Ab-initio 4 beginers 2014 - EPFL

26
2/24/14 1 Chapter 1 Computa(onal Methods The goal of this chapter: to give a brief and nonexhaus(ve overview of the commonly used electronic structure methods. to deliver guidelines and help iden(fying which theore(cal method to use for a given applica(on. Soon, you will be able to understand the paragraph above.

Transcript of Ab-initio 4 beginers 2014 - EPFL

Page 1: Ab-initio 4 beginers 2014 - EPFL

2/24/14

1

Chapter  1  

Computa(onal  Methods  

The  goal  of  this  chapter:    •  to  give  a  brief  and  non-­‐exhaus(ve  overview  of  the  commonly    

used  electronic  structure  methods.      •  to  deliver  guidelines  and  help  iden(fying  which  theore(cal  

method  to  use  for  a  given  applica(on.    

Soon,  you  will  be  able  to  understand  the  paragraph  above.  

Page 2: Ab-initio 4 beginers 2014 - EPFL

2/24/14

2

or  this  one  

3. Computational study DFT computations All (TD)-DFT computations were performed in Gaussian 091 using the ωB97X-D2 functional and def2-SVP3 basis set in combination with the SMD implicit solvent model4 with default parameters corresponding to water. The interaction and, if applicable, the excitation/fluorescence energies are given in Table S1. Note that the interaction energies are not corrected for basis set superposition, which is ill defined for an excimer.

Luisier,  N.;  Ruggi,  A.;  Steinmann,  S.N.;  Favre,  L.;  Gaeng,  N.;  Corminboeuf,  C.;  Severin,  K.  Org.  Bio.  Chem.  2012,  10,  7487.  

Or,  you  will  be  able  to  interpret  these  figures.  

Piemontesi,  C.;  Wang,  Q.;  Zhu,  J.  Org.  Bio.  Chem.  2013,  11,  1533.  

Page 3: Ab-initio 4 beginers 2014 - EPFL

2/24/14

3

Computa(onal  Chemistry  

Chapter 1.1

Molecular  Mechanics  

Quantum  Mechanics  

Approxima(ons  to  the  Schrodinger  equa(on.  (HF,  DFT,  post-­‐HF,  semi-­‐empirical  methods).  

Force  Fields:  Amber,  CHARMM,  MM2,  TIP3P  

Only  nuclei,  no  electron:  Molecules  can  be  compared   to  balls  and  springs.    

m2 m1

k broadly  used  

but  not  considered  herein  

HΨ = EΨ

H = Te + Vee + Vne + Vnn , E = total energy

Ψ (r1,r2 ,....,rN ) = N -particle wavefunction

Considered  in  this  course  

QM  /  MM  

Computa(onal  Chemistry  

Chapter 1.1

Page 4: Ab-initio 4 beginers 2014 - EPFL

2/24/14

4

Overview  of  Electronic  Structure  Methods  

Chapter 1.1

Post-HF

DFT

Single-­‐determinant  

Hartree-Fock Mean-­‐field  theory,  computa(onally  “cheap”,    not  very  accurate   Ψ ρ

Mean  field  theory,  computa(onally  cheap,  rela(vely  accurate  

LDA,  BLYP,  PBE,  B3LYP,  PBE0,  M06-­‐2X,  ωB97x-­‐D,  CAM-­‐B3LYP…  

MP2,  CCSD(T)    

computa(onally  demanding,  highly  accurate  

CASSCF,  CASPT2,  MRCCSD  

Mul(configura(onal  methods  

Jacob’s  ladder  

The  electron  density  is  the  central  object  

The  wavefunc(on  is  the  central  object  

Chapter  1.1  

Chapter  1.2  

1.1  Ab  ini2o  methods  

H EΨ = Ψ

So  what’s  the  big  deal    

with  Schrödinger  anyway  ?  

Chapter 1.1

Page 5: Ab-initio 4 beginers 2014 - EPFL

2/24/14

5

The  Schrödinger  Equa(on  

Schrödinger  equa(on:  

 

 

Solu(on  =  complete  informa(on  on  chemical  systems  !  

Ĥ:  Hamiltonian  operator,  contains  all  interac(ons  present  in  the  system  

 

Ψ:  wavefunc(on,  contain  coordinates  of  nuclei  and  electrons  

no  direct  physical  interpreta(on,  Ψ2  related  to  probability  of  finding  par(cles  in  space  

 

Ĥ  ac2ng  on  Ψ  gives  the  total  energy  of  the  system  E  2mes  Ψ.  

