AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o...

135
1 AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS 1/30/2014

Transcript of AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o...

Page 1: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

1

AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS 1/30/2014

Page 2: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

SCHEDULE

2

§  8:32  –  Parth  S.  §  8:40  –  Krista  G.  §  8:46  –  Michael  C.  §  8:52  –  Jose  Miguel  B.  -­‐  End  Morning  Session  §  10:32  –  Spenser  G.  §  10:38  –  Ryan  A.  §  10:44  –  Hani  K.  §  10:50  –  Ben  F.  §  10:56  –  Jessica  C.  §  Break  

§  11:12  –  Eric  M.  §  11:18  –  Cameron  H.  §  11:24  –  Erik  S.  §  11:30  –  Andrew  E.  §  11:36  –  Arika  A.  §  Break  §  11:52  –  Finu  L.  §  11:58  –  Bryan  F.  §  12:04  –  Eric  F.  §  12:10  –  Tas  Powis  §  12:16  –  Divinaa  B.  §  12:22  –  Joe  A.  

Page 3: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

3

PARTH SHAH | APM LAUNCH MISSION TIMELINE

o  ORGANIZATIONAL ITEMS o  LAUNCH MISSION TIMELINE

1/30/2014

Page 4: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

ORGANIZATIONAL ITEMS

4

§  Vehicle  Specifications  Spreadsheet  •  Moved  to  Google  Drive  •  Link  uploaded  to  Wiggio  •  More  to  come  from  Andrew  after  presentations  

§  Project  Name  Submissions  •  Minimum  1  idea  per  person  •  Please  submit  by  Sunday  •  Some  really  great  ideas  so  far!  

§  Document  your  progress  •  LaTeX  tutorial  being  prepared  by  Andrew  •  Start  writing  now!  

Parth  Shah  |  APM  

Page 5: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

VEHICLE OPERATION REGIMES

5

§  Launch  Vehicles  •  Ground  to  LEO  •  3  Classes:  – Light:  Atlas  V/  Titan  IV  – Medium:  Falcon  9  /  Heavy  – Heavy:  SLS  /  Falcon  XX  

§  Cargo  and  CTV  •  LEO  to  Lunar  Orbit  

§  Cargo  Lander  and  CTV  Lander  •  Lunar  Orbit  to  Lunar  Surface  

Parth  Shah  |  APM  

Page 6: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

LAUNCH MISSION TIMELINE

6

§  Initial  estimates:  •  From  R  &  D  completion  to  Crew  Landing  on  the  Moon  •  All  Low-­‐Energy  Transfers  estimated  at  ~100  days  •  Launch  Start  Date:  1/1/2020  •  Visual  Representation  [Gantter]  

Parth  Shah  |  APM  

What   #  Launches   #  Per  colony   Max  Transfer  Time  (days)  

Launch  Vehicle  Type  

Comm  Sats   2   n/a   100   Light  Construc-on  Bots   3   2   100   Heavy  

Habitats  &  Construc-on  Mat.   6   2   100   Heavy  Rovers  &  Science     12   4   100   Heavy  

CTV  &  Consumables   3   1   4   Medium  Resupply   12   4   100   Heavy  

Page 7: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

KRISTA GARRETT | MISSION DESIGN LUNAR LANDER 1/30/2014 o  LUNAR DESCENT ΔV AND PROPELLANT o  LUNAR ASCENT PROPELLANT o  OTHER WORK: MISSION PROFILES FOR PRESSURIZED ROVER

AND LAUNCH VEHICLE SELECTION

Page 8: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

LUNAR LANDER DESCENT

8

§  Lander  from  CTV  orbit  to  Powered  Descent  IniEaEon:    •  Hohmann  transfer  to  15.24  km  alEtude  •  Δv  =  39.0  m/s  

§  Propellant  for  descent:  

 *Calculated  using  initial  mass  of  45.0  Mg  and  an  Isp  of  311  s  **Value  scaled  from  Lunar  Module  descent  propellant  requirements2  

