Accelerating the Data-Driven Agriculture Revolution · Agriculture Revolution Colleen Josephson...

44
Accelerating the Data-Driven Agriculture Revolution Colleen Josephson ([email protected]) June 2019 1 Using Wireless Soil Moisture Sensors

Transcript of Accelerating the Data-Driven Agriculture Revolution · Agriculture Revolution Colleen Josephson...

Page 1: Accelerating the Data-Driven Agriculture Revolution · Agriculture Revolution Colleen Josephson (cajoseph@stanford.edu) June 2019 1 Using Wireless Soil Moisture Sensors. 2 Theewaterskloof

Accelerating the Data-Driven Agriculture Revolution

Colleen Josephson ([email protected])June 2019 1

Using Wireless Soil Moisture Sensors

Page 2: Accelerating the Data-Driven Agriculture Revolution · Agriculture Revolution Colleen Josephson (cajoseph@stanford.edu) June 2019 1 Using Wireless Soil Moisture Sensors. 2 Theewaterskloof

2

Theewaterskloof Dam in 2018near Cape Town, South Africa

Page 3: Accelerating the Data-Driven Agriculture Revolution · Agriculture Revolution Colleen Josephson (cajoseph@stanford.edu) June 2019 1 Using Wireless Soil Moisture Sensors. 2 Theewaterskloof

3

Page 4: Accelerating the Data-Driven Agriculture Revolution · Agriculture Revolution Colleen Josephson (cajoseph@stanford.edu) June 2019 1 Using Wireless Soil Moisture Sensors. 2 Theewaterskloof

Nearly 70% of fresh water is used to grow food...4

Page 5: Accelerating the Data-Driven Agriculture Revolution · Agriculture Revolution Colleen Josephson (cajoseph@stanford.edu) June 2019 1 Using Wireless Soil Moisture Sensors. 2 Theewaterskloof

5

And more than 80% in Africa and Asia!

Page 6: Accelerating the Data-Driven Agriculture Revolution · Agriculture Revolution Colleen Josephson (cajoseph@stanford.edu) June 2019 1 Using Wireless Soil Moisture Sensors. 2 Theewaterskloof

6

Projected to reach ~10 billion by 2050!

Page 7: Accelerating the Data-Driven Agriculture Revolution · Agriculture Revolution Colleen Josephson (cajoseph@stanford.edu) June 2019 1 Using Wireless Soil Moisture Sensors. 2 Theewaterskloof

How do we feed 10 billion people when we’re already using 70% of our water on 7 billion?

7

Page 8: Accelerating the Data-Driven Agriculture Revolution · Agriculture Revolution Colleen Josephson (cajoseph@stanford.edu) June 2019 1 Using Wireless Soil Moisture Sensors. 2 Theewaterskloof

Precision agricultureUsing data to make decisions about water, fertilization, etc.

8

20-50% water savings via soil moisture sensors!

Page 9: Accelerating the Data-Driven Agriculture Revolution · Agriculture Revolution Colleen Josephson (cajoseph@stanford.edu) June 2019 1 Using Wireless Soil Moisture Sensors. 2 Theewaterskloof

Why do <20% of US farms use moisture sensors?

9

Page 10: Accelerating the Data-Driven Agriculture Revolution · Agriculture Revolution Colleen Josephson (cajoseph@stanford.edu) June 2019 1 Using Wireless Soil Moisture Sensors. 2 Theewaterskloof

1. High sensor cost

● Average sensor is > $100● Excludes power source (e.g. solar panel)● Also excludes the ‘data logger’, which

collects and records measurements

10

The Teros-12 soil sensor retails for $225

Page 11: Accelerating the Data-Driven Agriculture Revolution · Agriculture Revolution Colleen Josephson (cajoseph@stanford.edu) June 2019 1 Using Wireless Soil Moisture Sensors. 2 Theewaterskloof

$1 millionIs the cost of recommended sensor

deployment for the average 434 acre US farm

USDA Survey11

Page 12: Accelerating the Data-Driven Agriculture Revolution · Agriculture Revolution Colleen Josephson (cajoseph@stanford.edu) June 2019 1 Using Wireless Soil Moisture Sensors. 2 Theewaterskloof

2. Difficulty of deploying + maintaining sensors

● Installation● Waterproofing● Power harvesting● External tampering...like

curious cows

Wires, weather and watts

12

Page 13: Accelerating the Data-Driven Agriculture Revolution · Agriculture Revolution Colleen Josephson (cajoseph@stanford.edu) June 2019 1 Using Wireless Soil Moisture Sensors. 2 Theewaterskloof

3. Difficulty collecting + processing sensor data

3G/4G cellular module? Expensive.

