Abiogenic Hydrocarbons Produced Under Upper Mantle Conditions Alex Goncharov_Hydrocarbons

download Abiogenic Hydrocarbons Produced Under Upper Mantle Conditions Alex Goncharov_Hydrocarbons

of 16

Transcript of Abiogenic Hydrocarbons Produced Under Upper Mantle Conditions Alex Goncharov_Hydrocarbons

  • 7/30/2019 Abiogenic Hydrocarbons Produced Under Upper Mantle Conditions Alex Goncharov_Hydrocarbons

    1/16

    Abiogenic hydrocarbons produced underupper mantle conditions

    Alexander Goncharov

    Geophysical Laboratory, Carnegie Institution of Washington, USA

  • 7/30/2019 Abiogenic Hydrocarbons Produced Under Upper Mantle Conditions Alex Goncharov_Hydrocarbons

    2/16

    Anton Kolesnikov

    1,2

    Raja S. Chellappa1

    Maddury Somayazulu1

    Subramanian Natarajan1

    Russell J. Hemley1

    Vladimir Kutcherov3

    Participants:

    1 Geophysical Laboratory, Carnegie Institution of Washington, USA2Lomonosov Moscow State Academy of Fine Chemical Technology, Russia3Royal Institute of Technology, Stockholm, Sweden

  • 7/30/2019 Abiogenic Hydrocarbons Produced Under Upper Mantle Conditions Alex Goncharov_Hydrocarbons

    3/16

    Deep abiotic organics

    Oil Company View

    Russian-Ukrainian School

  • 7/30/2019 Abiogenic Hydrocarbons Produced Under Upper Mantle Conditions Alex Goncharov_Hydrocarbons

    4/16

    HC

    HH

    HH

    C

    HH

    H H+ +C

    H

    H

    H

    H

    H

    H

    H

    T, p

    Kenney, Kutcherov et al. (2002), KONAK chamber3-5 GPa, 1200-1500K

    Scott et al. (2004), DAC, 5-11 GPa, 773-1773K

    3 2 3 4 4CaCO +12FeO+H O CaO+4Fe O +CH

    3 2 2 3 4 n 2n+2nCaCO +(9n+3)FeO+(2n+1)H O nCa(OH) +(3n+1)FeO +C H

    Synthesis of hydrocarbons

    Realistic Earths minerals? Heavier hydrocarbons synthesis? Oxidizing conditions?

    Methane polymerization

    Is this viable for:

  • 7/30/2019 Abiogenic Hydrocarbons Produced Under Upper Mantle Conditions Alex Goncharov_Hydrocarbons

    5/16

    Probe (Raman spectroscopy & X-ray diffraction)

    Laser

    Heating

    Gasket

    Sample

    Coupler

    Diamond

    Anvils

    a b

    Ruby

    Laser heating in the diamond anvil cell

    MicrophotographSketch

    In situmeasurements at high temperature

    Mapping of quenched samples

    Methane in Re gasket

    with Ir coupler

  • 7/30/2019 Abiogenic Hydrocarbons Produced Under Upper Mantle Conditions Alex Goncharov_Hydrocarbons

    6/16

    Sample preparations: minerals

    Carbonate in 1:8 molar ratio ground andmixed in diamonite mortar/pestle

    Ir coupler or compacted powder Loaded with H2O

    Adequate care with all aspects ofcleaning

    Reaction Zone

    Before:

    After:

    Fayalite (Fe1.92Mn0.08SiO4): Rockport

    Olivine (Mg1.8Fe0.2SiO4): San Carlos

    Mineral Assemblages: Peridodite & Basalt

  • 7/30/2019 Abiogenic Hydrocarbons Produced Under Upper Mantle Conditions Alex Goncharov_Hydrocarbons

    7/16

    Methanogenesis from minerals

    Fayalite (Fe1.92Mn0.08SiO4): Rockport

    Olivine (Mg1.8Fe0.2SiO4): San Carlos

    Mineral Assemblages: Peridodite & Basalt

    Methane formation at relatively low temperatures; suggested pathway:

    6 Fe2SiO4 + CaCO3 + 2 H2O = 4 Fe3O4 + CH4 + 6 SiO2+ CaO

    Hydrous phases were not observed

    (SiO4)(CO3)

