Abbas El Gamal Stanford University Shannon Memorial...

109
Networks with point-to-point codes Abbas El Gamal Stanford University Shannon Memorial Lecture, UCSD 2013 Based on joint work with B. Bandemer, D. Tse, F. Bacelli, and Y.-H. Kim

Transcript of Abbas El Gamal Stanford University Shannon Memorial...

Page 1: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Networks with point-to-point codes

Abbas El Gamal

Stanford University

Shannon Memorial Lecture, UCSD 2013

Based on joint work with B. Bandemer, D. Tse, F. Bacelli, and Y.-H. Kim

Page 2: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

“The fundamental problem of communication is that ofreproducing at one point, either exactly or approximately, amessage selected at another point.”

C.E. Shannon (1948)

Page 3: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Shannon’s point-to-point communication system

M MXn Yn

Encoder p(y|x) Decoder

∙ Discrete memoryless channel (DMC) p(y|x)∙ (2nR , n) block code:

é Message: M ∼ Unif[1 : 2nR]é Encoder: xn(m), m ∈ [1 : 2nR]é Decoder: m(yn) ∈ [1 : 2nR] ∪ {e}

El Gamal (Stanford University) Point-to-point communication Shannon Memorial Lecture 3 / 40

Page 4: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Shannon’s point-to-point communication system

M MXn Yn

Encoder p(y|x) Decoder

∙ Discrete memoryless channel (DMC) p(y|x)∙ (2nR , n) block code:

é Message: M ∼ Unif[1 : 2nR]é Encoder: xn(m), m ∈ [1 : 2nR]é Decoder: m(yn) ∈ [1 : 2nR] ∪ {e}

∙ Probability of error P(n)e = P{M = M}

El Gamal (Stanford University) Point-to-point communication Shannon Memorial Lecture 3 / 40

Page 5: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Shannon’s point-to-point communication system

M MXn Yn

Encoder p(y|x) Decoder

∙ Discrete memoryless channel (DMC) p(y|x)∙ (2nR , n) block code:

é Message: M ∼ Unif[1 : 2nR]é Encoder: xn(m), m ∈ [1 : 2nR]é Decoder: m(yn) ∈ [1 : 2nR] ∪ {e}

∙ Probability of error P(n)e = P{M = M}

∙ R achievable if ∃ (2nR , n) codes with limn→∞

P(n)e = 0

∙ Capacity C is supremum of all achievable rates

El Gamal (Stanford University) Point-to-point communication Shannon Memorial Lecture 3 / 40

Page 6: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Shannon’s channel coding theorem

M MXn Yn

Encoder p(y|x) Decoder

Theorem (Shannon 1948)

C = maxp(x)

I(X ; Y )

El Gamal (Stanford University) Point-to-point communication Shannon Memorial Lecture 4 / 40

Page 7: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Shannon’s channel coding theorem

M MXn Yn

Encoder p(y|x) Decoder

Theorem (Shannon 1948)

C = maxp(x)

I(X ; Y )

∙ Shannon gave an existential proof of achievability via random coding

El Gamal (Stanford University) Point-to-point communication Shannon Memorial Lecture 4 / 40

Page 8: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Achievability using random point-to-point (ptp) codes

∙ Codebook generation: Fix p(x)é Randomly generate 2nR sequences xn(m) ∼ ∏n

i=1 pX(xi), m ∈ [1 : 2nR]é Random codebook: Cn(p) = {Xn(m) : m ∈ [1 : 2nR]}

Xn

El Gamal (Stanford University) Point-to-point communication Shannon Memorial Lecture 5 / 40

Page 9: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Achievability using random point-to-point (ptp) codes

∙ Codebook generation: Fix p(x)é Randomly generate 2nR sequences xn(m) ∼ ∏n

i=1 pX(xi), m ∈ [1 : 2nR]é Random codebook: Cn(p) = {Xn(m) : m ∈ [1 : 2nR]}

∙ Encoding:

é To send m, the encoder transmits xn(m)

Xn

xn(m)

El Gamal (Stanford University) Point-to-point communication Shannon Memorial Lecture 5 / 40

Page 10: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Achievability using random point-to-point (ptp) codes

∙ Codebook generation: Fix p(x)é Randomly generate 2nR sequences xn(m) ∼ ∏n

i=1 pX(xi), m ∈ [1 : 2nR]é Random codebook: Cn(p) = {Xn(m) : m ∈ [1 : 2nR]}

∙ Encoding:

é To send m, the encoder transmits xn(m)∙ Decoding:

é Optimal decoding rule is maximum likelihood (MLD):

m(yn) = arg maxm∈[1:2nR ]

n

Ii=1

pY |X(yi |xi(m))

El Gamal (Stanford University) Point-to-point communication Shannon Memorial Lecture 5 / 40

Page 11: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Achievability using random point-to-point (ptp) codes

∙ Codebook generation: Fix p(x)é Randomly generate 2nR sequences xn(m) ∼ ∏n

i=1 pX(xi), m ∈ [1 : 2nR]é Random codebook: Cn(p) = {Xn(m) : m ∈ [1 : 2nR]}

∙ Encoding:

é To send m, the encoder transmits xn(m)∙ Decoding:

é Optimal decoding rule is maximum likelihood (MLD):

m(yn) = arg maxm∈[1:2nR ]

n

Ii=1

pY |X(yi |xi(m))

∙ Analysis of the probability of error, e.g., Gallager (1965):

é Show that E[P(n)e (Cn(p))] → 0 if R < I(X ;Y); hence good codes exist

é Tight error exponents, but difficult to extend analysis to networks

El Gamal (Stanford University) Point-to-point communication Shannon Memorial Lecture 5 / 40

Page 12: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Shannon’s joint typicality proof

∙ Decoding:

é Find unique message m such that (xn(m), yn) ∈ T(n)є

é Otherwise declare an error

Xn Y

n

ynxn(m)

El Gamal (Stanford University) Point-to-point communication Shannon Memorial Lecture 6 / 40

Page 13: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Shannon’s joint typicality proof

∙ Decoding:

é Find unique message m such that (xn(m), yn) ∈ T(n)є

é Otherwise declare an error

∙ Several ways to define typicality, e.g., Orlitsky–Roche (2001):

T(n)є = �(xn , yn): |π(x, y |xn , yn) − p(x, y)| ≤ є ⋅ p(x, y) for all (x, y)�,

where π(x, y|xn , yn) is joint type of (xn , yn)

El Gamal (Stanford University) Point-to-point communication Shannon Memorial Lecture 6 / 40

Page 14: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Shannon’s joint typicality proof

∙ Decoding:

é Find unique message m such that (xn(m), yn) ∈ T(n)є

é Otherwise declare an error

∙ Analysis of the probability of error:

é Straightforward to show that limn→∞ E[P(n)e (Cn(p))] = 0 if R < I(X ;Y)

El Gamal (Stanford University) Point-to-point communication Shannon Memorial Lecture 6 / 40

Page 15: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Shannon’s joint typicality proof

∙ Decoding:

é Find unique message m such that (xn(m), yn) ∈ T(n)є

é Otherwise declare an error

∙ Analysis of the probability of error:

é Straightforward to show that limn→∞ E[P(n)e (Cn(p))] = 0 if R < I(X ;Y)

⇒ Random ptp codes achieve capacity (use argmaxp(x) I(X ;Y))

El Gamal (Stanford University) Point-to-point communication Shannon Memorial Lecture 6 / 40

Page 16: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Shannon’s joint typicality proof

∙ Decoding:

é Find unique message m such that (xn(m), yn) ∈ T(n)є

é Otherwise declare an error

∙ Analysis of the probability of error:

é Straightforward to show that limn→∞ E[P(n)e (Cn(p))] = 0 if R < I(X ;Y)

⇒ Random ptp codes achieve capacity (use argmaxp(x) I(X ;Y))

∙ Converse for random ptp codes: Given p(x) and a decoding rule

é If limn→∞ E[P(n)e (Cn(p))] = 0, then R ≤ I(X ;Y)

El Gamal (Stanford University) Point-to-point communication Shannon Memorial Lecture 6 / 40

Page 17: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Shannon’s joint typicality proof

∙ Decoding:

é Find unique message m such that (xn(m), yn) ∈ T(n)є

é Otherwise declare an error

∙ Analysis of the probability of error:

é Straightforward to show that limn→∞ E[P(n)e (Cn(p))] = 0 if R < I(X ;Y)

⇒ Random ptp codes achieve capacity (use argmaxp(x) I(X ;Y))

∙ Converse for random ptp codes: Given p(x) and a decoding rule

é If limn→∞ E[P(n)e (Cn(p))] = 0, then R ≤ I(X ;Y)

⇒ Joint typicality decoding achieves same rate as MLD

é Extensions are useful for networks where MLD is difficult to analyze

El Gamal (Stanford University) Point-to-point communication Shannon Memorial Lecture 6 / 40

Page 18: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Practical point-to-point codes

∙ Most randomly generated ptp codes with rate R < I(X ; Y ) are good

∙ But encoding/decoding them is computationally prohibitive

El Gamal (Stanford University) Point-to-point communication Shannon Memorial Lecture 7 / 40

Page 19: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Practical point-to-point codes

∙ Most randomly generated ptp codes with rate R < I(X ; Y ) are good

∙ But encoding/decoding them is computationally prohibitive

∙ Coding theorists spent over 60 years looking for practical ptp codes:

é That approach capacity

é Have computationally tractable encoding/decoding

El Gamal (Stanford University) Point-to-point communication Shannon Memorial Lecture 7 / 40

Page 20: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Practical point-to-point codes

∙ Most randomly generated ptp codes with rate R < I(X ; Y ) are good

∙ But encoding/decoding them is computationally prohibitive

∙ Coding theorists spent over 60 years looking for practical ptp codes:

é That approach capacity

é Have computationally tractable encoding/decoding

∙ Several such codes have been found:

é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes)

é Random codes with structure (turbo, LDPC, fountain, spatially coupled)

∙ These codes are widely used in communication networks and storage

El Gamal (Stanford University) Point-to-point communication Shannon Memorial Lecture 7 / 40

Page 21: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Practical point-to-point codes

∙ Most randomly generated ptp codes with rate R < I(X ; Y ) are good

∙ But encoding/decoding them is computationally prohibitive

∙ Coding theorists spent over 60 years looking for practical ptp codes:

é That approach capacity

é Have computationally tractable encoding/decoding

∙ Several such codes have been found:

é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes)

é Random codes with structure (turbo, LDPC, fountain, spatially coupled)

∙ These codes are widely used in communication networks and storage

∙ Results in network information theory suggest we need network codes

El Gamal (Stanford University) Point-to-point communication Shannon Memorial Lecture 7 / 40

Page 22: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

This lecture

∙ How well do random ptp codes perform over networks?

é Do we need to spend another 60+ years looking for practical network codes?

El Gamal (Stanford University) Point-to-point communication Shannon Memorial Lecture 8 / 40

Page 23: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

This lecture

∙ How well do random ptp codes perform over networks?

é Do we need to spend another 60+ years looking for practical network codes?

∙ Outline:

é Brief introduction to network information theory

é Discuss various network models with random ptp codes

El Gamal (Stanford University) Point-to-point communication Shannon Memorial Lecture 8 / 40

Page 24: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

This lecture

∙ How well do random ptp codes perform over networks?

é Do we need to spend another 60+ years looking for practical network codes?

∙ Outline:

é Brief introduction to network information theory

é Discuss various network models with random ptp codes

∙ Preview of the results:

é Random ptp codes with more sophisticated decoding can perform very well

é Joint-typicality-based decoding continues to achieve same rates as MLD

é There are settings where we may need to develop network codes

El Gamal (Stanford University) Point-to-point communication Shannon Memorial Lecture 8 / 40

Page 25: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Network information theory

∙ Extends Shannon’s point-to-point information theory to networks with:

é Multiple sources and destinations

é Multiple access, broadcast, and interference

é Feedback and interactive communication

é Cooperation (multihop)

Communication networkSource

Node

El Gamal (Stanford University) Network information theory Shannon Memorial Lecture 9 / 40

Page 26: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Network information theory

∙ Extends Shannon’s point-to-point information theory to networks

∙ First paper was by Shannon (1961) on the two-way channelreplacements

ChannelSource

Node

El Gamal (Stanford University) Network information theory Shannon Memorial Lecture 9 / 40

Page 27: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Network information theory

∙ Extends Shannon’s point-to-point information theory to networks

∙ First paper was by Shannon (1961) on the two-way channel

∙ Significant progress in 70s, early 80s (Cover 1972, Slepian–Wolf 1973)

NIT

pap

ersin

ISIT

Year79 81 82 83 85 86 88 90 91 93

10

20

30

40

00

El Gamal (Stanford University) Network information theory Shannon Memorial Lecture 9 / 40

Page 28: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Network information theory

∙ Extends Shannon’s point-to-point information theory to networks

∙ First paper was by Shannon (1961) on the two-way channel

∙ Significant progress in 70s, early 80s (Cover 1972, Slepian–Wolf 1973)

∙ Wireless communication and Internet revived interest in late 90s

NIT

pap

ersin

ISIT

Year79 81 82 83 85 86 88 90 91 93 02 04

10

20

30

40

00

El Gamal (Stanford University) Network information theory Shannon Memorial Lecture 9 / 40

Page 29: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Network information theory

∙ Extends Shannon’s point-to-point information theory to networks

∙ First paper was by Shannon (1961) on the two-way channel

∙ Significant progress in 70s, early 80s (Cover 1972, Slepian–Wolf 1973)

∙ Wireless communication and Internet revived interest in late 90s

∙ State of the theory:

El Gamal (Stanford University) Network information theory Shannon Memorial Lecture 9 / 40

Page 30: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Network models with ptp codes

∙ Multiple access channel

∙ Interference channel

∙ Broadcast channel

∙ Relay channel

∙ Multicast networks

∙ Mutimessage networks

El Gamal (Stanford University) Network information theory Shannon Memorial Lecture 10 / 40

Page 31: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Multiple access channel (MAC)

M1

M2

Xn1

Xn2

Encoder 1

Encoder 2

Decoderp(y|x1 , x2) Yn M1 , M2

∙ (2nR1 , 2nR2 , n) block code:

é Message pair: (M1 ,M2) ∼ Unif([1 : 2nR1] × [1 : 2nR2])é Encoder j = 1, 2: xnj (m j), m j ∈ [1 : 2nR j ]é Decoder: (m1 , m2) ∈ [1 : 2nR1] × [1 : 2nR2]

∙ Probability of error: P(n)e = P{(M1 , M2) = (M1 ,M2)}

El Gamal (Stanford University) Multiple access channel Shannon Memorial Lecture 11 / 40

Page 32: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Multiple access channel (MAC)

M1

M2

Xn1

Xn2

Encoder 1

Encoder 2

Decoderp(y|x1 , x2) Yn M1 , M2

∙ (2nR1 , 2nR2 , n) block code:

é Message pair: (M1 ,M2) ∼ Unif([1 : 2nR1] × [1 : 2nR2])é Encoder j = 1, 2: xnj (m j), m j ∈ [1 : 2nR j ]é Decoder: (m1 , m2) ∈ [1 : 2nR1] × [1 : 2nR2]

