Abbas Edition

download Abbas Edition

of 76

Transcript of Abbas Edition

  • 8/16/2019 Abbas Edition

    1/76

     

    GENERAL AVITON DOUBLE ENGINE

    PASSENGER AIRCRAFT

    Aircraft design lab i

      Submitted by

    ABBAS!S

    "#$#%#%%##%'

    Ban( )ri*a ! )

    "#$#%#%%##+'

    Dines, ! r"#$#%#%%#%-'

    Dines, )rab( ! .

    "#$#%#%%#%/'

    AERONAUTICAL ENGINEERING

    0ARPAGA1 INSTITUTE OF TEC2NOLOG34COI1BATORE!

  • 8/16/2019 Abbas Edition

    2/76

     

    0ar)aga. instit(te 5f tec,n5l5g*

    C5i.bat5re%#/

     

  • 8/16/2019 Abbas Edition

    3/76

  • 8/16/2019 Abbas Edition

    4/76

  • 8/16/2019 Abbas Edition

    5/76

     

    CONTENTS

    List of symbols 3

    Introduction 4

    Literature survey 10

    Weight estimation 24

    Engine selection 32

    Airfoil selection 33

    Wing design 35

  • 8/16/2019 Abbas Edition

    6/76

    Wetted area calculation 40

    rag estimation 4!

    Lift estimation 54

    "a#eoff and landing distance calculation $4

    "hree vie%s of aircraft &0

    'eference !0

    LISTOF SYMBOLS

    ' ('ange

    ) ()elocity

    * (s+ecific fuel consum+tion

    E (Loitering time

    L, (lift to drag ratio

    V alt  ()elocity at altitude

     ρalt  (ensity at altitude

    - ( %ing surface area

  • 8/16/2019 Abbas Edition

    7/76

     b ( %ing s+an

    µ❑alt  (coefficient of viscosity at altitude

    C  HT  (.ori/ontal tail volume coefficient

     L HT  ( .ori/ontal tail arm moment

    S HT  ( .ori/ontal tail area

    SW  (Wing area

    C W   (Wing mean chord

     LVT  ()ertical tail arm moment

    SVT   )ertical tail area

    C VT  ()ertical tail volume coefficient

    bW   (Wing s+an

    SW  (Wing area

    )"  ( )ertical ta#e(off distance-"  ( "a#e(off distance

    " ( "a#e(off thrust

    )A ( A++roach )elocity

  • 8/16/2019 Abbas Edition

    8/76

  • 8/16/2019 Abbas Edition

    9/76

      An air+lane design is both an art and a science8 Air+lane design is an intellectual

    engineering +rocess of creating on +a+er a flying machine to

    9eet s+ecifications established by users 6ioneer innovative: ne% ideas and technology8

    "he design +rocess is an intellectual activity develo+ed via e;+erience: by attention +aid to

    successful air+lane designs that have been used in the +ast and by design +rocedures and

    databases that are a +art of every air+lane manufacturer8

    6.A-E- AI'6LAE E-I7(

     rom the time %hen an air+lane materiali/es as a ne% thought to the time the finished +roduct is

    ready: the com+lete design undergoes three distinct +hases in +erfect se

  • 8/16/2019 Abbas Edition

    10/76

     "he end of the +hase is the decision if the air+lane is to be manufactured or not8 It is no longer a

    critical condition %here Byou bet your com+anyC on full scale develo+ment of a ne% air+lane8

    E"AIL E-I7(

    "his +hase is literally the Dnuts and bolts +hase of air+lane design8 "he aerodynamic: +ro+ulsion:structures: +erformance: flight control analysis are over in the +reliminary +hase8 "he air+lane is

    to be fabricated and machined8 "he si/e: number and location of rivets: fasteners are determined

    no%8 light simulators are develo+ed8 At the end of this +hase: the aircraft is ready to be

    fabricated8

    ".E -E)E I"ELLE*"=AL 6I)" 6I"- ' **E6"=AL E-I7(

    "he overall conce+tual design is anchored b seven intellectual B+ivot +ointsC seven factors that

    anchor the conce+tual design thought +rocess8 "hey allo% different: detailed thin#ing to reach

    out in all directions from each +oint8

    'EF=I'E9E"-7(

    "he re

  • 8/16/2019 Abbas Edition

    11/76

  • 8/16/2019 Abbas Edition

    12/76

  • 8/16/2019 Abbas Edition

    13/76

    9a;imum lift coefficient Lift to drag ratio @L, "hrust to %eight ratio @",W

    "herefore the ne;t ste+ is to ma#e first estimates of W,- and ",W to achieve the +erformance as

    sti+ulated by reudged if it can meet all original s+ecifications8 An

    interactive +rocess is initiated %here the configuration is modified8 "he critical +erformance

     +arameters are ad>usted for im+roving +erformance8 In this stage: some mature decisions should

     be made as the s+ecifications or cost or unavailable technology8

    .ence some s+ecifications might be rela;ed so that others might get higher +riority8

    6"I9IGA"I7(

    When iterative +rocess is over: it has +roduced a viable air+lane8 "his leads to o+timi/ation8 "he

    o+timi/ation analysis is carried out may be carried out by a systematic variation of different

     +arameters ",W: W,- and +lotting the +erformance o gra+hs %hich can be found using a si/ing

    matri; or a car+et +lot from %hich o+timum design can be found8

    WEI." AI'6LA*E I'-" E-"I9A"E7(

     o air+lane can ta#e off the ground unless it +roduces a lift greater than its %eight8 "here

    should be a first estimate of gross ta#eoff %eight8 "he %eight estimate is the ne;t +ivot +ointafter the re