Hohmann  Transfer*   0.57217  Mg    

+  Powered  Descent**   30.77332  Mg  

=  Total   31.34549  Mg  

Krista  GarreS  1/30/2014  

Page 9: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

LUNAR LANDER ASCENT §  Lander  from  lunar  surface  to  CTV  orbit  

•  Vertical  rise  phase  +  single-­‐axis  rotation  +  Powered  Explicit  Guidance    

§  Propellant  for  ascent:  •  9.51527  Mg*  

§  Total  propellant:  •  40.86076  Mg  •  Option  of  refueling    on  the  moon  

       

9

*Value  scaled  from  Lunar  Module  ascent  propellant  requirements2  

Fig.  1:  Ascent  Profile  (From  Ref.  1  by  Kos,  Polsgrove,  Sostaric,  Braden,  Sullivan,  Lee;  reproduced)  

Krista  GarreS  1/30/2014  

Page 10: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

REFERENCES

10

1Kos,  Polsgrove,  Sostaric,  Braden,  Sullivan,  Lee,  “Altair  Descent  and  Ascent  Reference    Trajectory  Design  and  Initial  Dispersion  Analyses,”  American  institute  of    Aeronautics  and  Astronautics  meeting,  Toronto,  Canada,  2010.    

2Bennett,  Floyd  V.,  “Apollo  Lunar  Descent  and  Ascent  Trajectories,”  NASA  TM  X-­‐58040,    1970.    

Krista  GarreS  1/30/2014  

Page 11: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

MICHAEL CREECH| MISSION DESIGN PROPELLANT BUDGET AND BLOCK CONSTRUCTION 1/30/2014

o  PROPELLANT BUDGET FROM LEO TO LUNAR ORBIT o  REGOLITH HEATING AND BLOCK FORMATION

Page 12: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

PROPELLANT BUDGET

12

§  Propellant  costs  per  item  §  Analysis  of  3  propellants  §  Total  propellant  cost  from  

LEO  to  Lunar  Orbit  

Michael  Creech  |  Mission  Design  

Propellant  Cost  Item   LOX/LH2  [kg]   LOX/RP-­‐1  [kg]   LOX/methan  [kg]  L2  Comm  Sat   4947.43   15869.32   13795.54  1  Moon  Sat   4947.43   15869.32   13795.54  3  Moon  Sats  Total   14842.30   47607.97   41386.63  1  Tracking  StaEon   659.66   2115.91   1839.41  4  Tracking  StaEons  Total   2638.63   8463.64   7357.62  

Total  Single  Habitat   164914.46   528977.49   459851.45  Garage   6596.58   21159.10   18394.06  Single  Unit:  Water  &  Storage  Container   99882.09   320380.51   278513.63  Shielding  Support  Material   230880.25   740568.48   643792.03  Food   255393.14   819195.70   712144.35  EMU  suit   379.30   1216.65   1057.66  Total  8  Suits   3034.43   9733.19   8461.27  

Cargo  Vehicle  (Dry  Weight)   89053.81   285647.84   248319.78  Lunar  Lander   146114.22   468674.06   407428.38  

Transport  (inert)   39579.47   126954.60   110364.35  Crew  Capsule  (inert)   14512.47   46550.02   40466.93  Crew   2308.80   7405.68   6437.92  Food   369.41   1184.91   1030.07  Water   1920.92   6161.53   5356.35  

1  Heavy  Pressurized  Rover   32982.89   105795.50   91970.29  2  Heavy  Pressurized  Rovers  Total   65965.79   211591.00   183940.58  1  Light  Pressurized  Rover   29684.60   95215.95   82773.26  4  Light  Pressurized  Rovers  Total   118738.41   380863.79   331093.04  1  Tire  (4  per  heavy  &  light  rover)   1649.14   5289.77   4598.51  24  Tires  Total   39579.47   126954.60   110364.35  

1  Helper  Robot   16491.45   52897.75   45985.14  6  Helper  Robots  Total   16491.45   52897.75   45985.14  

Total   1404558.02   4505242.03   3916503.27  Sources  -­‐Item  Masses  Compiled  by  Erik  SleSehaugh  