∙ Probability of error: P(n)e = P{(M1 , M2) = (M1 ,M2)}

∙ (R1 , R2) achievable if ∃ (2nR1 , 2nR2 , n) codes with limn→∞ P(n)e = 0

∙ Capacity region C : Closure of the set of achievable (R1 , R2)

El Gamal (Stanford University) Multiple access channel Shannon Memorial Lecture 11 / 40

Page 33: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

MAC capacity region

Theorem (Ahlswede 1971, Liao 1972)

The capacity region is the convex hull of ⋃p(x1)p(x2)R(X1 , X2)

I(X1 ;Y |X2)

I(X2 ;Y |X1)

I(X1 ;Y)I(X2 ;Y)

R1

R2

R(X1 , X2)

El Gamal (Stanford University) Multiple access channel Shannon Memorial Lecture 12 / 40

Page 34: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

MAC with random ptp codes

∙ Codebook generation: Fix p(x1)p(x2)é Randomly generate 2nR1 sequences xn

1(m) ∼ ∏n

i=1 pX1(x1i), m1 ∈ [1 : 2nR1]

é Randomly generate 2nR2 sequences xn2(m) ∼ ∏n

i=1 pX2(xi2), m2 ∈ [1 : 2nR2]

∙ Encoding: To send (m1 ,m2), transmit xn1 (m1) and xn2 (m2)

El Gamal (Stanford University) Multiple access channel Shannon Memorial Lecture 13 / 40

Page 35: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

MAC with random ptp codes

∙ Codebook generation: Fix p(x1)p(x2)é Randomly generate 2nR1 sequences xn

1(m) ∼ ∏n

i=1 pX1(x1i), m1 ∈ [1 : 2nR1]

é Randomly generate 2nR2 sequences xn2(m) ∼ ∏n

i=1 pX2(xi2), m2 ∈ [1 : 2nR2]

∙ Encoding: To send (m1 ,m2), transmit xn1 (m1) and xn2 (m2)∙ Decoding: Use joint typicality decoding, treating the other codeword as

noise:

I(X1 ;Y)I(X2 ;Y)

R1

R2

Other codeword as noise

El Gamal (Stanford University) Multiple access channel Shannon Memorial Lecture 13 / 40

Page 36: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

MAC with random ptp codes

∙ Successive cancellation decoding (SCD):

é Find unique m1: (xn1 (m1), yn) ∈ T(n)є

é If such m1 is found, find unique m2 : (xn1 (m1), xn2 (m2), yn) ∈ T(n)є

I(X2 ;Y |X1)

I(X1 ;Y)I(X2 ;Y)

R1

R2

SCD

El Gamal (Stanford University) Multiple access channel Shannon Memorial Lecture 14 / 40

Page 37: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

MAC with random ptp codes

∙ Successive cancellation decoding (SCD):

é Find unique m1: (xn1 (m1), yn) ∈ T(n)є

é If such m1 is found, find unique m2 : (xn1 (m1), xn2 (m2), yn) ∈ T(n)є

∙ Can achieve other corner point by reversing decoding order

I(X1 ;Y |X2)

I(X2 ;Y |X1)

I(X1 ;Y)I(X2 ;Y)

R1

R2

SCD

El Gamal (Stanford University) Multiple access channel Shannon Memorial Lecture 14 / 40

Page 38: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

MAC with random ptp codes

∙ Simultaneous decoding (SD):

é Find unique pair (m1 , m2) : (xn1 (m1), xn2 (m2), yn) ∈ T(n)є

I(X1 ;Y |X2)

I(X2 ;Y |X1)

I(X1 ;Y)I(X2 ;Y)

R1

R2

R(X1 , X2)

El Gamal (Stanford University) Multiple access channel Shannon Memorial Lecture 15 / 40

Page 39: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

MAC with random ptp codes

∙ Simultaneous decoding (SD):

é Find unique pair (m1 , m2) : (xn1 (m1), xn2 (m2), yn) ∈ T(n)є

∙ Converse for ptp codes: Given p = p(x1)p(x2) and decoding rule

é If limn→∞ E[P(n)e (Cn(p))] = 0, then (R1 , R2) ∈ R(X1 , X2)

⇒ SD achieves same rates as MLD

I(X1 ;Y |X2)

I(X2 ;Y |X1)

I(X1 ;Y)I(X2 ;Y)

R1

R2

R(X1 , X2)

El Gamal (Stanford University) Multiple access channel Shannon Memorial Lecture 15 / 40

Page 40: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Random ptp codes perform extremely well over MAC

Theorem (Ahlswede 1971, Liao 1972)

The capacity region is the convex hull of ⋃p(x1)p(x2)R(X1 , X2)

∙ R(X1 , X2) achieved using random ptp codes + simultaneous decoding

∙ Rest of the capacity region is achieved using time-sharing

El Gamal (Stanford University) Multiple access channel Shannon Memorial Lecture 16 / 40

Page 41: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Random ptp codes perform extremely well over MAC

Theorem (Ahlswede 1971, Liao 1972)

The capacity region is the convex hull of ⋃p(x1)p(x2)R(X1 , X2)

∙ R(X1 , X2) achieved using random ptp codes + simultaneous decoding

∙ Rest of the capacity region is achieved using time-sharing

∙ Results generalize to more than two senders

El Gamal (Stanford University) Multiple access channel Shannon Memorial Lecture 16 / 40

Page 42: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Interference channel

M1

M2

Xn1

Xn2

Yn1

Yn2

M1

M2

Encoder 1

Encoder 2

Decoder 1

Decoder 2

p(y1 , y2|x1 , x2)

∙ First studied by Ahlswede (1974)

El Gamal (Stanford University) Interference channel Shannon Memorial Lecture 17 / 40

Page 43: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Interference channel

M1

M2

Xn1

Xn2

Yn1

Yn2

M1

M2

Encoder 1

Encoder 2

Decoder 1

Decoder 2

p(y1 , y2|x1 , x2)

∙ First studied by Ahlswede (1974)

∙ (2nR1 , 2nR2 , n) code, P(n)e , achievability, capacity region C: Same as MAC

∙ Capacity region is not known in general

∙ Coding schemes that are optimal in some cases

El Gamal (Stanford University) Interference channel Shannon Memorial Lecture 17 / 40

Page 44: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Interference channel with random ptp codes

∙ Codebook generation: Fix p = p(x1)p(x2)é Randomly generate 2nR1 sequences xn

1(m1) ∼ ∏n

i=1 pX1(x1i), m1 ∈ [1 : 2nR1]

é Randomly generate 2nR2 sequences xn2(m2) ∼ ∏n

i=1 pX2(x2i), m2 ∈ [1 : 2nR2]

∙ Encoding:

é To send (m1 ,m2), transmit xn1(m1) and xn

2(m2)

El Gamal (Stanford University) Interference channel Shannon Memorial Lecture 18 / 40

Page 45: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Interference channel with random ptp codes

∙ Codebook generation: Fix p = p(x1)p(x2)é Randomly generate 2nR1 sequences xn

1(m1) ∼ ∏n

i=1 pX1(x1i), m1 ∈ [1 : 2nR1]

é Randomly generate 2nR2 sequences xn2(m2) ∼ ∏n

i=1 pX2(x2i), m2 ∈ [1 : 2nR2]

∙ Encoding:

é To send (m1 ,m2), transmit xn1(m1) and xn

2(m2)

∙ Decoding schemes we used for the MAC (receiver 1):

I(X1 ;Y1|X2)

I(X2 ;Y1|X1)

I(X1 ;Y1)I(X1 ;Y1)I(X2 ;Y1)