  • 8/16/2019 Abbas Edition

    14/76

    *-"'AI" IA'A97(

    A constraint diagram is constructed %hich identifies allo%able solution s+ace for air+lane design8

    A constraint diagram consists of +lots o the sea level thrust to ta#e off %eight ratio versus %ing

    loading atta#eoff %eight ratio",W versus%ing loading at ta#eoff W ,- determined by

    intellectual +ivot +oint8

     T!E &ESIN W!EEL

    SI'IN AN&

     TRA&E

    STU&IES

    RE*UIRE%ENT &ESIN

    ANALYSIS

    &ESIN

    "ON"EPT

  • 8/16/2019 Abbas Edition

    15/76

    LITERATURE SUR$EY

    LITERATURE SUR$EY

  • 8/16/2019 Abbas Edition

    16/76

     It is very easy to design an aircraft if %e have datas about already e;isting aircrafts of similar 

    ty+e8 It +rovides more satisfaction and avoids confusion %hile choosing some design +arameters

    for our aircraft8 In this detailed survey some many im+ortant design drivers li#e as+ect ratio:

    %ing loading: overall dimensions and engine s+ecifications are determined for our reference8 It

    assists in +ro+osing a ne% design and modification in our design %hich %ill im+rove the

     +erformance of the +ro+osed aircraft8 "his assures the +erformance of the aircraft as +er the

    design calculations and easy %ay of designing an aircraft %ithin +articular +eriod of time8 -o in

    this literature survey %e have collected some ten already e;isting 20 seated >et trans+ort aircraft

    for our reference of design +arameters8 9ostly these aircrafts have similar characteristics in

    many designs as+ects %hich are sho%n in the table8

    GEOMETRIC SPECIFICATION

    S%NO AIRCRAFTNAM

    E

    ASPECTRATIO &INGSPAN'm( &INGAREA'm)*

    (

    IAI A+,, !%!6 *!%.6 4/%60

  • 8/16/2019 Abbas Edition

    17/76

    * CASA C **

    A+i12,

    !%!/ *!%*0 4

    /

    #e H,+i33,d /!!-

    Seie5 !%!" .%0 /.

    4 #e H,+i33,d 4!!-

    Seie5

    !%!" .%0 /.

    " PL M*0 *%*" **%!6 /.%7*

    6 At11+, A-/0 %40 **%!6 4*%4

    7 At11+, A-*0 *%. ** /.%7

    0 #1ie /*0 *!%.0 4!. #1ie **0 . 6%.7 /*

    !

    Emb,e EMB *!

    b,5i3i, ! .%70 /.%4

    Emb,e EMB !

    b,5i3i, 0%!7 "%// *.%!

    * Bee282,9t .!! .%"* 7%64 /*%67

    / H,bi y-* .%"* 7%*4 /4%67

    4 S81t 52%7 5:y+, %" .%7. /"%*

    " S81t-//! *%/ **%76 4*%

    6 C-*/A *%/ **%70 4*%

    7 C-*/B;C *%*6 **%0 4*%4

    0

  • 8/16/2019 Abbas Edition

    18/76

    IAI A+,, *%6. "%*

    * CASA C ** A+i12, 6%*! 6%/

    /

    #e H,+i33,d /!!-

    Seie5 "%77 "%./

    4

    #e H,+i33,d 4!!-

    Seie5 "%77 4%.

    " PL M*0 /%6 "%!6

    6 At11+, A-/0 "%67 4%6

    7 At11+, A-*0 *%.0 7%*4

    0 #1ie /*0 *% 4%06

    .

    #1ie **0

    6%"6 6%/"

    !

    Emb,e EMB *!

    b,5i3i, *! 4%.*

    Emb,e EMB !

    b,5i3i, "%! 4%7*

    * Bee282,9t .!! 7%6* "%60

    / H,bi y-* 0%06 4%6

    4 S81t 52%7 5:y+, *%* 4%."

    " S81t-//! 7%6. 4%."

    6

    C-*/A

    7%6. "

    7

    C-*/B;C

    7%7 "%74

    0

  • 8/16/2019 Abbas Edition

    19/76

    S%NO

    AIRCRAFTNAME EMPTY

    &EIGHT':=(

    MA>% TAKE OFF

    &EIGHT':=(

    IAI A+,, /... 60!4

    * CASA C ** A+i12, /70! 77!!

    /

    #e H,+i33,d /!!-

    Seie5 /4!! "67!

    4

    #e H,+i33,d 4!!-

    Seie5 /6*0 "67!

    " PL M*0 4!! 7"!!

    6 At11+, A-/0 "/!! ."!!

    7 At11+, A-*0 /.!! 6!!

    0 #1ie /*0 0.*! /..!

    .

    #1ie **0

    /7/. 66!!

    !

    Emb,e EMB *!

    b,5i3i, 7!7! "!!

    Emb,e EMB !

    b,5i3i, //./ ".!!

    * Bee282,9t .!! 47/* 7764

    / H,bi y-* *04! "/!!

    4 S81t 52%7 5:y+, /// "67!

    " S81t-//! 660! !/07

    6

    C-*/A

    644! !/07

    7C-*/B;C

    7*76 6!

    0

  • 8/16/2019 Abbas Edition

    20/76

    *! PL M*0 /6*0 7"!!

    6WE'6LA" -6E*II*A"I

    S%NO AIRCRAFTNAME PO&ER PLANT'8?( THRUSTPO&ER':@(

    IAI A+,, 6ratt JWhitney *anada 6"$A "".