Page 13: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

REGOLITH CONSTRUCTION

13

§  Use  geothermal  reaction  with  aluminum  powder  §  Regolith  Brick  

•  20  x  10  x5  [cm]  •  1.5  [kg]  •  .15  [m]  of  NiChrome  wire  •  0.004224  W  for  heating  

§  Habitat  Costs  •  33,500  bricks  •  16,500  kg  of  aluminum  powder  •  141.504  W  of  power  

Michael  Creech  |  Mission  Design  

Page 14: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

ASSUMPTIONS

14 Michael  Creech  |  Mission  Design  

AssumpEons  

Fuel   Isp  [sec]   MR   ΔV  [km/s]   g_o  [km/s^2]   Propellant  FracEon  

LOX/LH2   448   3.413718   5.3942   9.81E-­‐03   0.9  

LOX/RP-­‐1   311   5.863031  

LOX/methane   321   5.548724  

Sources  -­‐ΔV  Calculated  by  Thomas  Rich  

Page 15: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

EQUATIONS

15

§  Ideal  Rocket  Equation  

§  Propellant  Mass  

Michael  Creech  |  Mission  Design  

∆𝑣= 𝐼↓𝑠𝑝 𝑔↓0 ln(𝑀𝑅)  

𝑀↓𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡 = 𝑀↓𝑝/𝑙  (𝑀𝑅−1)/𝑀𝑅− 𝑀𝑅−1/λ    

Page 16: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

CONSTRUCTION PARAMETERS

16

§  Resistivity  of  NiChrome  =  1.1e-­‐6  [Ωm]  §  Density  of  Regolith  =  1.5  [g/cm^3]  §  Required  current  for  heating  =  24  [A]  

Michael  Creech  |  Mission  Design  

Page 17: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

REFERENCES

17

§  NASA  –  “The  J-­‐2X  Engine:  NASA’s  New  Upper  Stage  Engine”  §  Space  Launch  Report  –  “SpaceX  Falcon  9  Data  Sheet”  §  Burkhardt,  Sippel,  Herbertz,  Klevanski  –  “Comparative  Study  of  Kerosene  

and  Methane  Propellant  Engines  for  Resuable  Liquid  Booster  Stages”  §  NASA  –  “Space  Launch  System  (SLS)  Fun  Facts”    §  Faierson,  Logan,  Steward,  Hunter  –  “Demonstration  of  concept  for  

fabrication  of  lunar  physical  assets  utilizing  lunar  regolith  simulant  and  a  geothermite  reaction”  

Michael  Creech  |  Mission  Design  

Page 18: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

18

JOSE MIGUEL BLANCO/ MISSION DESIGN LOW THRUST TRAJECTORIES

o  BASIC RESULTS FOR FUEL CONSUMPTION IN LOW THRUST TRAJECTORIES USING ELECTRIC PROPULSION

1/30/14

Page 19: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

LOW THRUST TRAJECTORIES FOR CARGO VEHICLE

19

§  Electric  propulsion  •  High  specific  impulse(Isp):  

–  Isp  electric  propulsion  from    1  000  to  10  000  s  –  Isp  liquid  propellant  around  455  s  

   (http://ccar.colorado.edu/asen5050/projects/projects_2009/stansbury/)  

•  Low  thrust  output  –  Increased  mission  time  – Special  trajectory  design  (Hohmann  and  other  types  of  direct  transfers  can  not  be  implemented)  

§  First  approximation:  relative  2  body  problem  (planar)  •  +  acceleration  due  to  thrust  •  +  fuel  consumption  

Jose  Miguel  Blanco  /  Mission  Design  /  Cargo  and  Lander  

Page 20: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

FUEL CONSUMPTION

20

§  Propagate  numerically  in  Matlab  [1]  •  100  Mg  cargo  vehicle  •  1  year  •  Spacecraft  initially  parked  in  LEO  at  an  

 altitude  of  170  km  •  Constant  tangential  acceleration  •  Reach  Moon  orbit  