 

H EΨ = Ψ

Chapter 1.1

Hamiltonian  for  N  electrons  and  M  nuclei  (in  atomic  units):  

H = − 12∇i2

i

N

∑Kinetic energyof the electrons

− 1

2Mi

∇i2

i

M

∑Kinetic energyof the nuclei

Z jri − r jj

M

∑i

N

∑Electron-nucleiattraction

+ 1ri − r ji , j

N

∑Electron-electronrepulsion

+ZiZ jri − r ji , j

M

∑Nuclei-nucleirepulsion

Mi  and  Zi:  mass  and  charge  of  the  nuclei    

                               :  distance  between  two  par(cles  ri − r j

The  Schrödinger  Equa(on  

Chapter 1.1

Page 6: Ab-initio 4 beginers 2014 - EPFL

2/24/14

6

Born-­‐Oppenheimer  approxima(on  

Born-­‐Oppenheimer  approxima(on:  solving  the  Schrödinger  equa(on  for  electrons  only,  fix  nuclei.  Vnucl  is  the  constant  nuclei-­‐nuclei  repulsion.    

Ĥ  becomes:  

 

 

 

 

 

Jus(fica(on:    

Electrons  are  much  lighter  than  nuclei  and  can  adapt  instantaneously  to  their  posi(on.  

The  BO  approxima(on  is  generally  valid  for  most  problems  addressed  in  organic  chemistry.  

2nucl

,

1 1ˆ2

N N M Nj

ii i j i ji j i j

ZH V= − ∇ − + +

− −∑ ∑∑ ∑r r r r

Chapter 1.1

Varia(onal  Principle  

Solve  the  Schrödinger  equa(on:    choose  a  trial  wavefunc(on  which  depend  on  some          varia(onal  parameters    

         minimize  with  respect  to  those  parameters    

Exact  energy  E0  as  a  func(on  of  exact  wavefunc(on  Ψ0  and  Ĥ:  

 

 

Varia(onal  principle:    

For  any  trial  wavefunc(on  Ψ  represen(ng  the  correct  number  of  electrons:  

 

 

 

The  be6er  the  wavefunc?on,  the  lower  the  energy  !  

0 00

0 0

HE

Ψ Ψ=

Ψ Ψ

0

HE

Ψ Ψ≤

Ψ Ψ

Chapter 1.1

If  we  cannot  find  an  analy(cal  solu(on  to  the  Schrödinger  equa(on,  a  trick  known  as  the  varia(onal  principle  allows  us  to  es(mate  the  energy  of  the  ground  state  of  a  system.    

Page 7: Ab-initio 4 beginers 2014 - EPFL

2/24/14

7

Overview  

J.  P.  Perdew,  A.  Ruzsinszky,  L.  A.  Constan(n,  J.  Sun  and  G.  B.  I.  Csonka,    J.  Chem.  Theory  Comput.,  2009,  5,  902-­‐908.  

Chapter 1.1

Hartree-­‐Fock:    computa(onally  cheap        not  very  accurate  

post-­‐HF:    Considerable  computa(onal  effort        poten?ally  very  accurate  

 Physical  Reason:  HF:  Electrons  interact  with  an  average    poten(al  

 generated  by  the  other  electrons    No  instantaneous  repulsion  (no  Coulomb    correla(on)  

 post-­‐HF:  Electrons  avoid  each  other  (are  correlated)  

 Linear  combina(on  of  Slater  determinants,    many  coefficients  to  op(mize  

Hartree-­‐Fock  theory  

Avoid  the  need  for  experimental  data:  ab  ini?o  theory  

Hartree-­‐Fock:  wavefunc(on  built  as  an  an(symmetrized  product  of  molecular  orbitals  

Ψ = ϕ1(1)ϕ2 (2)...ϕN (N ) =

ϕ1(1) ϕ2 (1) ϕN (1)

ϕ1(2) ϕ2 (2) ϕN (2)

ϕ1(N ) ϕ2 (N ) ϕN (N )Molecular  orbital    

index  Electron  coordinate  

Wavefunc(on  is  a  Slater  determinant:  ensures  change  of  sign  upon  electron  coordinate  exchange  (electrons  are  fermions  !)  

Ψ(ϕ1(1)ϕ2 (2)...,ϕi (i),ϕ j ( j),...ϕN (N )) = −Ψ(ϕ1(1)ϕ2 (2)...,ϕi ( j),ϕ j (i),...ϕN (N ))

Chapter 1.1

Page 8: Ab-initio 4 beginers 2014 - EPFL

2/24/14

8

Hartree-­‐Fock  theory  Molecular  orbitals            :  linear  combina(on  of  basis  func(ons  

ϕi = ckiχkk∑

Basis  func(on  (discussed  later)  Coefficient  

Varia(onal  principle:  coefficients  should  minimize  the  energy    

 Hartree-­‐Fock  equa(ons   ˆi i iFϕ ε ϕ=

         :  Fock  operator,  poten(al  in  which  orbitals  are  op(mized.  Only  contains  the  averaged  electron-­‐electron  repulsion!  