Ad-hoc network? Failure prone.

Manual collection? Often tedious.

13

(Fields don’t have WiFi)

Page 14: Accelerating the Data-Driven Agriculture Revolution · Agriculture Revolution Colleen Josephson (cajoseph@stanford.edu) June 2019 1 Using Wireless Soil Moisture Sensors. 2 Theewaterskloof

Microsoft’s Farmbeats

Uses a combination of drones, tractors and TV whitespace networks to collect sensor measurements and upload them to the cloud

14

NSDI ‘17, D. Vasisht, et. al

Page 15: Accelerating the Data-Driven Agriculture Revolution · Agriculture Revolution Colleen Josephson (cajoseph@stanford.edu) June 2019 1 Using Wireless Soil Moisture Sensors. 2 Theewaterskloof

This talk will focus on

sensor cost-AND-

deployment + maintenance15

Page 16: Accelerating the Data-Driven Agriculture Revolution · Agriculture Revolution Colleen Josephson (cajoseph@stanford.edu) June 2019 1 Using Wireless Soil Moisture Sensors. 2 Theewaterskloof

What is soil moisture?volumetric water content

16

Page 17: Accelerating the Data-Driven Agriculture Revolution · Agriculture Revolution Colleen Josephson (cajoseph@stanford.edu) June 2019 1 Using Wireless Soil Moisture Sensors. 2 Theewaterskloof

How do sensors approximate soil moisture?

● Dielectric permittivity, ε, is ability of a substance to hold electrical charge

● Relative permittivity (sometimes dielectric constant):εr = ε/ε0

● εr changes as water content of soil changes →

17

Page 18: Accelerating the Data-Driven Agriculture Revolution · Agriculture Revolution Colleen Josephson (cajoseph@stanford.edu) June 2019 1 Using Wireless Soil Moisture Sensors. 2 Theewaterskloof

Topp equation (1983)

● Apparent dielectric constant Ka , function mostly of εr ● Soil moisture Θ related to Ka by the Topp equation:

θ = 4.3x10-6 * Ka3 - 5.5x10-4 * Ka

2 + 2.92x10-2 * Ka -5.3x10-2

18

Page 19: Accelerating the Data-Driven Agriculture Revolution · Agriculture Revolution Colleen Josephson (cajoseph@stanford.edu) June 2019 1 Using Wireless Soil Moisture Sensors. 2 Theewaterskloof

Time of Flight (ToF)

● Time an electromagnetic wave takes to propagate from A to B● Can approximate Ka (and therefore soil moisture) using ToF:

Ka ≅ (cτ/d)2

where c is speed of light, τ is ToF and d is distance

19

Page 20: Accelerating the Data-Driven Agriculture Revolution · Agriculture Revolution Colleen Josephson (cajoseph@stanford.edu) June 2019 1 Using Wireless Soil Moisture Sensors. 2 Theewaterskloof

Anything that gives accurate ToF can measure soil moisture!

20

Page 21: Accelerating the Data-Driven Agriculture Revolution · Agriculture Revolution Colleen Josephson (cajoseph@stanford.edu) June 2019 1 Using Wireless Soil Moisture Sensors. 2 Theewaterskloof

Soil Measurements Using RF (SMURF)2018 MSR Whitepaper, J. Ding

● Senses soil moisture using MIMO WiFi● Drawbacks:

○ Requires burying multiple antennas in soil

○ Limited WiFi chips give access to necessary info

○ Not very accurate

21

Page 22: Accelerating the Data-Driven Agriculture Revolution · Agriculture Revolution Colleen Josephson (cajoseph@stanford.edu) June 2019 1 Using Wireless Soil Moisture Sensors. 2 Theewaterskloof

What if we could use RF without burying wires?