    Ice VII

    CH4

    starting sample

    after LaserHeating

    Fe3O4

    (SiO2)

    (Fe0.96Mn0.04)2SiO4:CaCO3 8:1 molar ratio

    < 800 K X3

    5-6 GPa, < 800 K

  • 7/30/2019 Abiogenic Hydrocarbons Produced Under Upper Mantle Conditions Alex Goncharov_Hydrocarbons

    8/16

    Methanogenesis from minerals

    Fayalite (Fe1.92Mn0.08SiO4): Rockport

    Olivine (Mg1.8Fe0.2SiO4): San Carlos

    Mineral Assemblages: Peridodite & Basalt

    (SiO4)

    (CO3)IceVII

    CH4

    starting sample

    After Laser

    Heating Fe3O4?

    (Mg0.90Fe0.10)2SiO4:CaCO3 8:1 molar ratio

    X3

    5.6 GPa

    l = 0.3757

    2

    After leaserheat at 5.6GPa

    Olivine +hydrousMg2SiO4phases

    Methane formation at T > 2000 K, 5-6 GPa

    Hydrous phase formation

  • 7/30/2019 Abiogenic Hydrocarbons Produced Under Upper Mantle Conditions Alex Goncharov_Hydrocarbons

    9/16

    Methanogenesis from minerals

    Fayalite (Fe1.92Mn0.08SiO4): Rockport

    Olivine (Mg1.8Fe0.2SiO4): San Carlos

    Mineral Assemblages: Peridodite & Basalt

    (SiO4)

    (CO3)IceVII

    (OH)

    as-loadedsample

    ResistiveHeating

    Laser HeatingPeridodite : CaCO3 10:1 weight ratio

    No methane formation at T > 1500 K, 5-6 GPa

    Hydrous phase formation

  • 7/30/2019 Abiogenic Hydrocarbons Produced Under Upper Mantle Conditions Alex Goncharov_Hydrocarbons

    10/16

    Methanogenesis from minerals

    Fayalite (Fe1.92Mn0.08SiO4): Rockport

    Olivine (Mg1.8Fe0.2SiO4): San Carlos

    Mineral Assemblages: Peridodite & Basalt

    Carbonate reduction to CH4 observed even with Mg-rich mantle minerals

    Further XRD characterization of reaction products and thermochemicalcalculations are needed.

    Diamond reactivity (found in control experiments) need to be better addressed

    Explore polymerization to higher hydrocarbons.

    Conclusions

  • 7/30/2019 Abiogenic Hydrocarbons Produced Under Upper Mantle Conditions Alex Goncharov_Hydrocarbons

    11/16

    Raman Shift (cm-1)

    2800 3200

    RamanIntensity(arb.

    units)

    500 900 1400 1800 4000 4400

    300 K

    900 K

    1500 K

    C2H

    6 C (graphite) H2

    H2

    C3H8

    Raman Shift (cm-1)

    1000 2000 3000 4000

    RamanIntensity(arb.units)

    (CH4)n(H2)m

    H2

    CH4

    CH4

    C (graphite)

    x10

    Position 1

    Position 2

    Position 3

    Position 3

    Diamond anvils(b)

    (a)

    CH4

    CH4

    400 900

    H2

    H2

    C2H

    6

    Positions:

    3 2 1

    50 m

    (c)

    Raman shift (cm-1)

    500 1000 1500

    CH4-Ir-Re

    3.83 GPa

    CH4-Fe

    3O

    4-Re

    2.19 GPa

    C2H

    6-Ir-Re

    5.00 GPa

    CH4

    -Ir-W

    6.64 GPa

    C2H6

    C

    CH4

    C3H8

    C4H10

    CH4-Au-B

    4.04 GPa

    H2

    C2H6

    C3H8

    Methane and ethane reactivity: in situRaman diagnostics

    CH4 C2-C4 alkanes +H2

    CH4 C +H2

    Ethane:

    3C2H6 2C3H8+ H2C2H6 + H2 2CH4

    Methane:

    Gasket: Re, W, Au (liner)

    Coupler: Ir, B, Fe3O4

    To check reactionreversibility

    Thermal insulation:Al2O3 (in selected exp.)