 

Strong  approxima(on  !  Neglects  instantaneous  correla(ons  between  electrons  (par(cle  nature).  

The  missing  frac(on  of  electron-­‐electron  repulsion  is  called  electron  correla(on.  

F

Chapter 1.1

ϕi

Limits  of  Hartree-­‐Fock  method  Hartree-­‐Fock  is  an  approxima(on:  electron-­‐electron  repulsion  is  accounted  for  only  in  an  averaged  manner.  

 

 

Ex:  Reac(on  energies   F-­‐  

SN2  reac(on:   F-­‐  +  CH3CN    CH3F  +  CN-­‐  

Methods[1] Reaction Energy in kcal/mol Complete Basis Set (extrapolated) HF -8.92 CCSD(T)/aug-cc-pVTZ +1.29 Experiment +1.7± 2.3

[1]  Gonzales,  J.  M.;  Pak,  C.;  Cox,  R.  S.;  Allen,  W.  D.;  Schaefer  III,  H.  F.;  Csaszar,  A.  G.;  Tarczay,  G.  Chem.  Eur.  J.,  2003,  9,  2173  

HF  is  here  qualita(vely  wrong  because  of  the  missing  electronic  correla(on  effects.  

Page 9: Ab-initio 4 beginers 2014 - EPFL

2/24/14

9

Bond  Separa(on  Equa(ons  (BSE)  of  linear  alkanes:[2]  

[2] Wodrich, M. D.; Corminboeuf, C.; Schleyer, P. v. R. Org. Lett., 2006, 8, 3631

CH3(CH2)mCH3 + m CH4 (m+1) C2H6

HF  errors  increase  with  size  of  the  alkane  !    

MP2  and  CCSD(T)  are  much  closer  to  experimental  values  

Limits  of  Hartree-­‐Fock  method  

Complexa(on  energies:[3]  

[3] Gonthier, J. F.; Steinmann, S. N.; Roch, L.; Ruggi, A.; Luisier, N.; Severin, K.; Corminboeuf, C. Chem. Commun., 2012, 48, 9239

Benzene  parallel  stacked  3.5  Å  above  phenanthrene  in  three  loca(ons:  

-­‐   Above  peripheral  ring  -­‐   Above  central  ring  -­‐   Above  indicated  bond

HF  interac(on  energies  

MP2  interac(on  energies  

HF  predicts  repulsive  interac(on,  whereas  MP2  is  ayrac(ve:  HF  lacks  dispersion  interac(ons  due  to  the  neglect  of  electron  correla(on.  

If  correla(on  effects  or  dispersion  are  important,  post-­‐HF  methods  can  be  used:  MP2,  CISD,  CCSD(T)…  

Limits  of  Hartree-­‐Fock  method  

Page 10: Ab-initio 4 beginers 2014 - EPFL

2/24/14

10

Basis  sets  

Molecular  orbitals        

 

Prac(cally:  limited  number  of  basis  func(ons.  Careful  choice  !  

Natural  choice:  exact  solu(ons  for  the  hydrogen  atom    

 Slater  func(ons  with  spherical  harmonics  (s,p,d  etc.  func(ons)  

Computa(onally,  Gaussian  func(ons  are  simpler  and  ozen  used.  

Scheme  of  Slater  Type  Orbital:  exact  solu(on  for  H  atom,  computa(ons  difficult   Scheme  of  Gaussian  Type  Orbital:  

computa(ons  easier  but  no  cusp  at  nucleus  and  falls  off  too  rapidly.  

i ki kkcϕ χ=∑ infinite  number  of  basis  func(ons  lead  to  exact  

Hartree-­‐Fock  energy    

Schemes from Wim Klopper ESQC 2011 course

To  reduce  the  drawbacks  of  Gaussian  func(ons:  one  uses  a  combina(on  of  Gaussian  func(ons  to  mimick  Slater-­‐type  func(ons.  

Examples:  STO-­‐3G  basis  set  uses  3  Gaussian  to  represent  each  Slater  func(on.  

         STO-­‐6G  uses  6  Gaussian  per  Slater  func(on…  

 

STO-­‐3G  or  STO-­‐6G:  minimal  basis  set,  only  one  basis  func(on  per  orbital.  

 

Example:  for  H,  STO-­‐3G  only  has  one  s  basis  func(on  ;  for  C  only  2  s  (one  for  core  and  one  for  valence)  and  1  set  of  p  func(ons  (px,  py  and  pz),  etc…    

Nota(on  H  (1s),  C  (2s1p)  

The  size  of  the  basis  sets  may  be  gradually  increased  to  converge  toward  an  energy  closer  to  the  exact  Hartree-­‐Fock  limit.  