R1R1

R2R2

Treating interference as noise (IAN) Simultaneous decoding (SD)

El Gamal (Stanford University) Interference channel Shannon Memorial Lecture 18 / 40

Page 46: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Interference channel with random ptp codes

∙ Neither scheme uniformly outperforms the other

I(X1 ;Y1|X2)

I(X2 ;Y1|X1)

I(X1 ;Y1)I(X1 ;Y1)I(X2 ;Y1)

R1R1

R2R2

Treating interference as noise (IAN) Simultaneous decoding (SD)

El Gamal (Stanford University) Interference channel Shannon Memorial Lecture 19 / 40

Page 47: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Interference channel with random ptp codes

∙ Neither scheme uniformly outperforms the other

∙ IAN: Receiver 1 knows the codebook for M2

é If R2 is not too high, it may be better to recover M2 and achieve higher R1

I(X1 ;Y1|X2)

I(X2 ;Y1|X1)

I(X1 ;Y1)I(X1 ;Y1)I(X2 ;Y1)

R1R1

R2R2

Treating interference as noise (IAN) Simultaneous decoding (SD)

El Gamal (Stanford University) Interference channel Shannon Memorial Lecture 19 / 40

Page 48: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Interference channel with random ptp codes

∙ Neither scheme uniformly outperforms the other

∙ IAN: Receiver 1 knows the codebook for M2

é If R2 is not too high, it may be better to recover M2 and achieve higher R1∙ SD: Receiver 1 doesn’t really want to recover M2

é Insisting on recovering M2 when R2 is high artificially limits R1

I(X1 ;Y1|X2)

I(X2 ;Y1|X1)

I(X1 ;Y1)I(X1 ;Y1)I(X2 ;Y1)

R1R1

R2R2

Treating interference as noise (IAN) Simultaneous decoding (SD)

El Gamal (Stanford University) Interference channel Shannon Memorial Lecture 19 / 40

Page 49: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Interference channel with random ptp codes

∙ Simultaneous nonunique decoding:

é Receiver 1 finds unique m1 : (Xn1(m1), Xn

2(m2),Yn

1) ∈ T

(n)є for some m2

El Gamal (Stanford University) Interference channel Shannon Memorial Lecture 20 / 40

Page 50: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Interference channel with random ptp codes

∙ Simultaneous nonunique decoding:

é Receiver 1 finds unique m1 : (Xn1(m1), Xn

2(m2),Yn

1) ∈ T

(n)є for some m2

∙ (R1 , R2) achievable using SD ⇒ achievable using SND

I(X1 ;Y1|X2)

I(X2 ;Y1|X1)

I(X1;Y1)I(X2;Y1)

R1

R2

El Gamal (Stanford University) Interference channel Shannon Memorial Lecture 20 / 40

Page 51: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Interference channel with random ptp codes

∙ Simultaneous nonunique decoding:

é Receiver 1 finds unique m1 : (Xn1(m1), Xn

2(m2),Yn

1) ∈ T

(n)є for some m2

∙ (R1 , R2) achievable using SD ⇒ achievable using SND

∙ (R1 , R2) achievable using IAN ⇒ achievable using SND

I(X1 ;Y1|X2)

I(X2 ;Y1|X1)

I(X1;Y1)I(X2;Y1)

R1

R2

El Gamal (Stanford University) Interference channel Shannon Memorial Lecture 20 / 40

Page 52: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Interference channel with random ptp codes

∙ Simultaneous nonunique decoding:

é Receiver 1 finds unique m1 : (Xn1(m1), Xn

2(m2),Yn

1) ∈ T

(n)є for some m2

∙ (R1 , R2) achievable using SD ⇒ achievable using SND

∙ (R1 , R2) achievable using IAN ⇒ achievable using SND

⇒ SND achieves union of regions for SD and IAN

I(X1 ;Y1|X2)I(X1;Y1)I(X2;Y1)

R1

R2

R1(p)

El Gamal (Stanford University) Interference channel Shannon Memorial Lecture 20 / 40

Page 53: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Interference channel with random ptp codes

∙ Similar analysis can be performed for receiver 2, yielding R2(p)

I(X1 ;Y1|X2)I(X1 ;Y1)I(X2 ;Y1)

I(X2 ;Y2|X1)

I(X1 ;Y2)

I(X2 ;Y2)R1 R1

R2 R2

R1(p) R2(p)

El Gamal (Stanford University) Interference channel Shannon Memorial Lecture 21 / 40

Page 54: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Interference channel with random ptp codes

∙ Similar analysis can be performed for receiver 2, yielding R2(p)

Theorem (Bandemer–EG–Kim 2012)

The optimal rate region with random ptp codes p(x1)p(x2) is:R(p) = R1(p) ∩ R2(p)

I(X1 ;Y1|X2)I(X1 ;Y1)I(X2 ;Y1)

I(X2 ;Y2|X1)

I(X1 ;Y2)

I(X2 ;Y2)R1 R1

R2 R2

R1(p) R2(p)

El Gamal (Stanford University) Interference channel Shannon Memorial Lecture 21 / 40

Page 55: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Interference channel with random ptp codes

∙ Similar analysis can be performed for receiver 2, yielding R2(p)

Theorem (Bandemer–EG–Kim 2012)

The optimal rate region with random ptp codes p(x1)p(x2) is:R(p) = R1(p) ∩ R2(p)

∙ SND cannot achieve more than union of SD and IAN regions

∙ SND achieves same rates as MLD

El Gamal (Stanford University) Interference channel Shannon Memorial Lecture 21 / 40

Page 56: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Interference channel with random ptp codes

∙ Similar analysis can be performed for receiver 2, yielding R2(p)

Theorem (Bandemer–EG–Kim 2012)

The optimal rate region with random ptp codes p(x1)p(x2) is:R(p) = R1(p) ∩ R2(p)

∙ Optimal when interference is strong (Costa–EG 1987)

∙ Generalizes result for deterministic IC (Bandemer–EG 2011)

∙ Generalizes result for Gaussian IC (Baccelli–EG–Tse 2011)

El Gamal (Stanford University) Interference channel Shannon Memorial Lecture 21 / 40

Page 57: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Interference channel with random ptp codes

∙ Similar analysis can be performed for receiver 2, yielding R2(p)

Theorem (Bandemer–EG–Kim 2012)

The optimal rate region with random ptp codes p(x1)p(x2) is:R(p) = R1(p) ∩ R2(p)

∙ Optimal when interference is strong (Costa–EG 1987)

∙ Generalizes result for deterministic IC (Bandemer–EG 2011)

∙ Generalizes result for Gaussian IC (Baccelli–EG–Tse 2011)

∙ But, random ptp codes can do better

El Gamal (Stanford University) Interference channel Shannon Memorial Lecture 21 / 40

Page 58: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Han–Kobayashi (1981) coding scheme

∙ Idea: Decode part of interference and treat rest as noise:

é Split message M j, j = 1, 2, into public message M j0 and private message M j j

El Gamal (Stanford University) Interference channel Shannon Memorial Lecture 22 / 40

Page 59: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Han–Kobayashi (1981) coding scheme

∙ Idea: Decode part of interference and treat rest as noise:

é Split message M j, j = 1, 2, into public message M j0 and private message M j j

é Use superposition encoding (Cover 1972)

é Fix p(u1)p(u2)p(v1)p(v2), functions x1(u1 , v1), x2(u2 , v2)U1

V1

U2

V2

X1

X2

Y1

Y2

x1(u1 , v1)

x2(u2 , v2)p(y1 , y2|x1 , x2)

El Gamal (Stanford University) Interference channel Shannon Memorial Lecture 22 / 40

