Deteriorating Relationshipncts.ncku.edu.tw/phys/qis/100528/files/100529RB_Mann.pdf · Local Operations and Classical Communication Separable state:

Σ = det VPT + i

�2

M⎛⎝⎜

⎞⎠⎟

a = 0.1

Page 35: Acceleration and Entanglement: a Deteriorating Relationshipncts.ncku.edu.tw/phys/qis/100528/files/100529RB_Mann.pdf · Local Operations and Classical Communication Separable state:

Better Regulator

Σ = det VPT + i�2

M⎛⎝⎜

⎞⎠⎟

Page 36: Acceleration and Entanglement: a Deteriorating Relationshipncts.ncku.edu.tw/phys/qis/100528/files/100529RB_Mann.pdf · Local Operations and Classical Communication Separable state:

Summary� Entanglement is an observer/detector dependent

phenomenon

� As acceleration increases� Entanglement goes to

� zero (bosons)

� finite (fermions)

� Mutual information goes to unity

� Entanglement with region II gets larger

� As observer increases acceleration� Entanglement decreases with time

� Maximum change takes place when change inacceleration is maximal