Basis  sets  

Chapter 1.1

Page 11: Ab-initio 4 beginers 2014 - EPFL

2/24/14

11

Basis  sets  

More  than  one  basis  func2ons  per  orbital:  Double-­‐,  triple-­‐,  quadruple-­‐zeta  basis  sets:  2,  3  or  4  sets  of  func(ons  per  valence  orbital    

Example:  6-­‐31G  basis  set  for  C  contain  3  s  (1  for  core,  2  for  valence)  and  2  sets  of  p  func(ons,  etc…  

Possible  basis  set  improvements:  

Example  of  a  set  of  double  zeta  pz  func(ons  

Chapter 1.1

Add  polariza2on  basis  func2ons:  More  flexibility  to  represent  deforma(ons  of  the  electronic  density  in  molecules.  Represented  by  *  in  Pople  basis  sets.  

Examples:  6-­‐31G*  for  C  (3s,  2p,1d)  or  cc-­‐pVDZ  (double  zeta  polarized  basis),  cc-­‐pVTZ  (triple  zeta  polarized  basis)…  

Possible  basis  set  improvements:  

Example  of  a  d  func(on  polarizing  a  p  func(on.  

 

Polariza(on  func(ons  are  always  of  higher  angular  momentum  than  the  func(ons  to  be  polarized.  

Chapter 1.1

Basis  sets  

Page 12: Ab-initio 4 beginers 2014 - EPFL

2/24/14

12

Add  diffuse  basis  func2ons:  Describe  electronic  density  far  from  the  nucleus.  Ozen  denoted  by  +  or  aug-­‐.    

Examples:  6-­‐31+G*  for  C  has  4  s  (1  core,  2  valence  and  1  diffuse),  3  p  (2  valence  and  1  diffuse)  and  one  d  basis  func(on  (polariza(on)  or  aug-­‐cc-­‐pVDZ,  aug-­‐cc-­‐pVTZ…  

Possible  basis  set  improvements:  

Example  of  a  set  of  double  zeta  px  func(ons  with  a  diffuse  func(on  added.  

Chapter 1.1

Basis  sets  

Basis  sets  errors  

Difference  between  exact  Hartree-­‐Fock  energy  and  HF  energy  with  finite  basis:    

basis  set  trunca(on  error  

 check  stability  of  results  toward  basis  set  increase  

Problem  for  interac(on  energies:  E(int)  =  E(dimer)  –  E(monomerA)  –  E(monomerB)  

Dimer  basis  set  larger  than  monomer  basis  set:  different  basis  set  trunca(on  errors  on  the  monomer  and  dimer  energies  

Basis set superposition error on interaction energies

Possible  remedy:  

 Compute  energy  of  each  monomer  in  dimer  basis  set:  counterpoise  correc(on  

 Basis  func(ons  of  both  monomers  present  but  only  electrons  and  nuclei  from    one  monomer.  

 Use  large  basis  sets:  basis  set  trunca(on  error  and  hence  basis  set    superposi(on  error  tend  to  zero.   Chapter 1.1

Page 13: Ab-initio 4 beginers 2014 - EPFL

2/24/14

13

Restricted  or  unrestricted  ?  

Restricted  Hartree-­‐Fock  (RHF=HF):  one  spin  up  and  one  spin  down  electron  per  orbital    Same  spa(al  wavefunc(on  for  the  two  spins  

 Downside:    Open-­‐shell  species  cannot  be  treated:  wrong  dissocia(on  limit  for  H2      HF  (or  RHF)  is  used  for  typical  closed-­‐shell  singlet  wavefunc(on  Restricted  open-­‐shell  Hartree-­‐Fock  (ROHF):  only  some  electrons  are  unpaired      Downside:  more  expensive  computa(ons  and  complex  implementa(ons      Advantage:  No  spin  contamina(on  

 ROHF  is  used  when  spin  contamina(on  is  large  using  UHF  Unrestricted  Hartree-­‐Fock  (UHF):  each  spin  treated  separately  

 Simpler  than  ROHF,  spin  polariza(on  on  en(re  molecule    Downside:  Wavefunc(on  might  be  contaminated  by  higher  spin  states  (i.e.  singlet  

may  contain  a  bit  of  triplet  state)    Contamina(on  may  be  eliminated  by  projec(on  but  addi(onal  cost.    One  generally  uses  UHF  for  the  treatment  of  open-­‐shell  systems.  

Chapter 1.1

O2  is  a  triplet  

Restricted  or  unrestricted  ?  

OO+

O- OO

O

H

H1b1

3a1

The  contribu2ng  resonance  structures  for  ozone.    

Triplet  methylene,  linear  or  bended?  