Page 60: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Han–Kobayashi (1981) coding scheme

∙ Idea: Decode part of interference and treat rest as noise:

é Split message M j, j = 1, 2, into public message M j0 and private message M j j

é Use superposition encoding (Cover 1972)

é Fix p(u1)p(u2)p(v1)p(v2), functions x1(u1 , v1), x2(u2 , v2)U1

V1

U2

V2

X1

X2

Y1

Y2

x1(u1 , v1)

x2(u2 , v2)p(y1 , y2|x1 , x2)

∙ Codebook generation: For j = 1, 2

é Randomly generate 2nR j0 sequences unj (m j0) ∼ ∏ni=1 pU j

(u ji), m j0 ∈ [1 : 2nR j0]é Randomly generate 2nR j j sequences vnj (m j j) ∼ ∏n

i=1 pVj(u ji), m j j ∈ [1 : 2nR j j ]

El Gamal (Stanford University) Interference channel Shannon Memorial Lecture 22 / 40

Page 61: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Han–Kobayashi (1981) coding scheme

∙ Idea: Decode part of interference and treat rest as noise:

é Split message M j, j = 1, 2, into public message M j0 and private message M j j

é Use superposition encoding (Cover 1972)

é Fix p(u1)p(u2)p(v1)p(v2), functions x1(u1 , v1), x2(u2 , v2)U1

V1

U2

V2

X1

X2

Y1

Y2

x1(u1 , v1)

x2(u2 , v2)p(y1 , y2|x1 , x2)

∙ Codebook generation: For j = 1, 2

é Randomly generate 2nR j0 sequences unj (m j0) ∼ ∏ni=1 pU j

(u ji), m j0 ∈ [1 : 2nR j0]é Randomly generate 2nR j j sequences vnj (m j j) ∼ ∏n

i=1 pVj(u ji), m j j ∈ [1 : 2nR j j ]

∙ Encoding: To send m j, j = 1, 2, transmit x j(u ji(m j0), v ji(m j j)), i ∈ [1 : n]

El Gamal (Stanford University) Interference channel Shannon Memorial Lecture 22 / 40

Page 62: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Han–Kobayashi (1981) coding scheme

∙ Idea: Decode part of interference and treat rest as noise:

é Split message M j, j = 1, 2, into public message M j0 and private message M j j

é Use superposition encoding (Cover 1972)

é Fix p(u1)p(u2)p(v1)p(v2), functions x1(u1 , v1), x2(u2 , v2)U1

V1

U2

V2

X1

X2

Y1

Y2

x1(u1 , v1)

x2(u2 , v2)p(y1 , y2|x1 , x2)

∙ Codebook generation: For j = 1, 2

é Randomly generate 2nR j0 sequences unj (m j0) ∼ ∏ni=1 pU j

(u ji), m j0 ∈ [1 : 2nR j0]é Randomly generate 2nR j j sequences vnj (m j j) ∼ ∏n

i=1 pVj(u ji), m j j ∈ [1 : 2nR j j ]

∙ Encoding: To send m j, j = 1, 2, transmit x j(u ji(m j0), v ji(m j j)), i ∈ [1 : n]∙ Decoding: SND is rate optimal (Bandemer–EG–Kim 2012)

El Gamal (Stanford University) Interference channel Shannon Memorial Lecture 22 / 40

Page 63: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Summary

∙ Multiple access channel:

∙ Interference channel:

é Random ptp codes + superposition + SND achieve H–K bound

é SND achieves the same rates as MLD

é We don’t know how to do better than H–K

∙ Broadcast channel

∙ Multihop networks

∙ Multimessage networks

El Gamal (Stanford University) Interference channel Shannon Memorial Lecture 23 / 40

Page 64: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Broadcast channel

M1 ,M2 Xn

p(y1 , y2|x)Yn1

Yn2

M1

M2

Encoder

Decoder 1

Decoder 2

∙ First studied by Cover (1972)

El Gamal (Stanford University) Broadcast channel Shannon Memorial Lecture 24 / 40

Page 65: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Broadcast channel

M1 ,M2 Xn

p(y1 , y2|x)Yn1

Yn2

M1

M2

Encoder

Decoder 1

Decoder 2

∙ First studied by Cover (1972)

∙ (2nR1 , 2nR2 , n) code, P(n)e , achievability, capacity region C: Same as MAC

∙ Capacity region is not known in general

∙ Coding schemes that are optimal in some cases

El Gamal (Stanford University) Broadcast channel Shannon Memorial Lecture 24 / 40

Page 66: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Broadcast channel with random ptp codes

∙ Use superposition coding: Fix p(u1)p(u2), function x(u1 , u2)U1

U2

x(u1 , u2)

|X

p(y1 , y2|x)Y1

Y2

El Gamal (Stanford University) Broadcast channel Shannon Memorial Lecture 25 / 40

Page 67: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Broadcast channel with random ptp codes

∙ Use superposition coding: Fix p(u1)p(u2), function x(u1 , u2)U1

U2

x(u1 , u2)

|X

p(y1 , y2|x)Y1

Y2

∙ Codebook generation:

é Randomly generate 2nR1 sequences un1(m1) ∼ ∏n

i=1 pU1(u1i), m1 ∈ [1 : 2nR1 ]

é Randomly generate 2nR2 sequences un2(m2) ∼ ∏n

i=1 pU2(u2i), m2 ∈ [1 : 2nR2 ]

∙ Encoding:

é To send (m1 ,m2), transmit x(u1i(m1), u2i(m2)), i ∈ [1 : n]

El Gamal (Stanford University) Broadcast channel Shannon Memorial Lecture 25 / 40

Page 68: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Broadcast channel with random ptp codes

∙ Use superposition coding: Fix p(u1)p(u2), function x(u1 , u2)U1

U2

p(y1 , y2|u1 , u2)Y1

Y2

∙ Codebook generation:

é Randomly generate 2nR1 sequences un1(m1) ∼ ∏n

i=1 pU1(u1i), m1 ∈ [1 : 2nR1 ]

é Randomly generate 2nR2 sequences un2(m2) ∼ ∏n

i=1 pU2(u2i), m2 ∈ [1 : 2nR2 ]

∙ Encoding:

é To send (m1 ,m2), transmit x(u1i(m1), u2i(m2)), i ∈ [1 : n]∙ Exactly the same as scheme for IC without superposition (X j ← U j)!

El Gamal (Stanford University) Broadcast channel Shannon Memorial Lecture 25 / 40

Page 69: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Broadcast channel with random ptp codes

∙ Use superposition coding: Fix p(u1)p(u2), function x(u1 , u2)U1

U2

p(y1 , y2|u1 , u2)Y1

Y2

∙ Codebook generation:

é Randomly generate 2nR1 sequences un1(m1) ∼ ∏n

i=1 pU1(u1i), m1 ∈ [1 : 2nR1 ]

é Randomly generate 2nR2 sequences un2(m2) ∼ ∏n

i=1 pU2(u2i), m2 ∈ [1 : 2nR2 ]

∙ Encoding:

é To send (m1 ,m2), transmit x(u1i(m1), u2i(m2)), i ∈ [1 : n]∙ Exactly the same as scheme for IC without superposition (X j ← U j)!