    * CASA C ** A+i12, arrett Ai'esearch "6E(331 67

    /

    #e H,+i33,d /!!-Seie5

    6ratt JWhitney *anada 6"$A "".

    4

    #e H,+i33,d 4!!-Seie5

    6ratt JWhitney *anada 6"$A "!7

    " PL M*0 6ratt JWhitney *anada 6"$A 0*!

    6 At11+, A-/0 .oney%ell "6E331 0

    7 At11+, A-*0 6ratt JWhitney *anada 6"$A 7*!

    0 #1ie /*0 arrett Ai'esearch "6E(331

    .

    #1ie **0

    arrett Ai'esearch "6E(331 "70

    !

    Emb,e EMB *!

    b,5i3i,

    6ratt JWhitney *anada 6W11!

    /4!

    Emb,e EMB !

    b,5i3i,

    6ratt JWhitney *anada 6"$A

    "".

    * Bee282,9t .!! 6ratt JWhitney *anada 6"$A .""

    / H,bi y-* 6ratt JWhitney *anada 6"$A 46*

    4 S81t 52%7 5:y+, 6ratt JWhitney *anada 6"$A "//

    " S81t-//! arrett Ai'esearch "6E(331 0./

    6 C-*/A 6ratt JWhitney *anada 6"$A 0.4

    7

    C-*/B;C

    6ratt JWhitney *anada 6"$A !6*

    0

  • 8/16/2019 Abbas Edition

    21/76

    *! PL M*0 6ratt JWhitney *anada 6"$A 0*!

    S%NO

    AIRCRAFTNAME &ING

    LOA#ING':=;m)*(

    CRE&

    IAI A+,, ""%77

    *

    * CASA C ** A+i12, 07%0 *

    /

    #e H,+i33,d /!!-

    Seie5 4"%/0 *

    4

    #e H,+i33,d 4!!-

    Seie5 4"%/0 *

    " PL M*0 00%0 *

    6 At11+, A-/0 **4 *

    7 At11+, A-*0 46 *

    0 #1ie /*0 /4.%7" *

    .

    #1ie **0 *!6%*"

    *

    !

    Emb,e EMB *!

    b,5i3i, *.%07 *

    Emb,e EMB !

    b,5i3i, *!*%7" *

    * Bee282,9t .!! */7%6" *

    / H,bi y-* "*%07 *

    4 S81t 52%7 5:y+, /6%6 *

    " S81t-//! *47 *

    6

    C-*/A

    *47 *

    7

    C-*/B;C

    *74 *

  • 8/16/2019 Abbas Edition

    22/76

    0

    IMUM

    SPEE#':m;8(

    SER$ICE

    SEILING':m;8(

    IAI A+,, /*6 76*!

    *

    CASA C ** A+i12,

    /7! 7.*"

    /

    #e H,+i33,d /!!-

    Seie5 /4 76*!

    4

    #e H,+i33,d 4!!-

    Seie5 /4 76*!

    " PL M*0 /"" 76*!

    6 At11+, A-/0 4!"

    7 At11+, A-*0 /"" 6!!!

    0 #1ie /*0 6*! .4""

    .

    #1ie **0

    4// 0"/"

    !

    Emb,e EMB *!

    b,5i3i, 6!0 .!0"

    Emb,e EMB !

    b,5i3i, /0* 6""!

    * Bee282,9t .!! "46 76*!

    / H,bi y-* /*0 7!!!

    4 S81t 52%7 5:y+, /*4 60"0

    " S81t-//! /"* 64!!

    C-*/A

  • 8/16/2019 Abbas Edition

    23/76

    6 /"* /"!!

    7

    C-*/B;C

    4!! 4*"*

    0

  • 8/16/2019 Abbas Edition

    24/76

    " S81t-//! 6."

    6

    C-*/A

    */.

    7

    C-*/B;C

    .!7

    0

  • 8/16/2019 Abbas Edition

    25/76

    +,- .-- .,- /-- /,- ,-- ,,- 0-- 0,--

    +

    /

    0

    1

    2-

    2+

    S3eed #s Ser4ice cei5in6

    SER#I"E "EILIN7m8

    S3eed

    Ser4ice "ei5in6

    +,- .-- .,- /-- /,- ,-- ,,- 0-- 0,--

    +

    /

    0

    1

    2-

    2+

    S3eed #s b95

    Rate of c5imb

    S3eed

    b95

  • 8/16/2019 Abbas Edition

    26/76

    +,- .-- .,- /-- /,- ,-- ,,- 0-- 0,-

    -

    ,-

    2--

    2,-

    +--

    +,-

    .--

    .,-

    /--

    S3eed #s Win6 5oadin67:69m+8

    ;in6 5oadin67:69m+8

    S3eed

    Win6 Loadin6

    +,- .-- .,- /-- /,- ,-- ,,- 0-- 0,--

    ,--

    2---

    2,--

    +---

    +,--

    S3eed #s Ran6e7m8

    RANE 7:m8

    S3eed

    Ran6e

  • 8/16/2019 Abbas Edition

    27/76

    +,- .-- .,- /-- /,- ,-- ,,- 0-- 0,--

    +

    /

    0

    1

    2-

    2+

    S3eed #s Rate of c5imb

    Rate of c5imb

    S3eed

    Rate of c5imb

    RESULT

    rom the above literature survey gra+hs and calculation:

    18 )elocity )s 'ange

    )elocityK3&0#m,h

      'angeK300#m

    28 )elocity )s -ervice ceiling

     )elocityK3&0#m,h

      -ervice ceilingK&25m

    38 )elocity)s Wing loading

    )elocityK3&0#m,h

    Wing loading K1!&8#g,m2

    48 )elocity )sb,l

  • 8/16/2019 Abbas Edition

    28/76

      )elocityK3&0#m,h

      b,lK1825$

    58 )elocity)s As+ect ratio

    )elocityK3&0#m,h

      As+ect ratioK10803

    $8 )elocity)s 'ate of climb

    )elocityK3&0#m,h

      'ate of climbK!83m,s

  • 8/16/2019 Abbas Edition

    29/76

    &EIGHT ESTIMATION

    PRIMARY &EIGHT ESTIMATION

    "he ma>or factor that determines the %hole design of aircraft es+ecially the selection of overall

    %eight: airfoil and +o%er +lant of the aircraft8

    "otal %eight of an air+lane is given by:

      W" KW*MW6LMWMWE

    Where:

    W" K verall %eight of the aircraft

      W* K cre% %eight

    W6L K %eight of the +ayload

    W  K %eight of the fuel

    WE K em+ty %eight

    "o sim+lify the calculation: both fuel and em+ty %eights can be e;+ressed as fractions of the

    total ta#eoff %eight: i8e8: Wf ,W8 E

  • 8/16/2019 Abbas Edition

    30/76

      W K W*MW6M@

    2

    "1

    W

    W

    W"M@

    E

    "1

    W

    W

    W"

    "his can be solved for W" as follo%s7

    W" N @

    2

    "1

    W

    W

     W" N @

    E

    "1

    W

    W

    W" K W*MW6L

      W" K @  ( ) ( )

    * 6L

    2 " E "

    W W

    1 W , W W , W

    +

    −   = 

      o% W" can be determined if @W,W" and @WE,W" can be estimated8

    "hese are described belo%8

    According to our design: aircrafts ca+acity is 10 to 20 +assengers8 -o:

      W6LKW6A--EE'-MWAAE

      Assuming that each +assenger %eight is !0 #g %ith 15 #g baggage: then the +ayload %eight is:

    W6ay LoadK 5O2K 10 #g8

      Assuming that each cre% %eight is !0 #g %ith 15 #g baggage: then:

      W*re%K @2 O!0 M @2 O15

      K 10 #g

     -o:

    W"K 3!0

      1(@W f,W" @WE , W" 

    9I--I 6'ILE7(

  • 8/16/2019 Abbas Edition

    31/76

    rom the figure the various stages of aircraft during mission is as follo%s:1 start J%arm u+

    2 "a;iing in the run%ay

    3 "a#eoff 

    4 *limb

    5 *ruising

    $ Loiter 

    & escent and

    ! Landing8

    or subsonic >et trans+ort aircraft %eight fuel fraction is:

    @W!,W0 K@ W1,W0O@ W2,W1 O @ W3,W2 O @ W4,W3 O @ W5,W4 O @ W$,W5 O @ W&,W$

    O @W!,W&

    APPRO>IMATE &EIGHT ESTIMATION

      Weight fraction for each +rofile in mission segment:

    or Warm u+:

      @W1,W0 K0858

    or "a;y:

      @W2,W1 K08&8

  • 8/16/2019 Abbas Edition

    32/76

    or "a#eoff:

      @W3,W2 K08!8

    or *limb:

      @W4,W3 K0828

    or *ruising:

      @W5,W4 Ke;+@  ( ),

     RC 

    V L D

    Where:

    -?9L

    -

    E-I 6A'A9E"E'- E-I )AL=E-

    ' range 1!11#m) velocity 1028&!m,s

    L, lift to drag ratio 10

    * s+ecific fuel consum+tion 085

      -o: @W5,W4 Ke;+P (1!11 O085 Q  1028&!O10

    K 08414

    or loiter:

    Assume 10 minutes for loitering:

      @W$,W5 Ke;+@( ),

     EC 

     L D

    Where:

    -?9L

    -

    E-I 6A'A9E"E'- E-I )AL=E-

    E Loitering time 12s

    L, lift to drag ratio 12

  • 8/16/2019 Abbas Edition

    33/76

    * s+ecific fuel consum+tion 084

      -o: @W$,W5 Ke;+P (12O084 Q  12

    K08$&0

    or descent:

      @W&,W$ K083

    or landing:

      @W!,W& K083

    "hen:

      @W,W" K @180$O @1(W!,W0

      K08&&5

    Assume Em+ty Weight fraction:

      @WE,W" K 085$

    -o: overall %eight:

      W "K 2$00

      1(@W f,W" @WE , W"

    A++ro;imate verall %eightK &&$182 #g

  • 8/16/2019 Abbas Edition

    34/76

    RESULT

    "hus the final "a#eoff %eight of the +ro+osed aircraft %as estimated using =EL 'A*"I

    9E". %ere as follo%s:

    &APPRO>IMATE 776%* :=%

  • 8/16/2019 Abbas Edition

    35/76

  • 8/16/2019 Abbas Edition

    36/76

    "he Walter )ega has the follo%ing characteristics:

    "hrust +er engine K!482%  umber of engine K 2 "y+e of engine Karrett Ai 'esearch "6E

    "otal thrust K!482%

    RESULT

     ame of engine selectedKarrett Ai 'esearch "6E  umber of engine K 2 "otal thrust K !482%