Chapter 1.1

Page 14: Ab-initio 4 beginers 2014 - EPFL

2/24/14

14

Restricted  or  unrestricted  ?  

Chapter 1.1

H2

Bond  breaking/open-­‐shell  singlets  

Beyond  Hartree-­‐Fock  

Remark:   Hartree-­‐Fock   computa(ons   became   rela(vely   rare   since   the  populariza(on   of   density   func(onal   theory   in   commercial   computa(onal  chemistry  sozware  (see  Chapter  1.2).      

 

Chapter 1.1

However,  post-­‐Hatree-­‐Fock  methods,  which  are  s(ll  widely  used,  are  based  on  the   Hartree-­‐Fock   reference   wavefunc(on.   They   provide   highly   reliable  benchmark  values.  

Page 15: Ab-initio 4 beginers 2014 - EPFL

2/24/14

15

Configura(on  Interac(on  Hartree-­‐Fock:  electron-­‐electron  repulsion  only  as  a  mean  field  of  other  electrons  

                     consequence  of  the  wavefunc(on  represented  as  a  single  Slater  determinant  

Improvement  of  the  descrip(on  by  including  more  Slater  determinants  

1 1 2 2 1 2 1(1) (2)... ( ) (1) (2)... ( ) ...N NC N C Nϕ ϕ ϕ ϕ ϕ ϕ +Ψ = + +Hartree-­‐Fock  determinant   Excited  determinant:  one  or  more  virtual  

orbital  (here  orbital  N+1)  replace  one  or  more  occupied  orbital  (here  orbital  N)  

All  determinants  included:  full  CI,  exact  solu(on  of  the  Schrödinger  equa(on  within  a  basis  set.  

At  infinite  basis  set  limit,  full  CI  solves  exactly  the  Schrödinger  equa(on.  

Very  expensive  method  !  Applicable  only  on  the  smallest  molecules  !  Chapter 1.1

Advanced  level  

Selec(on  of  some  determinants  instead  of  all:  truncated  CI  methods  

Configura(on  Interac(on  Singles  (CIS):  

 only  determinants  with  a  single  excita(on  (i.e.  only  one  occupied  replaced  by    one  virtual  orbital)  

 ground  state  energy  unaffected,  rough  approxima(on  to  excited  state  energies  

Configura(on  Interac(on  Singles  and  Doubles  (CISD):  

 only  determinants  with  single  or  double  excita(on  (one  or  two  occupied    replaced  by  virtual  orbitals)  

 improves  ground  state  and  excited  states  energies.  

 

Inclusion  of  triple  (CISDT),  quadruple  (CISDTQ),  etc…  excita(on  possible.  Nowadays,  Coupled  Cluster  methods  are  generally  used  instead  of  CI.  

Configura(on  Interac(on  

Chapter 1.1

Advanced  level  

Page 16: Ab-initio 4 beginers 2014 - EPFL

2/24/14

16

Configura(on  Interac(on  

Chapter 1.1

The  number  of  excited  determinants  grows  factorially  with  the  size  of  the  basis  set.  Full  CI  infeasible  for  all  but  the  very  smallest  systems.  

Advanced  level  

Size  extensivity  and  consistency  Essen(al  proper(es  of  computa(onal  methods  are:  

Size  consistency  

Energy  of  two  molecules  A  and  B  infinitely  separated  in  the  same  computa(on  should  be  equal  to  the  energy  of  A  and  B  computed  separately.  

 

Size  extensivity  

The  energy  should  scale  linearly  with  the  number  of  electrons  in  the  system  

 

Truncated  CI  methods  are  not  size-­‐consistent  !  

 

Ex:  2  HF  molecules  at  infinite  separa(on:  ECISD=-­‐200.559  

           Energy  of  one  HF  molecule  mul(plied  by  2  :  2  ECISD=  -­‐200.576  

             11  kcal/mol  difference  !  Error  on  interac(on  energies,  etc…  

Numbers from Jürgen Gauss ESQC 2011 course,tzp basis set

Chapter 1.1

Advanced  level  

Page 17: Ab-initio 4 beginers 2014 - EPFL

2/24/14

17

Perturba(on  Theory  Electronic  correla(on  energies  <  1%  of  total  energies  

 

 

Perturba(on  theory:  gives  solu(on  of  a  slightly  perturbed  system  (correlated)  star(ng  from  unperturbed  system  (Hartree-­‐Fock)  

Hamiltonian  rewriyen  as  

ˆ ˆ ˆH F Vλ= +Full Hamiltonian

Fock operator

Perturbation: ˆ ˆH F−

Parameter  λ  switches  perturba(on  on.  λ=1                        real  system.  

Electron correlation may be considered as a small perturbation

Chapter 1.1

Advanced  level  

(0) (1) 2 (2)

(0) (1) 2 (2)

......