⇒ SND is rate optimal

El Gamal (Stanford University) Broadcast channel Shannon Memorial Lecture 25 / 40

Page 70: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Broadcast channel with random ptp codes

Theorem (Bandemer–EG–Kim 2012)

The optimal rate region with random ptp codes p(u1)p(u2), x(u1 , u2) is:R(p) = R1(p) ∩ R2(p)

I(U1 ;Y1|U2)I(U1 ;Y1)I(U2 ;Y1)

I(U2 ;Y2|U1)

I(U1 ;Y2)

I(U2 ;Y2)R1 R1

R2 R2

R1(p) R2(p)

El Gamal (Stanford University) Broadcast channel Shannon Memorial Lecture 26 / 40

Page 71: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Broadcast channel with random ptp codes

Theorem (Bandemer–EG–Kim 2012)

The optimal rate region with random ptp codes p(u1)p(u2), x(u1 , u2) is:R(p) = R1(p) ∩ R2(p)

I(U1 ;Y1|U2)I(U1 ;Y1)I(U2 ;Y1)

I(U2 ;Y2|U1)

I(U1 ;Y2)

I(U2 ;Y2)R1 R1

R2 R2

R1(p) R2(p)

∙ Includes superposition coding region (Cover 1972, Bergmans 1973):

é Optimal for degraded, less noisy, more capable BCs

∙ Also includes Cover–van der Meulen (1975) region

El Gamal (Stanford University) Broadcast channel Shannon Memorial Lecture 26 / 40

Page 72: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Broadcast channel with random ptp codes

Theorem (Bandemer–EG–Kim 2012)

The optimal rate region with random ptp codes p(u1)p(u2), x(u1 , u2) is:R(p) = R1(p) ∩ R2(p)

I(U1 ;Y1|U2)I(U1 ;Y1)I(U2 ;Y1)

I(U2 ;Y2|U1)

I(U1 ;Y2)

I(U2 ;Y2)R1 R1

R2 R2

R1(p) R2(p)

∙ Includes superposition coding region (Cover 1972, Bergmans 1973):

é Optimal for degraded, less noisy, more capable BCs

∙ Also includes Cover–van der Meulen (1975) region

∙ We can do better using schemes beyond ptp codes

El Gamal (Stanford University) Broadcast channel Shannon Memorial Lecture 26 / 40

Page 73: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Marton (1979) coding scheme

∙ Motivation: Since (M1 ,M2) is available at sender, jointly code them

∙ Fix p(u1 , u2) (instead of p(u1)p(u2)) and function x(u1 , u2)U1

U2

x(u1 , u2) Xp(y1 , y2|x)

Y1

Y2

El Gamal (Stanford University) Broadcast channel Shannon Memorial Lecture 27 / 40

Page 74: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Marton (1979) coding scheme

∙ Codebook generation: Fix p(u1 , u2) and function x(u1 , u2)é Randomly generate ptp codebooks unj (l j), l j ∈ [1 : 2nR j ], R j > R j, j = 1, 2

é Partition each into subcodebooks C j(m j), m j ∈ [1 : 2nR j ], j = 1, 2

El Gamal (Stanford University) Broadcast channel Shannon Memorial Lecture 27 / 40

un1 (l1)

un2 (l2)

1 2n(R1−R1) 2

nR1

1

2n(R2−R2)

2nR2

C2(1)

C2(2)

C2(m2)

C2(2nR2 )

C1(1) C1(2) C1(m1) C1(2nR1 )

Page 75: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Marton (1979) coding scheme

∙ Encoding: To send (m1 ,m2):é Find pair (un

1(l1), un2 (l2)) ∈ T

(n)є , l j ∈ C j(m j), j = 1, 2

é Transmit x(u1i(l1), u2i(l2)), i ∈ [1 : n]

El Gamal (Stanford University) Broadcast channel Shannon Memorial Lecture 27 / 40

un1 (l1)

un2 (l2)

1 2n(R1−R1) 2

nR1

1

2n(R2−R2)

2nR2

C2(1)

C2(2)

C2(2nR2 )

C1(1) C1(2) C1(2nR1 )

C2(m2)

C1(m1)

Page 76: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Summary

∙ Multiple access channel:

é Random ptp codes achieve capacity region

∙ Interference channel

é Random ptp codes achieve best known inner bound

∙ Broadcast channel:

é Can do better than ptp codes using Marton coding

∙ Relay channel

∙ Multicast networks

∙ Multimessage networks

El Gamal (Stanford University) Broadcast channel Shannon Memorial Lecture 28 / 40

Page 77: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Relay channel

Xn1

Xn2

Y n2

Y n3

M ∈ [1 : 2nR] Mp(y2 , y3|x1 , x2)

x2i(Y i−12

)

Encoder Decoder

∙ First studied by van der Meulen (1971)

El Gamal (Stanford University) Relay channel Shannon Memorial Lecture 29 / 40

Page 78: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Relay channel

Xn1

Xn2

Y n2

Y n3

M ∈ [1 : 2nR] Mp(y2 , y3|x1 , x2)

x2i(Y i−12

)

Encoder Decoder

∙ First studied by van der Meulen (1971)

∙ Capacity C is not known in general

∙ Coding schemes that are optimal in some cases

El Gamal (Stanford University) Relay channel Shannon Memorial Lecture 29 / 40

Page 79: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

RC with random ptp codes: Multihop

∙ Send b − 1 messages over b n-transmission blocks

M1 M2 M3 Mb−1 1

n

Block 1 Block 2 Block 3 Block b − 1 Block b

∙ Fix p(x1)p(x2), generate (for each block) ptp codes for sender and relay

El Gamal (Stanford University) Relay channel Shannon Memorial Lecture 30 / 40

Page 80: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

RC with random ptp codes: Multihop

∙ Send b − 1 messages over b n-transmission blocks

X1

Y2 : X2

Y3

x2)

M j

M j−1

El Gamal (Stanford University) Relay channel Shannon Memorial Lecture 30 / 40

Page 81: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

RC with random ptp codes: Multihop

∙ Send b − 1 messages over b n-transmission blocks

X1

Y2 : X2

Y3

M j

M j M j−1

M j−1

El Gamal (Stanford University) Relay channel Shannon Memorial Lecture 30 / 40

Page 82: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

RC with random ptp codes: Multihop

∙ Send b − 1 messages over b n-transmission blocks

X1

Y2 : X2

Y3

M j

M j M j−1

M j−1

∙ This achieves:R = min�I(X1 ;Y2 |X2), I(X2 ;Y3)�

El Gamal (Stanford University) Relay channel Shannon Memorial Lecture 30 / 40

Page 83: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

RC with random ptp codes: Multihop

∙ Send b − 1 messages over b n-transmission blocks

X1

Y2 : X2

Y3

M j

M j M j−1

M j−1

∙ This achieves:R = min�I(X1 ;Y2 |X2), I(X2 ;Y3)�

∙ Optimal for a cascade of two DMCs: p(y2 , y3|x1 , x2) = p(y2|x1)p(y3|x2)

C = min�I(X1 ;Y2), I(X2 ;Y3)�

El Gamal (Stanford University) Relay channel Shannon Memorial Lecture 30 / 40

Page 84: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

RC with random ptp codes: Multihop

∙ Send b − 1 messages over b n-transmission blocks

X1

Y2 : X2

Y3

M j

M j M j−1

M j−1

∙ This achieves:R = min�I(X1 ;Y2 |X2), I(X2 ;Y3)�

∙ Optimal for a cascade of two DMCs: p(y2 , y3|x1 , x2) = p(y2|x1)p(y3|x2)

C = min�I(X1 ;Y2), I(X2 ;Y3)�

∙ But we can do better via superposition and more sophisticated decoding

El Gamal (Stanford University) Relay channel Shannon Memorial Lecture 30 / 40

Page 85: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

RC with random ptp codes: Decode–forward (DF)

∙ The sender knows what the relay knows:

é They can coherently cooperate via superposition coding at the senderé Fix p(x2)p(u) and x1(u, x2), generate ptp codes for relay and sender

∙ Receiver uses backward decoding (Zeng–Kuhlmann–Buzo 1989)