    AIRFOIL SELECTION

  • 8/16/2019 Abbas Edition

    37/76

  • 8/16/2019 Abbas Edition

    38/76

    AIRFOIL SELECTION

    "he airfoil is the main as+ect and is the heart of the air+lane8 "he airfoils affects the cruise s+eed

    landing distance and ta#e off: stall s+eed and handling

  • 8/16/2019 Abbas Edition

    39/76

    NACA " #i=it

      1st digit @;08157 design lift coefficient8

      2nd J 3rd digits @;0857 location of ma;imum camber @as S of chord from LE8

      4th J 5th digits7 ma;imum section thic#ness @as S of chord8

    NACA 6 #i=it  1st digit7 identifies series ty+e8

      2nd digit @;107 location of minimum +ressure @as S of chord from leading edge @LE8

      3rd digit7 indicates acce+table range of *L above,belo% design value for satisfactory lo% drag +erformance @as tenths of *L8

      4th digit @;0817 design *L8

      5th J $th digits7 ma;imum section thic#ness @Sc

    "he airfoil that is to be used is no% selected8 As indicated earlier during the calculation of the lift

    coefficient value: it becomes necessary to use high s+eed airfoils: i8e8: the $; series: %hich have been

    designed to suit high subsonic cruise 9ach numbers8

    "he airfoil: in many res+ects: is the heart of the air+lane8 "he airfoil affects the cruise s+eed:

    ta#e(off and landing distances: stall s+eed: handling

  • 8/16/2019 Abbas Edition

    40/76

    µ❑alt 

    And:from standard air table at altitude 4200 m:

    T alt  K23$823 #8

     ρalt   K58315 #g,m2

    V alt  K9O   √ (ΥR T alt )

      K083O1.4×287×236.23

    √ ¿

      K2842 m,s

    As+ect ratio of our aircraftK10803

    rom the literature survey for that as+ect ratio:

      AreaK41 m2

      -+anK2082! m

    And: c Ks,b K2802m(1

    Andµ❑alt  K   µ❑0 ×(

    T alt T 0

    ) 08&5

      K17.5×10

    −5×(236.23

    288) 08&5

    K1850!   ×10−4

    -o: 'e K92.42×5.3195×2.02

    1.508×10−4

     K$8$   ×105

  • 8/16/2019 Abbas Edition

    41/76

    or the 'eynoldss number a++ro;imately   6.6×105

    :from the ".E'? WI -E*"I

     by A" follo%ing data can be obtained8

    St,ti1 Odi,te5

    .! *%/"

    ." %*

    !! !

    ! !

      %*" -%70

     *%" -*%/6

      " -/%*7

      7%" -/%07

     ! -4%4

     " -"%*"

      *! -"%077

      *" -6%//4

      /! -6%640

      4! -6%0"6

      "! -6%/6*  6! -4%//4

      7! -*%6!/

      0! -%74/

      .! -!%*0*

    Airfoil ty+e 9a;imum lift coefficient 9inimum drag coefficient

     A*A $5@4(420

     A*A $5@3(41!

     A*A $4@2(415

    181$

    1825

    182

    08005

    080045

    08010

  • 8/16/2019 Abbas Edition

    42/76

      ." -!%44

    !! -!

     NACA

  • 8/16/2019 Abbas Edition

    43/76

    RESULT

    rom the above analysis A*A $5(41! series ty+e airfoil %as selected for our aircraft design8

    &ING #ESIGN

  • 8/16/2019 Abbas Edition

    44/76

    &ING#ESIGN

      "he front of the airfoil is defined by a leading(edge radius that is tangent to the u++er and lo%er 

    surfaces8 An airfoil designed to o+erate in su+ersonic %ill have a shar+ or nearly( shar+ leadingedge to +revent a drag +roducing bo% shoc#8

    "he chord of the airfoil is the straight line from the leading edge to the trailing edge8 It is very

    difficult to build a +erfectly shar+ trailing edge: so most airfoils have a blunt trailing edge %ith

    some small finite thic#ness8

    B*amberC refers to the curvature characteristic of most airfoils8 "he B9ean camber lineC is the

    line e

  • 8/16/2019 Abbas Edition

    45/76

    similar fashion: an airfoil %hich is having its camber changed is bro#en into its camber line and

    thic#ness distribution8 "he camber line is scaled to +roduce desire ma;imum camberU then the

    original thic#ness distribution is added to obtain the ne% airfoil8 In this fashion: airfoil can be

    resha+ed to change either the +rofile drag or lift characteristics: %ithout greatly affecting the

    other8

    Fu5e3,=e

    nce the ta#eoff gross %eight has been estimated: the fuselage: the %ing8 And tail can be si/ed8

    9any methods e;ist to initially estimate the re

  • 8/16/2019 Abbas Edition

    46/76

    rom the literature survey for that as+ect ratio:

    AreaK41 m2

    -+anK2082! m8

    /%R11t  * ti+ chord

    * root chord

    "he ta+er ratio can be defined as:

      D Ktip chordrootchord

    And the value for the ta+er ratio in general from design boo# is084

      -o: * root chord K2 s

    b(1+ λ)

      K2×41

    20.28 (1+0.5)   K28$$ m8

  • 8/16/2019 Abbas Edition

    47/76

      And: *ti+ chord K D   ×  * root chord

    K1834! m8

    4% Ae1dy,mi2 me, 281d

    C W  K2

     * root chord× @

    1+ λ+ λ2

    (1+ λ)

      K2

    28$$   × 1+0.5 ..+0.52

    (1+0.5)

    C W  K280& m8

      And: ? Kb

    6

    (1+2 λ)(1+ λ)

      K20.28

    6

    (1+1)(1+0.5)