E E E Eλ λλ λ

= + + +Ψ =Ψ + Ψ + Ψ +

Trunca(on  of  Taylor  expansion  at  different  powers  of  λ  different  orders  of  perturba(on  theory.  

MP1:  first  order,  corresponds  to  Hartree-­‐Fock  

MP2:  second  order  

MP3,  MP4,  MP5…  are  available  in  some  quantum  chemistry  sozwares.  

Energy  and  wavefunc(on  wriyen  as  Taylor  expansions:  

MP2  much  less  expensive  than  CISD  and  size-­‐consistent  !  

 

But  non-­‐varia(onal  (usually  lower  than  exact  energy)  and  no  guarantee  that  Taylor  expansion  converges  

Perturba(on  Theory  

Chapter 1.1

Advanced  level  

Page 18: Ab-initio 4 beginers 2014 - EPFL

2/24/14

18

Coupled  Cluster  Theory  developed  to  be  size-­‐consistent.  Wavefunc(on  wriyen  as  exponen(al  Ansatz:  

   

         is  the  cluster  operator:  generates  all  Slater  determinant  from  the  HF  wavefunc(on.  

 

 

 

 

CCSD:    cluster  operator  truncated  at  double  excita(ons  

 size-­‐consistent  thanks  to  exponen(al  Ansatz  !  

 

Triple  excita(ons  expensive  included  through  perturba(on  theory  

THFeΨ = Ψ

T

1 2ˆ ˆ ˆ ˆ... NT T T T= + + +

Single, double, …, N-triple excitations

CCSD(T) method Chapter 1.1

Advanced  level  

Coupled  Cluster  

CCSD(T):  Golden  standard  of  quantum  chemistry  

       Ozen  used  to  obtain  reference  values  and  validate  other  methods  

       Expensive  !  Small  and  medium  molecules  

 

CC  is  not  varia(onal  but  is  more  accurate  than  truncated  CI.  

Example:  Difference  to  full  CI  energy  for  the  CO  molecule,  cc-­‐pVDZ  basis  set  (in  mH)  

CI CC

SD 30.804 12.120

SD(T) - 1.47

SDT 21.718 1.009

SDTQ 1.775 0.061

Numbers from Jürgen Gauss ESQC 2011 course Chapter 1.1

Advanced  level  

Page 19: Ab-initio 4 beginers 2014 - EPFL

2/24/14

19

Chapter 1.1

Classifica(on  of  Electron  Correla(on  •   Correla(on  effects  are  normally  par((oned  into:  1.  Near-­‐degeneracy  effects  (non-­‐dynamic  correla(on)  2.  Dynamic  correla(on  

•   Qualita(vely  they  differ  in  the  way  they  separate  the  electrons.  -­‐ Non-­‐dynamic   correla(on:   leads   to   a   large   separa(on   in   space   of   the   two  electrons  in  a  pair  (ex.  on  two  different  atoms  in  a  dissocia(on  process)    -­‐ Dynamic  correla(on:  deals  with   the   interac(on  between   two  electrons  at   short  inter-­‐electronic  distance,  the  cusp  region  

-­‐ CCSD(T)  and  MP2  deal  with  dynamic  correla(on  effects  

All  methods  discussed  so  far  are  based  on  a  Hartree-­‐Fock  reference  wavefunc(on  

Might  be  inappropriate  if  a  single  Slater  determinant  does  not  describe  qualita(vely  the  system.  

Mul(configura(onal  character:  

• Near  degeneracy  (virtual  orbitals  with  low  energy,  different  electronic  configura(ons  of  similar  energies.  

•   Also  a  characteris(c  of  some  organic  intermediates  (e.g.  Bergman  cycliza(on)  

• Mutl(ple  bonds  in  transi(on  metal  chemistry  

• Transi(on  states  

• Strong  configura(onal  mixing  in  excited  states  

Mul(configura(onal  methods  

Chapter 1.1

see examples hereafter

Page 20: Ab-initio 4 beginers 2014 - EPFL

2/24/14

20

I.  Schapiro,  M.  N.  Ryazantsev,  L.  M.  Frutos,  N.  Ferre,  R.  Lindh,  and  M.  Olivucci  J.  Am.  Chem.  Soc.  2011,  133,  3354.  

The  Ultrafast  Photoisomeriza(ons  of  Rhodopsin  and  Bathorhodopsin  are  Modulated    by  Bond  Length  Alterna(on  and  HOOP  Driven  Electronic  Effects  

Examples:  Conical  Intersec(on  

Examples:  Transi(on  States  

D.H.  Ess,  A.  E.  Hayden,  F.-­‐G.  Klarner,  K.  N.  Houk  J.  Org.  Chem.  2008,  73,  7586.  