X1

Y2 : X2

Y3(M j−1,M j)

M j M j−1

M j−1

El Gamal (Stanford University) Relay channel Shannon Memorial Lecture 31 / 40

Page 86: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

RC with random ptp codes: Decode–forward (DF)

∙ The sender knows what the relay knows:

é They can coherently cooperate via superposition coding at the senderé Fix p(x2)p(u) and x1(u, x2), generate ptp codes for relay and sender

∙ Receiver uses backward decoding (Zeng–Kuhlmann–Buzo 1989)

X1

Y2 : X2

Y3(M j−1,M j)

M j M j−1

M j−1

∙ Achieves (Cover–EG 1979):

R = min�I(X1 ;Y2 |X2), I(X1 , X2 ;Y3)�

El Gamal (Stanford University) Relay channel Shannon Memorial Lecture 31 / 40

Page 87: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

RC with random ptp codes: Decode–forward (DF)

∙ The sender knows what the relay knows:

é They can coherently cooperate via superposition coding at the senderé Fix p(x2)p(u) and x1(u, x2), generate ptp codes for relay and sender

∙ Receiver uses backward decoding (Zeng–Kuhlmann–Buzo 1989)

X1

Y2 : X2

Y3(M j−1,M j)

M j M j−1

M j−1

∙ Achieves (Cover–EG 1979):

R = min�I(X1 ;Y2 |X2), I(X1 , X2 ;Y3)�∙ Optimal for physically degraded RC: (X1 , X2) → (Y2, X2) → Y3

El Gamal (Stanford University) Relay channel Shannon Memorial Lecture 31 / 40

Page 88: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Compress–forward (Cover–EG 1979)

∙ DF does not do well when X1 → Y2 is not better than X1 → Y3

X1

Y2 : X2

Y3

|

M M

El Gamal (Stanford University) Relay channel Shannon Memorial Lecture 32 / 40

Page 89: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Compress–forward (Cover–EG 1979)

∙ DF does not do well when X1 → Y2 is not better than X1 → Y3

∙ Can do better by relaying compressed version of Yn2 instead of DF

X1

Y2 : X2

Y3

| )

M j

Yn2 j Y

n2, j−1

M j−1

El Gamal (Stanford University) Relay channel Shannon Memorial Lecture 32 / 40

Page 90: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Compress–forward (Cover–EG 1979)

∙ DF does not do well when X1 → Y2 is not better than X1 → Y3

∙ Can do better by relaying compressed version of Yn2 instead of DF

X1

Y2 : X2

Y3

| )

M j

Yn2 j Y

n2, j−1

M j−1

∙ Does not use ptp codes as defined

∙ Optimal for some RCs (Aleksic–Razaghi–Yu 2009)

El Gamal (Stanford University) Relay channel Shannon Memorial Lecture 32 / 40

Page 91: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Summary

∙ Multiple access channel:

∙ Interference channel:

∙ Broadcast channel

∙ Relay channel

é Random ptp codes + superposition + backward decoding achieve DF bound

é Can sometimes do better using schemes beyond ptp codes, e.g., CF

∙ Multicast networks

∙ Multimessage networks:

El Gamal (Stanford University) Relay channel Shannon Memorial Lecture 33 / 40

Page 92: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Multicast network

p(y1 , . . . , yN |x1 , . . . , xN )M

M j

Mk

MN

1

2

3

j

k

ND

∙ Capacity is not known in general (relay channel is special case)

El Gamal (Stanford University) Multicast networks Shannon Memorial Lecture 34 / 40

Page 93: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Multicast network

p(y1 , . . . , yN |x1 , . . . , xN )M

M j

Mk

MN

1

2

3

j

k

ND

∙ Capacity is not known in general (relay channel is special case)

∙ DF can be extended (Xie–Kumar 2005, Kramer–Gastpar–Gupta 2005)

∙ CF can be extended (noisy network coding (EG–Kim 2011))

El Gamal (Stanford University) Multicast networks Shannon Memorial Lecture 34 / 40

Page 94: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Multicast network

p(y1 , . . . , yN |x1 , . . . , xN )M

M j

Mk

MN

1

2

3

j

k

ND

∙ Capacity is not known in general (relay channel is special case)

∙ DF can be extended (Xie–Kumar 2005, Kramer–Gastpar–Gupta 2005)

∙ CF can be extended (noisy network coding (EG–Kim 2011))

∙ Gaussian multicast network:

é CF achieves within 0.63N bit of capacity (Lim–Kim–EG–Chung 2011)

é DF can have unbounded gap to capacity

El Gamal (Stanford University) Multicast networks Shannon Memorial Lecture 34 / 40

Page 95: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Multimessage network

p(y1 , . . . , yN |x1 , . . . , xN )M1

M2

M3

(M1l , M3l )

(M2k , M3k )

M1N

M34

1

2

3

4

l

k

N

∙ Node j wishes to send message M j to set of destination nodes D j

El Gamal (Stanford University) Multimessage network Shannon Memorial Lecture 35 / 40

Page 96: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Multimessage network

p(y1 , . . . , yN |x1 , . . . , xN )M1

M2

M3

(M1l , M3l )

(M2k , M3k )

M1N

M34

1

2

3

4

l

k

N

∙ Node j wishes to send message M j to set of destination nodes D j

∙ No general capacity gap result exists for Gaussian multimessage network

El Gamal (Stanford University) Multimessage network Shannon Memorial Lecture 35 / 40

Page 97: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Multimessage network

p(y1 , . . . , yN |x1 , . . . , xN )M1

M2

M3

(M1l , M3l )

(M2k , M3k )

M1N

M34

1

2

3

4

l

k

N

∙ Node j wishes to send message M j to set of destination nodes D j

∙ No general capacity gap result exists for Gaussian multimessage network

∙ How well do ptp codes perform?

El Gamal (Stanford University) Multimessage network Shannon Memorial Lecture 35 / 40

Page 98: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Capacity scaling laws

−1/2 1/2−1/2

1/2

1

2

2N

∙ Random wireless network (Gupta–Kumar 2000):é Multi-unicast: Send message M j at rate R from node j ∈ [1 : N] to k = j +N

é Gaussian network model: Path loss exponent í ≥ 2, average power constraint

é What is the scaling law for symmetric capacity C (highest achievable R)?

El Gamal (Stanford University) Multimessage network Shannon Memorial Lecture 36 / 40

Page 99: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Capacity scaling laws

SS�

D

D�

∙ Random wireless network (Gupta–Kumar 2000):é Multi-unicast: Send message M j at rate R from node j ∈ [1 : N] to k = j +N

é Gaussian network model: Path loss exponent í ≥ 2, average power constraint

é What is the scaling law for symmetric capacity C (highest achievable R)?

∙ Ptp codes + cellular time division + multihop: C = Ω�N−1/2�

El Gamal (Stanford University) Multimessage network Shannon Memorial Lecture 36 / 40

Page 100: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Capacity scaling laws

SS�

D

D�

∙ Random wireless network (Gupta–Kumar 2000):é Multi-unicast: Send message M j at rate R from node j ∈ [1 : N] to k = j +N

é Gaussian network model: Path loss exponent í ≥ 2, average power constraint

é What is the scaling law for symmetric capacity C (highest achievable R)?