    K38&$ m8

    "% $eti2,3 ,d 81i1t,3 +13ume 21e99i2iet

      *." K

     L HT ×S HT C W ×SW 

    Where:

    C  HT  (.ori/ontal tail volume coefficient

     L HT  ( .ori/ontal tail arm moment

    S HT  ( .ori/ontal tail area

  • 8/16/2019 Abbas Edition

    48/76

    SW   (Wing area

    C W    (Wing mean chord

    -ince:  L HT  is 25S of the fuselage length:

     L HT  K 0825O  L FU 

      K 0825O108!&

      K 28&1&5 m8

    or our design:

    SW  K41 m2

    C W  K280& m8

    rom BAircraft design7 A *once+tual a++roachC by aniel868'aymer 3rd Ed:

    C  HT  K08-o:

    -."K

    C W × SW ×C  HT 

     L HT 

      -."K2.097×41×0.9

    2.7175 K 2!84& m2

    And:

    C VT  K LVT ×SVT bW ×SW 

    Where :

     LVT  ()ertical tail arm moment

  • 8/16/2019 Abbas Edition

    49/76

    SVT   )ertical tail area

    C VT  ()ertical tail volume coefficient

    bW   (Wing s+an

    SW  (Wing area

    -ince:  LVT  is 50S of the fuselage length:

     LVT  K 085O  L FU 

      K 085O108!&

    K!81525 m8

    or our design:

    SW  K 41 m28

    bW  K 2082! m8

    rom BAircraft design7 A *once+tual a++roachC by aniel868'aymer 3rd Ed:

    C VT  K080! m8

    -o:

    SVT  KbW × SW ×C VT 

     LVT 

    K20.28×41×0.08

    8.1525

    K !81$ m2

  • 8/16/2019 Abbas Edition

    50/76

    RESULT

    Le=t8 19 9u5e3,=e LFU !%07 m

    R11t C ti? 281d %/40 m

    Ae1dy,mi2 me, 281d C'& (/%76 m

    $eti2,3 ,d 81i1t,3 +13ume 21e99i2iet S  '$T ( 0%6 m*

  • 8/16/2019 Abbas Edition

    51/76

    &ETTE# AREA #ETERMINATION

  • 8/16/2019 Abbas Edition

    52/76

    &ETTE# AREA #ETERMINATION

    Aircraft %etted area @-%et: the total e;+osed surface area: can be visuali/ed as the area of the

    e;ternal +arts of the aircraft that %ould get %et if it %ere di++ed into %ater8 "he %etted area must be calculated for drag estimation: as it the ma>or contributor to friction drag8

    "he %ing and tail %etted areas can be a++ro;imated from their +latforms8 "he %etted area is

    estimated by multi+lying the true vie% e;+osed +lan form area is estimated by multi+lying the

    true vie% e;+osed +lanform area @-  e;+osed times a factor based u+on the %ing or tail thic#ness

    ratio8

    If a %ing or tail %ere +a+er thin: the %etted area %ould be e;actly t%ice the true +lan form area8

    "he effect of finite thic#ness id to increase the %etted area: as a++ro;imated by the follo%ing

    eected area divided by the cosine of the

    dihedral angle8

    If t,c 0805:˂

    - %et K28003 - e;+osed

    If t,c 0805:˃

    - %etK - e;+osed P18&& M 0852@t,cQ

    "he e;+osed area can be measured from the dra%ing in several %ays8 A +rofessional designer

    %ill have access to a B+lanimeterC a mechanical device for measuring areas8 =se of the

     +lanimeter is a dying art as the com+uter re+laces the drafting board8 Alternatively the area can

     be measured by tracing onto gra+h +a+er and Bcounting sected areas of the fuselage are measured from the dra%ing:

    and the values are averaged8

    or a long: thin body circular in cross section: this average +ro>ected area times V %ill yield the

    surface %etted area8 If the body is rectangular in cross section: the %etted area %ill be four times

    the average +ro>ected area8 or ty+ical aircraft the follo%ing e

  • 8/16/2019 Abbas Edition

    53/76

     +lotted )s longitudinal locations: using the same units on the gra+h: then the integrated area

    under the resulting curve gives the %etted area8

    6erimeters can be measured using a +rofessionals Bma+(measure:C or a++ro;imated using a

     +iece of scra+ +a+er8 -im+ly follo% around the +erimeter measurements should not include the

     +ortions %here com+onents >oin: such as at the %ing fuselage intersection8 "hese areas are notB%ettedC8

    &ETTE# AREA CALCULATION

    ( F1 9u5e3,=e

    sπf  Kπ d f 

    2

    4

    V denotes its %etted calculation

    rom Air+lane esign 6art II by r8Tohnros#am:

    l f d f  for +assenger t%in Engine Aircraft is &82:

    rom %ing design calculation Lf   K108!& m:

     o%:d f  K

    10.87

    7.2  K1851 m:

    sπf  Kπ d f 

    2

    4K

    π ×1.512

    4 K18& m2

    *( F1 @i=

    sπ w K   t w × bw

    A #no%n relation:

    t w

    croot   K 081

    rom %ing design calculation:  croot  is 28$$ m:

    t w K081O28$$ K 082$$ m8

  • 8/16/2019 Abbas Edition

    54/76

    sπw K 082$$O2082! K584& m2

    /(F1 81i1t,3 t,i3

    sπ ht  K t ht  O   bht  K82$$O1$8!! K485! m2

    t ht  K t t  K 10 +ercent t w K081O082$$ K0802$$

    rom BAircraft design7 A *once+tual a++roachC by aniel 68'aymer:

    @A'htK

    bht 2

    sht 2 K 10803

     o%:

    bht ❑ K 10803O2!84& K 1$8!! m

    4( F1 +eti2,3 t,i3

    bt  Kbht 2 K!8445 m

    sπt  K  bt  O   t t  K !8445O082$$ K282 m28

    "( E=ie ,e,

    sπ!"#i"! Kπ d!2

    4

      Kπ ×0.755

    2

    4   -inced! K

    d f 2 K 1851,2 K08&55 m

      K0844& m28

    6( ;4 93,? de93e2ti1

    $=¿ 15

    or -ingle Engine range: @0805 to 081

    "he belo% is average of above range:

    sπ  K 080&5 m2

  • 8/16/2019 Abbas Edition

    55/76

    7( /;4 93,? de93e2ti1

    $=¿ 45

    or -ingle Engine range: @0815 to 082

    "he belo% is average of above range:sπ  K 081&5 m2

    0( Ude2,i,=e

    sπ % K181O   sπ !"#i"!

      K181O0844&

      K0841& m2

    RESULT

    -8o *om+onent   cd π    sπ   @m2   cd π × sπ 

    1 uselage 0803 18& 080522

    2 Wing 080! 584& 08334!

    3 .ori/ontal tail 0800! 4855$ 18!32O10(3

    4 )ertical tail 0800! 282&! 8!4O10(4

    5 Engine 0801 0844& 483$O10(3

    $ 1,4 fla+ 0804 080&5 3O10(3

    & 3,4 fla+ 08035 081&5 $8125O10(3

    ! =ndercarriage 080504 0841& 080241O10(3

  • 8/16/2019 Abbas Edition

    56/76

    #RAG ESTIMATION

  • 8/16/2019 Abbas Edition

    57/76

    #RAG ESTIMATION

    DRAG6&ra6 is the reso54ed com3onent of the com35ete aerod>namic force ;hich is

     para""e" to the #ight direction 7or re5ati4e oncomin6 air?o;8<

    It a5;a>s acts to oppose the direction of motion<

    It is the undesirab"e com3onent of the aerod>namic force ;hi5e 5ift is thedesirab5e com3onent<

    Drag C5e=cient "CD'Amount of dra6 6enerated de3ends on@

    oP5anform area 7S8 air densit> 7B8 f5i6ht s3eed 7#8 dra6 coefficient 7"&8

    " & is a measure of aerod>namic eCcienc> and main5> de3ends u3on@

    o Section sha3e 35anform 6eometr> an65e of attac: 7D8 com3ressibi5it> effects7%ach number8 4iscous eects 7Re>no5dsF number8<

    Drag C5.)5nentsS>in Fricti5n6

    o &ue to shear stresses 3roduced in boundary "ayer <

    o Si6niGcant5> more for turbu"ent than "a$inar t>3es of boundar> 5a>ers

  • 8/16/2019 Abbas Edition

    58/76

     F5r. "Press(re' Drago &ue to static pressure distribution around bod> H com3onent reso54ed indirection of motion<

    o Sometimes considered se3arate5> as orebody and rear 7base8 dra6com3onents<

    ?a;e Drago &ue to the 3resence of shock waves at transonic and su3ersonic s3eeds<

    o Resu5t of both direct shoc: 5osses and the in?uence of shoc: ;a4es on theboundar> 5a>er<

    o Often decom3osed into 3ortions re5ated to@Lift

  • 8/16/2019 Abbas Edition

    59/76

    T*)ical strea.lining e@ect

  • 8/16/2019 Abbas Edition

    60/76

    Lift ind(ced "5r' trailing ;5rte9 drag

     The 5ift induced dra6 is the com3onent ;hich has to be inc5uded to account forthe .H& nature of the ?o; 7Gnite s3an8 and 6eneration of ;in6 5ift<

    CALCULATION6

    enera55> for et aircrafts it is 6i4en that

    "&-J -

  • 8/16/2019 Abbas Edition

    61/76

    J

    (16×  3

    16.898)2

    1+(16×  3

    16.898)2 J -

  • 8/16/2019 Abbas Edition

    62/76

    Drag at landing -#-

    RESULT

      #,= ,t 2ui5e 6.4"!%/ N

      #,= ,t t,:e-199 /46*%7.* N

      #,= ,t 3,di= 4!46%!. N

  • 8/16/2019 Abbas Edition

    63/76

    LIFT ESTIMATION

    LIFT ESTIMATION

    LIFT

    *om+onent of aerodynamic force generated on aircraft +er+endicular to flight direction8

  • 8/16/2019 Abbas Edition

    64/76

    Lift C5e=cient "CL' Amount of 5ift 6enerated de3ends on@

    P5anform area 7S8 air densit> 7B8 f5i6ht s3eed 7#8 5ift coefficient 7"L8

    Lift "1

    2 ρ 2¿ S C  L=*S C  L

    "L is a measure of 5iftin6 eecti4eness and main5> de3ends u3on@ Section sha3e 35anform 6eometr> an65e of attac: 7D8 com3ressibi5it> effects7%ach number8 4iscous eects 7Re>no5dsF number8<

    Generati5n 5f Lift

    Aerod>namic force arises from t;o natura5 sources@ #ariab5e 3ressure distribution<

    Shear stress distribution< Shear stress 3rimari5> contributes to o4era55 drag force on aircraft<

    Lift main5> due to pressure distribution es3ecia55> on main 5iftin6 surfaces i8 5o; 3ressure on u33er surface and hi6her 3ressure on5o;er surface<