Transi(on  States  for  the  Dimeriza(on  of  1,3-­‐Cyclohexadiene:  A  DFT,  CASPT2,  and    CBS-­‐QB3  Quantum  Mechanical  Inves(ga(on  

Chapter 1.1

Page 21: Ab-initio 4 beginers 2014 - EPFL

2/24/14

21

Examples:  Organic  Chemistry  

I.  Interac2ng  bis-­‐allyl  diradicals  

W.  T.  Borden  at  al.  "Through-­‐Bond  Interac(ons  in  the  Diradical  Intermediates  Formed  in  the  Rearrangements  of  Bicyclo[n.m.0]  alkatetraenes",  J.  Am.  Chem.  Soc.  132,  14617,  2010.  

II.  Oxyallyl  diradical  

W.  T.  Borden  at  al.  "The  Lowest  Singlet  and  Triplet  States  of  the  Oxyallyl  Diradical,"    Angew.  Chem.  Int.  Ed.  2009,  48,  8509.  

Chapter 1.1

+

Example:  singlet  biradicals  need  at  least  two  Slater  determinants:  

Chapter 1.1

Example:  Bergman  cycliza(on  

Examples:  Organic  Chemistry  

Page 22: Ab-initio 4 beginers 2014 - EPFL

2/24/14

22

Wavefunc(on  built  from  all  necessary  Slater  determinants:  

 

 

 

Difference  with  CI  wavefunc(on:  

 many  determinants  may  contribute  equally  

 orbitals  should  be  reop(mized  Mul(-­‐Configura(onal  SCF  (MCSCF)  

MCSCF  computa(ons  usually  require  to  choose  an  ac(ve  space  including  all  important  orbitals  needed  for  a  qualita(ve  descrip(on  

1 1 2 2 1 2(1) (2)... ( ) (1) (2)... ( ) ...a N b NC N C Nϕ ϕ ϕ ϕ ϕ ϕΨ = + +Two degenerate orbitals

Mul(configura(onal  methods  

Chapter 1.1

In  prac(ce,  CASSCF  or  CASPT2  is  used:  not  black-­‐box  approaches.  

Advanced  level  

Mul(configura(onal  methods    

Electronic  correla(on:  difference  between  HF  and  full  CI  energies  

 

Subdivision:    

•   Sta(c  correla(on  arises  from  near-­‐degeneracies  and  requires  mul(configura(onal  treatment  

•   Dynamic  correla(on  arises  rather  from  electrons  instantaneously  avoiding  each  other,  and  usually  requires  a  big  number  of  small  contribu(ons  from  Slater  determinants  to  be  described  

 

MCSCF  (or  CASSCF)  lacks  dynamic  correla(on  outside  ac(ve  space  !  Can  be  added  by  CI  (MR-­‐CI  methods)  or  perturba(on  theory  (CASPT2,  GMCQDPT2,  NEVPT2…)  

Chapter 1.1

Page 23: Ab-initio 4 beginers 2014 - EPFL

2/24/14

23

Composite  methods    Highly  accurate  computa(onal  methods  are  expensive.  

 Idea:  combine  many  methods  to  approximate  highly  accurate  result.  

 

Many  flavors  exist:  G1-­‐4,  W1-­‐4,  CBS-­‐QB3…  

Composite  methods  

Example:  summary  of  G4  method  

1.   DFT  (see  next  course)  geometry  and  frequencies  

2.   Hartree-­‐Fock  energy  with  very  large  basis  sets,  extrapolated  to  infinite  basis  

3.   MP4  computa(on  of  correla(on  energy  with  small  basis  set  

4.   Es(ma(on  of  effect  of  basis  set  increase  on  correla(on  energies  

5.   Es(ma(on  of  the  difference  between  MP4  and  CCSD(T)  

6.   Higher  level  correc(ons  (with  empirical  parameters)  

Final  energy  should  be  close  to  CCSD(T)  with  large  basis  set.  

Composite  approaches  are  for  non  mul(reference  systems.     Chapter 1.1

Hückel  theory  1930s,  simple  use  of  Schrödinger  equa(on  for  aroma(c  and  conjugate  systems  

Wavefunc2on  wriyen  as  a  linear  combina(on  of  atomic  orbitals  

k kkc ϕΨ =∑

Varia(onal  principle:  vary  coefficients  un(l  the  energy  is  minimal                      best  Ψ  

Op(mal  coefficients                                                      leads  to  set  of  equa(ons  represented  by  a  secular  determinant:    

H11 − ES11 H12 − ES12H21 − ES21 H22 − ES22

= 0

ˆij i jH Hϕ ϕ= ij i jS ϕ ϕ=

0k

Ec∂ =∂

with and Chapter 1.1

Page 24: Ab-initio 4 beginers 2014 - EPFL

2/24/14

24

Hückel  theory  

Hückel  theory  was  developed  in  the  1930s  and  represents  a  simple  use  of  Schrödinger   equa(on   that   works   reasonably   for   aroma(c   and   conjugate  systems.  Only  molecules  with  π  electrons,  need  parametriza(on.  