∙ Ptp codes + cellular time division + multihop: C = Ω�N−1/2�∙ Upper bound (Leveque–Telatar 2005): C = O�N−1/2+1/í logN�

El Gamal (Stanford University) Multimessage network Shannon Memorial Lecture 36 / 40

Page 101: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Conclusion and final remarks

∙ Random ptp codes with sophisticated decoding can perform well:

é Achieve capacity region of MAC

é Achieve the Han–Kobayashi bound for IC (best known)

é Achieve the superposition coding and Cover–van der Meulen bounds for BC

é Achieve decode–forward bound for multicast networks

é Achieve close to optimal scaling law for random multi-unicast networks

El Gamal (Stanford University) Conclusion and final remarks Shannon Memorial Lecture 37 / 40

Page 102: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Conclusion and final remarks

∙ Random ptp codes with sophisticated decoding can perform well

∙ Joint-typicality-based decoding does as well as MLD

El Gamal (Stanford University) Conclusion and final remarks Shannon Memorial Lecture 37 / 40

Page 103: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Conclusion and final remarks

∙ Random ptp codes with sophisticated decoding can perform well

∙ Joint-typicality-based decoding does as well as MLD

∙ There are scenarios in which we need new network codes:

é Marton coding for BC

é Compress–forward (noisy network coding) for relay (networks)

∙ These network codes employ lossy compression and structured codes

El Gamal (Stanford University) Conclusion and final remarks Shannon Memorial Lecture 37 / 40

Page 104: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Conclusion and final remarks

∙ Random ptp codes with sophisticated decoding can perform well

∙ Joint-typicality-based decoding does as well as MLD

∙ There are scenarios in which we need new network codes:

é Marton coding for BC

é Compress–forward (noisy network coding) for relay (networks)

∙ These network codes employ lossy compression and structured codes

∙ What does all this say about practical coding and communication?

El Gamal (Stanford University) Conclusion and final remarks Shannon Memorial Lecture 37 / 40

Page 105: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Conclusion and final remarks

∙ Random ptp codes with sophisticated decoding can perform well

∙ Joint-typicality-based decoding does as well as MLD

∙ There are scenarios in which we need new network codes:

é Marton coding for BC

é Compress–forward (noisy network coding) for relay (networks)

∙ These network codes employ lossy compression and structured codes

∙ What does all this say about practical coding and communication?

é Work on constructing better decoders

é Find better practical codes for broadcasting and relaying

El Gamal (Stanford University) Conclusion and final remarks Shannon Memorial Lecture 37 / 40

Page 106: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Conclusion and final remarks

∙ Random ptp codes with sophisticated decoding can perform well

∙ Joint-typicality-based decoding does as well as MLD

∙ There are scenarios in which we need new network codes:

é Marton coding for BC

é Compress–forward (noisy network coding) for relay (networks)

∙ These network codes employ lossy compression and structured codes

∙ What does all this say about practical coding and communication?

é Work on constructing better decoders

é Find better practical codes for broadcasting and relaying

∙ The best answer, to quote Tom Cover, is:

“Theory is the first term in the Taylor series expansion of practice.”

El Gamal (Stanford University) Conclusion and final remarks Shannon Memorial Lecture 37 / 40

Page 107: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

Thank You!

Page 108: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

References

Ahlswede, R. (1971). Multiway communication channels. In Proc. 2nd Int. Symp. Inf. Theory, Tsahkadsor, Armenian SSR,pp. 23–52.

Ahlswede, R. (1974). The capacity region of a channel with two senders and two receivers. Ann. Probability, 2(5), 805–814.

Aleksic, M., Razaghi, P., and Yu, W. (2009). Capacity of a class of modulo-sum relay channels. IEEE Trans. Inf. Theory,55(3), 921–930.

Baccelli, F., El Gamal, A., and Tse, D. (2011). Interference networks with point-to-point codes. IEEE Trans. Inf. Theory,57(5), 2582–2596.

Bandemer, B. and El Gamal, A. (2011). Interference decoding for deterministic channels. IEEE Trans. Inf. Theory, 57(5),2966–2975.

Bandemer, B., El Gamal, A., and Kim, Y.-H. (2012). Simultaneous nonunique decoding is rate-optimal. In Proc. 50th Ann.

Allerton Conf. Comm. Control Comput., Monticello, IL.

Bergmans, P. P. (1973). Random coding theorem for broadcast channels with degraded components. IEEE Trans. Inf. Theory,19(2), 197–207.

Costa, M. H. M. and El Gamal, A. (1987). The capacity region of the discrete memoryless interference channel with stronginterference. IEEE Trans. Inf. Theory, 33(5), 710–711.

Cover, T. M. (1972). Broadcast channels. IEEE Trans. Inf. Theory, 18(1), 2–14.

Cover, T. M. and El Gamal, A. (1979). Capacity theorems for the relay channel. IEEE Trans. Inf. Theory, 25(5), 572–584.

El Gamal, A. and Kim, Y.-H. (2011). Network Information Theory. Cambridge, Cambridge.

Gallager, R. G. (1965). A simple derivation of the coding theorem and some applications. IEEE Trans. Inf. Theory, 11(1),3–18.

Gupta, P. and Kumar, P. R. (2000). The capacity of wireless networks. IEEE Trans. Inf. Theory, 46(2), 388–404.

Han, T. S. and Kobayashi, K. (1981). A new achievable rate region for the interference channel. IEEE Trans. Inf. Theory,27(1), 49–60.

El Gamal (Stanford University) Conclusion and final remarks Shannon Memorial Lecture 39 / 40

Page 109: Abbas El Gamal Stanford University Shannon Memorial ...isl.stanford.edu/~abbas/presentations/lect00.pdf · é Algebraic codes (e.g., BCH, Reed–Solomon, polar codes) é Random codes

References (cont.)

Kramer, G., Gastpar, M., and Gupta, P. (2005). Cooperative strategies and capacity theorems for relay networks. IEEE Trans.

Inf. Theory, 51(9), 3037–3063.

Leveque, O. and Telatar, I. E. (2005). Information-theoretic upper bounds on the capacity of large extended ad hoc wirelessnetworks. IEEE Trans. Inf. Theory, 51(3), 858–865.

Liao, H. H. J. (1972). Multiple access channels. Ph.D. thesis, University of Hawaii, Honolulu, HI.

Lim, S. H., Kim, Y.-H., El Gamal, A., and Chung, S.-Y. (2011). Noisy network coding. IEEE Trans. Inf. Theory, 57(5),3132–3152.

Marton, K. (1979). A coding theorem for the discrete memoryless broadcast channel. IEEE Trans. Inf. Theory, 25(3), 306–311.

Orlitsky, A. and Roche, J. R. (2001). Coding for computing. IEEE Trans. Inf. Theory, 47(3), 903–917.

Shannon, C. E. (1948). A mathematical theory of communication. Bell Syst. Tech. J., 27(3), 379–423, 27(4), 623–656.

Shannon, C. E. (1961). Two-way communication channels. In Proc. 4th Berkeley Symp. Math. Statist. Probab., vol. I, pp.611–644. University of California Press, Berkeley.

Slepian, D. and Wolf, J. K. (1973). Noiseless coding of correlated information sources. IEEE Trans. Inf. Theory, 19(4),471–480.

van der Meulen, E. C. (1971). Three-terminal communication channels. Adv. Appl. Probab., 3(1), 120–154.

van der Meulen, E. C. (1975). Random coding theorems for the general discrete memoryless broadcast channel. IEEE Trans.

Inf. Theory, 21(2), 180–190.

Xie, L.-L. and Kumar, P. R. (2005). An achievable rate for the multiple-level relay channel. IEEE Trans. Inf. Theory, 51(4),1348–1358.

Zeng, C.-M., Kuhlmann, F., and Buzo, A. (1989). Achievability proof of some multiuser channel coding theorems usingbackward decoding. IEEE Trans. Inf. Theory, 35(6), 1160–1165.

El Gamal (Stanford University) Conclusion and final remarks Shannon Memorial Lecture 40 / 40