22

Page 23: Accelerating the Data-Driven Agriculture Revolution · Agriculture Revolution Colleen Josephson (cajoseph@stanford.edu) June 2019 1 Using Wireless Soil Moisture Sensors. 2 Theewaterskloof

Backscatter: the scattering of radiation or particles back towards the source

23

Page 24: Accelerating the Data-Driven Agriculture Revolution · Agriculture Revolution Colleen Josephson (cajoseph@stanford.edu) June 2019 1 Using Wireless Soil Moisture Sensors. 2 Theewaterskloof

Passive vs. Active RF CommunicationsACTIVE PASSIVE

(backscatter)

amplifiers24

Page 25: Accelerating the Data-Driven Agriculture Revolution · Agriculture Revolution Colleen Josephson (cajoseph@stanford.edu) June 2019 1 Using Wireless Soil Moisture Sensors. 2 Theewaterskloof

~$2is the cost of agricultural RFID tags. With mass production,

our backscatter tags could cost similarly.

25

Page 26: Accelerating the Data-Driven Agriculture Revolution · Agriculture Revolution Colleen Josephson (cajoseph@stanford.edu) June 2019 1 Using Wireless Soil Moisture Sensors. 2 Theewaterskloof

Three parts of a backscatter system1. Excitation signal generator2. Backscatter tag3. Receiver

26

Page 27: Accelerating the Data-Driven Agriculture Revolution · Agriculture Revolution Colleen Josephson (cajoseph@stanford.edu) June 2019 1 Using Wireless Soil Moisture Sensors. 2 Theewaterskloof

Backscatter to sense soil moisture

27

Page 28: Accelerating the Data-Driven Agriculture Revolution · Agriculture Revolution Colleen Josephson (cajoseph@stanford.edu) June 2019 1 Using Wireless Soil Moisture Sensors. 2 Theewaterskloof

Accurate is ToF hard

28

Page 29: Accelerating the Data-Driven Agriculture Revolution · Agriculture Revolution Colleen Josephson (cajoseph@stanford.edu) June 2019 1 Using Wireless Soil Moisture Sensors. 2 Theewaterskloof

Two discernible pulses

29

Page 30: Accelerating the Data-Driven Agriculture Revolution · Agriculture Revolution Colleen Josephson (cajoseph@stanford.edu) June 2019 1 Using Wireless Soil Moisture Sensors. 2 Theewaterskloof

Pulse smearing: one big pulse

30

Page 31: Accelerating the Data-Driven Agriculture Revolution · Agriculture Revolution Colleen Josephson (cajoseph@stanford.edu) June 2019 1 Using Wireless Soil Moisture Sensors. 2 Theewaterskloof

Ultra-Wideband (UWB) Radar

31

Page 32: Accelerating the Data-Driven Agriculture Revolution · Agriculture Revolution Colleen Josephson (cajoseph@stanford.edu) June 2019 1 Using Wireless Soil Moisture Sensors. 2 Theewaterskloof

Experimentsetup

32

Buried prototype

Ultra-wideband radar

Page 33: Accelerating the Data-Driven Agriculture Revolution · Agriculture Revolution Colleen Josephson (cajoseph@stanford.edu) June 2019 1 Using Wireless Soil Moisture Sensors. 2 Theewaterskloof

Backscatter prototype

33

ultra-wideband antenna

RF switch

MCU (acts as oscillator)

Page 34: Accelerating the Data-Driven Agriculture Revolution · Agriculture Revolution Colleen Josephson (cajoseph@stanford.edu) June 2019 1 Using Wireless Soil Moisture Sensors. 2 Theewaterskloof

Isolating the backscatter signal

34Backscatter tag off Backscatter tag on

60 Hz ambient noise 125 Hz backscatter

Aliased backscatter harmonics

Page 35: Accelerating the Data-Driven Agriculture Revolution · Agriculture Revolution Colleen Josephson (cajoseph@stanford.edu) June 2019 1 Using Wireless Soil Moisture Sensors. 2 Theewaterskloof

Signal strength vs tag depth (preliminary)

35

Page 36: Accelerating the Data-Driven Agriculture Revolution · Agriculture Revolution Colleen Josephson (cajoseph@stanford.edu) June 2019 1 Using Wireless Soil Moisture Sensors. 2 Theewaterskloof

Commercial vs radar soil moisture (preliminary)

37

Average difference between commercial sensor and radar measurements:

0.005cm3/cm3

Page 37: Accelerating the Data-Driven Agriculture Revolution · Agriculture Revolution Colleen Josephson (cajoseph@stanford.edu) June 2019 1 Using Wireless Soil Moisture Sensors. 2 Theewaterskloof

The long-term vision

38

Page 38: Accelerating the Data-Driven Agriculture Revolution · Agriculture Revolution Colleen Josephson (cajoseph@stanford.edu) June 2019 1 Using Wireless Soil Moisture Sensors. 2 Theewaterskloof

[S]mallholder farms operate on 12% of the world's agricultural land and produce 80% of the food that is consumed in Asia and sub-Saharan Africa...

https://www.cropscience.bayer.com/en/crop-science/smallholder-farming39

Page 39: Accelerating the Data-Driven Agriculture Revolution · Agriculture Revolution Colleen Josephson (cajoseph@stanford.edu) June 2019 1 Using Wireless Soil Moisture Sensors. 2 Theewaterskloof

Developing world [has] 98.7 per cent mobile phone adoption (as of 2017)

https://www.theregister.co.uk/2017/08/03/itu_facts_and_figures_2017/40

Page 40: Accelerating the Data-Driven Agriculture Revolution · Agriculture Revolution Colleen Josephson (cajoseph@stanford.edu) June 2019 1 Using Wireless Soil Moisture Sensors. 2 Theewaterskloof

59%Of the world owns a smartphone

http://www.pewglobal.org/2018/06/19/2-smartphone-ownership-on-the-rise-in-emerging-economies/41

Page 41: Accelerating the Data-Driven Agriculture Revolution · Agriculture Revolution Colleen Josephson (cajoseph@stanford.edu) June 2019 1 Using Wireless Soil Moisture Sensors. 2 Theewaterskloof

42

Page 42: Accelerating the Data-Driven Agriculture Revolution · Agriculture Revolution Colleen Josephson (cajoseph@stanford.edu) June 2019 1 Using Wireless Soil Moisture Sensors. 2 Theewaterskloof

What remains?REMAINING WORK

● Experiment with more types of soil w/ ground-truth measurements

● Extend viable sensor depth range● Do experiments in a real farm field● Study effects of temperature and

soil salinity on the measurements

43

LIMITATIONS

● Measurement time depends on radar frame rate and tag depth

● Environmental impact not understood

● Assumes relatively stable soil conditions

● FCC doesn’t currently allow unlicensed UWB below 3 Ghz

Page 43: Accelerating the Data-Driven Agriculture Revolution · Agriculture Revolution Colleen Josephson (cajoseph@stanford.edu) June 2019 1 Using Wireless Soil Moisture Sensors. 2 Theewaterskloof

Going forward: the bigger picture

● This system is just one small part ● New kinds of data at unprecedented volume and variety● Pressing need for systems to be mobile friendly

44

Ag is one of tech’s final frontiers

Page 44: Accelerating the Data-Driven Agriculture Revolution · Agriculture Revolution Colleen Josephson (cajoseph@stanford.edu) June 2019 1 Using Wireless Soil Moisture Sensors. 2 Theewaterskloof

Sources● Deepak Vasisht, Zerina Kapetanovic, Jong-ho Won, Xinxin Jin, Ranveer Chandra, Ashish Kapoor, Sudipta N.

Sinha, Madhusudhan Sudarshan, and Sean Stratman, Farmbeats: An iot platform for data-driven agriculture, Proceedings of the 14th USENIX Conference on Networked Systems Design and Implementation (Berkeley, CA, USA), NSDI’17, USENIX Association, 2017, pp. 515–528

● Ranveer Chandra Jian Ding, Estimating soil moisture and electrical conductivity using wi-fi, (2018).● Topp, G.C., J.L. David, and A.P. Annan 1980. Electromagnetic, Determination of Soil Water Content:

Measurement in Coaxial Transmission Lines. Water Resources Research 16:3. p. 574-582.● https://www.cropscience.bayer.com/en/stories/2016/automated-agricultural-helpers-ripe-for-robots● https://www.gatesnotes.com/Development/FarmBeats● http://www.pewglobal.org/2018/06/19/2-smartphone-ownership-on-the-rise-in-emerging-economies/● https://www.theregister.co.uk/2017/08/03/itu_facts_and_figures_2017/● https://www.cropscience.bayer.com/en/crop-science/smallholder-farming

45