    An> sha3e can be made to 3roduce 5ift if either ca$bered or inc"ined to ?o;

    direction< "5assica5 aerooi"section is o3timum for hi6h subsonic 5ift9dra6 ratio

  • 8/16/2019 Abbas Edition

    65/76

    6ressure variations %ith angle of attac# 

      egative @nose(do%n +itching moment at /ero(lift @negative X8

      6ositive lift at X K 0o

    8

      .ighest +ressure at LE stagnation +oint: lo%est +ressure at crest on u++er surface8

      6ea# suction +ressure on u++er surface strengthens and moves for%ards %ith increasing X8

      9ost lift from near LE on u++er surface due to suction8

  • 8/16/2019 Abbas Edition

    66/76

    Li9t Cu+e5 19 C,mbeed ,d Symmeti2,3 ,i91i35

    CALCULATION6eneral Lift e

  • 8/16/2019 Abbas Edition

    67/76

    L7ta:eHo8 J 29+2

  • 8/16/2019 Abbas Edition

    68/76

    TAKEOFF AN# LAN#ING #ISTANCE

    CALCULATION

  • 8/16/2019 Abbas Edition

    69/76

      TAKEOFF AN# LAN#ING #ISTANCE CALCULATION

      "a#e(off is initiated %hen the aircraft first starts to move for%ards on the ground and

    regarded as com+leted %hen aircraft has reach some +rescribed altitude8 "he first stage of aircraft

    consists of the )1 %hen the aircraft is still on the ground8 "his is #no%n as ground run8 uring

    this run s+eed varies and so the lift and hence also the reaction of the aircraft %heels %ith the

    ground8

    T,:e 199 di5t,2e

      )2

     

    )1

  • 8/16/2019 Abbas Edition

    70/76

      round run "ransition *limbing

    )1 ( )elocity to reach the transition from ground run8

    )2  )elocity to reach the climbing level8

    "a#e(off is initiated %hen the aircraft first starts to move for%ards on the ground and regarded as

    com+leted %hen aircraft has reach some +rescribed altitude8 "he first stage of aircraft consists of

    the )1 %hen the aircraft is still on the ground8 "his is #no%n as ground run8 uring this run s+eed

    varies and so the lift and hence also the reaction of the aircraft %heels %ith the ground8

    Z @ W(L K 'eaction orce @'8

    Where Z ( friction co( efficient:

      W Weight8

    T,:e 199 di5t,2e 2,32u3,ti1

    ormula for ta#e(off distance calculation is:

    -" K @)"2

    W2g " av (Z @W(Lav

    Where:

    )" ( )ertical ta#e(off distance

    -"  ( "a#e(off distance

    " ( "a#e(off thrust

    )" K 182O)s

    )s K √ @2@W,- , [*L ma;

      K@2R4&!2R8!1,18225R5582R1825Y085

      K24&853m,s

    )" K 182O24&853

  • 8/16/2019 Abbas Edition

    71/76

      K 2&803 m,s

    )av K&0S )"

      K08& O2&803

      K20&80 m,s

    *L ma; K 3,4@ *L ma; av M \ @]*L ma;fla+

      K3,4 P1825M082Q

      K180!

    L av K *L av O1,2 [ @)av 2 O -

    or 45 of angle of attac#: @from the gra+h

    *L av K 081&5

    Lav  K081&5O1,2 O18225O @20&802 O41

      K 1!8^

    * av K * @ta#e off M ^ @*L av 2 @from drag +olar calculation

      K 08034$2 M08055@081&52

      K 0803$30

    av K * avO [ )2av O -

      K 0803$3O 085 O 18225 O@20&82 O41

      K38 ^

    rom thrust re

  • 8/16/2019 Abbas Edition

    72/76

     

    LAN#ING #ISTANCE CALCULATIONS

      "he analysis of the landing +erformance of an air+lane is some%hat analogous to that

    for ta#e(off: only reverse8 *onsider an air+lane on a landing a++roach8 "he landing distance: as

    s#etched begins %hen the air+lanes cleared an obstacle: %hich is ta#en to be50 ft in height8

    "he landing calculated as +er A'(25 instructions as follo%s:

    @"he notation used here is as sho%n above figure

    )A K 183 )-L

    )A ( A++roach )elocity8

    )-L K√  @2W , [ - *L ma;

  • 8/16/2019 Abbas Edition

    73/76

    *L ma; K @*L ma; av M ]*L ma;

      K183 M 08& K 2

    )s K√ @2@W,- , [*L ma;

      K@2R4444804R8!1,18225R5582R183Y085

      K24&853m,s

      K!181#nots

    )A K 183O!181

      K115!84 #nots8

     o%: -L K082$5 O)-L2

      K082$5 O!1812

      K 2104258$ feet8

    And -L K 183! -L

      K183! O2104258$

      K40&!04 feet

  • 8/16/2019 Abbas Edition

    74/76

  • 8/16/2019 Abbas Edition

    75/76

    SIDE

    TOP

    FRONT

    VIE?6

    1+

    2-

  • 8/16/2019 Abbas Edition

    76/76

    REFERENCE

    TE>TS

    18 "heory of %ing section8

    y I'A .8A" and ALE'" E8) E.8

    28 Aircraft +erformance and design

    y T. 8AE'- T' 

    38 Aircraft design7 A conce+tual A++roach

      y AIEL 68'A?9E' 

    &EBSITES

    %%%8 >anesallthe%orldaircrafts8com

    %%%8%i#i8com,ty+e of aircraft

    http://www.wiki.com/typehttp://www.wiki.com/typehttp://www.wiki.com/type