 

Chapter 1.1

We  will  come  back  to  Hückel  theory  when  discussing  aroma(city.  

 

Hückel  theory  Hückel  theory:  π-­‐systems  in  molecules  

 Only  p  orbitals  on  each  atoms  in  the  wavefunc(on  expression  

 

Further  simplifica(ons:  

• No  overlap  between  func(ons:  

• Only  three  possible  values  for  H  integrals:    

0 if i j1 if i jij ijS δ

≠⎧= =⎨ =⎩

if i j if i and j are neighbors

0 otherwiseijH

αβ

=⎧⎪= ⎨⎪⎩

α  and  β  are  empirically  determined,  and  depend  on  the  type  of  atoms  involved.  

Chapter 1.1

Page 25: Ab-initio 4 beginers 2014 - EPFL

2/24/14

25

Hückel  theory:  parameters  Barrier  for  rota(on  of  ethylene  can  be  used  to  es(mate  β  

Secular  determinant  equa(on  for  two  p  orbitals:  

0E

Eα ββ α−

=−

2  solu(ons  for  E:    

E1=  α  +  β  and  E2  =  α –  β  

β  <  0  by  conven(on,  lowest  energy  is  E1  

2  electrons:  barrier  for  ethene  rota(on  is  2β.  

 first  es(ma(on  for  β:  -­‐30  kcal/mol  from  experimental  data  

 

Defini(ve  value  determined  by  average  over  different  molecules  

Chapter 1.1

Hückel  theory:  General  Solu(on  

Ek =α + 2β cos kπ(n +1)

Ek =α + 2β cos 2kπ(n)

acyclic  chains  

cyclic  systems  

n  =  number  of  atoms  Ek=  energy  level  k  k  =  quantum  number  

iden?fying  the  MO  

Etylene:    E1=  α +  β  

Benzene:  E0  =  α +  2β  

                                   E1  =  α +  β  

 Chapter 1.1

See  more  in  the  lecture  on  aroma2city  

k  =  1,  2,  3…  

k  =  0,  ±1,  ±2…n/2  for  even  n  

Page 26: Ab-initio 4 beginers 2014 - EPFL

2/24/14

26

Summary:  ab  ini?o  methods  

Chapter 1.1

Hartree-­‐Fock  (HF):    

Pros Cons

Rela(vely  cheap  and  simple   Lack    of  correla(on-­‐>  various  failures  Monodeterminental  

MP2     Widely  implemented  Frac(on  of  dynamic    

correla(on  

Not  always  accurate:  e.g.,  Systema(c    overes(ma(on  of  pi-­‐pi  stacking    

CCSD(T)     Widely  implemented  Gold  Standard  (very  accurate)  

size  consistent  

Large  basis  sets  are  needed  Computa(onally  very  demanding:    not  applicable  to  large  organic  molecules  

Mul2configura2onal  

CASSCF  

CASPT2   Implemented  in  several  codes  treat  both  dynamic  and  sta(c  correla(on  

Not  a  black-­‐box  approach,  Computa(onal  limita(ons    (size  of  the  ac(ve  space)  

Implemented  in  several  codes  treatment  of  sta(c  correla(on  

for  systems  with  mul(configura(onal  character.  

Not  a  black-­‐box  approach,  <  16  electrons  in  the  ac(ve  space  

Mini  Quiz  1  

1.  Amongst  the  sets  of  theore(cal  levels  given  below,  which  one  (in  each  set)  gives  the  lowest  energy  for  H2O:  

 (a)  HF/STO-­‐3G  and  HF/6-­‐31G*  

 (b)  HF/cc-­‐pVTZ  or  CCSD(T)/cc-­‐pVTZ  

2.  You  need  to  compute  very  accurate  reference  energy  values  but  the  systems  you  are  studying  are  slightly  too  large  for  a  typical  CCSD(T)/aug-­‐cc-­‐pVTZ  computa(on  (i.e.,  the  gold  standard).  Which  approaches  will  you  use?  

3.  How  would  you  determine  whether  the  rela(ve  energy  ordering  for  the  xylene  series  is  affected  by  dynamic  correla(on  ?  

4.  How  do  you  compute  a  rough  geometry  of  a  series  of  hydrocarbon  radicals?  

5.     How  do  you  compute  an  accurate  geometry  for  the  propyl  radical?  

Chapter 1.1