    Temperature:

    Position: Gasket/Coupler:

  • 7/30/2019 Abiogenic Hydrocarbons Produced Under Upper Mantle Conditions Alex Goncharov_Hydrocarbons

    12/16

    Laser heating products: magnetite in methane

    TwoTheta (degree)

    8 10 12 14 16 18 20

    Inte

    nsity

    (arb.units)

    Diffraction pattern

    GraphiteIce VII

    bcc Fe

    Diamond

    Alumina

    Methane

    X-ray diffraction of the quenched products inoxidized conditions with Fe3O4 coupler

    Fe

    Diamond

    Methane

    Single-crystal diffraction

    Single crystal Fe3O4

    Fe3O4+2CH4 3Fe+2C+4H2O

  • 7/30/2019 Abiogenic Hydrocarbons Produced Under Upper Mantle Conditions Alex Goncharov_Hydrocarbons

    13/16

    Temperature (K)

    1000 1200 1400 1600

    -8

    -6

    -4

    -2

    logfO2[F

    MQ]

    Pressure (GPa)

    0 2 4 6

    Temperature(K)

    500

    1000

    1500

    2000

    Oce

    anicge

    othe

    rm

    CH4melting

    0 65 127 188Depth (km)

    Hydrocarbonformation

    Shiel

    dgeothe

    rm2.19 GPa

    South AfricaYakutiaSlave

    DAC with IM buffer

    a b

    P-T-fO2 conditions in the DAC experiments and in the upper mantle

  • 7/30/2019 Abiogenic Hydrocarbons Produced Under Upper Mantle Conditions Alex Goncharov_Hydrocarbons

    14/16

    Methane above 2 GPa and 1000-1500 K partially reacts andforms saturated hydrocarbons (C2-C4 alkanes: ethane,

    propane, butane), molecular hydrogen and graphite.

    The reaction does not require catalysts and proceed inoxidized conditions.

    Formation of methane in similar experiments on ethanesuggests reversibility of hydrocarbon formation.

    The experimental P-T-fO2 conditions of methane derivedhydrocarbon synthesis are appropriate for the Earthsmantle, creating the possibility of the abiogenic synthesis of

    petroleum components in of the Earths upper mantle.

    Conclusions

  • 7/30/2019 Abiogenic Hydrocarbons Produced Under Upper Mantle Conditions Alex Goncharov_Hydrocarbons

    15/16

    Lupke et al., 2003

    Probe

    Pump

    Time resolution (determined bythe laser pulse width 10s fs)

    is comparable with bondbreak/creation time.

    Outlook: Chemical Reactivity of Deep Earths CarbonBearing Phases using Optical spectroscopy at high P-T

    Wavelength (nm)

    600 650

    Intensity(arb.units)

    Radiative temperature10,000 K

    125 GPa

    silicate perovskite

    2350 2400 2450 2500

    1590 K

    1840 K

    2500 K

    114 GPa

    1050 K

    300 K

    (c)

    fluid

    '

    fluid

    Raman Shift (cm-1

    )

    N2

    Pulsed laserheating in DAC

    Pulsed Raman probe

    Future scientific directions: shorter time-scale to study chemical kinetics & dynamics

    to make data comparable to molecular dynamic simulations

    Future technical developments of the laser heated DAC:1. Pulsed laser heating2. CARS & broadband fs spectroscopy in the DAC

    3. Pump-probe spectroscopy- fs time scale

  • 7/30/2019 Abiogenic Hydrocarbons Produced Under Upper Mantle Conditions Alex Goncharov_Hydrocarbons

    16/16

    AcknowledgementsMinerals:

    Shell Inc.

    CDAC

    Prof. Dimitri Sverjensky (JHU)

    Dr. Dionysis Foustoukos (GL)

    Dr. Anurag Sharma (GL)

    Smithsonian Institution

    Methane: K. Litasov Y. Fei J. C. Crowhurst, M. Somayazulu, V. Struzhkin, R. Cohen,

    D. Foustoukos, J. Montoya, T. Strobel S. Sinogeikin

    Support:

    A. K.: support of INTAS through YSF Ref. Nr. 06-1000014-6546.V. K.: support from INTAS Ref. Nr. 06-1000013-8750.A. G.: NSF-EAR, CDAC