§  Results  [2]  •  Isp  =  5000  s      m_fuel/m_total=12.96%  •  Isp  =  9000  s    m_fuel/m_total=7.42%      Liquid  propellant    m_fuel/m_total=71.81%  (Numbers  for  liquid  propellant  consumption  assuming  Hohmann  transfer,  from  Thomas  Rich  (MD)  slides  01/23/2014)  

Jose  Miguel  Blanco  /  Mission  Design  /  Cargo  and  Lander    

Page 21: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

NEXT STEPS

21

§  Try  different  Thurst  vectoring  strategies  §  Non  constant  acceleration  §  Introduce  the  moon    

•  First  by  using  patched  relative  2  body  motion  •  Maybe  look  into  3  body  dynamics  

Jose  Miguel  Blanco  /  Mission  Design  /  Cargo  and  Lander  

Page 22: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

[1] NUMERICAL PROPAGATION

22

§  2  body  relative  motion  propagation  using  MATLAB  •  Initial  conditions  

– Circular  orbit  at  LEO  (170km  above  Earth  surface)  Vc=  7.8021  [km/s]  –  Initial  mass  of  the  vehicle  of  100  Mg  

•  Constant  tangent  acceleration  relative  to  the  position  vector.  

•  Iterate  until  the  distance  relative  to  Earth  is  similar  to  that  of  the  Moon  –   To  reach  a  distance  of  387420  km  (Moon  distance  from  the  Earth  assumed  to  be  384400)  an  acceleration  of  a_theta=2.2*(10^-­‐5)*g0  =2.1582e-­‐07[km/s]  is  needed  

Jose  Miguel  Blanco  /  Mission  Design  /  Cargo  and  Lander  

Page 23: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

[2] RESULTS

23

§  The  results  obtained  from  the  numerical  propagation  were:  •  For  a  conservative  value  of  Isp  of  5000  s  the  fuel  consumption  is  12.96  Mg  

•  Whereas  if  we  used  an  optimistic  value  for  the  specific  impulse  of  9000  s,  the  fuel  consumption  would  be  7.42  Mg    

§  From  Thomas  Rich  presentation  in  01/23/2014:  •  Total  mass  of  the  vehicle  =  302.2  Mg  •  Liquid  propellant  mass  =217  Mg  •  m_fuel/m_total=71.81%  

Jose  Miguel  Blanco  /  Mission  Design  /  Cargo  and  Lander    

Page 24: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

ACKNOWLEDGEMENTS

24

         I  would  like  to  thank  Thomas  Rich  whose  numbers  I  used  for  comparison  and  Frank  Laipert  for  pointing  me  in  the  right  direction  

Jose  Miguel  Blanco  /  Mission  Design  /  Cargo  and  Lander  

Page 25: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

GLOSSARY

25

Isp  =  specific  impulse  m_total  =  initial  mass  of  the  vehicle  including  fuel  m_fuel  =  mass  of  fuel  needed  to  complete  the  

mission          =  fuel  flow  rate  in  kg  per  second  

 

Jose  Miguel  Blanco  /  Mission  Design  /  Cargo  and  Lander    

Page 26: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

26

SPENSER GUERIN | CONTROLS CARGO VEHICLE

o  NAVIGATION SYSTEM REQUIREMENTS o  PRELIMINARY EXTERNAL TORQUE ASSESSMENT AND MODEL

1/30/2014

Page 27: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

NAVIGATION SYSTEM REQUIREMENTS

27

§  Does  not  include  processing  power  consumption.  

§  Can  be  extended  to  other  vehicles;  different  requirements  depending  on  colony.  

Spenser  Guerin  |  Controls  

SENSOR   POWER  [W]   MASS  [kg]   VOLUME  []   OPERATING  TEMPERATURES  [°C]  

IMU   22   4.5   7206   -­‐30→65  

Star  Tracker   12   3.5   7888   -­‐20→50  

AlEmeter   15   3   3540   N/A  

GNSS  Receiver   0.4   1   18   -­‐40→85  

Page 28: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

PRELIMINARY TORQUE MODEL

28

§  Environmental  forces  affect  attitude  control.  §  Forces  due  to  aerodynamic,  magnetic,  and  

micro-­‐meteorite  forces  negligible.  §  Currently  developing  simple  gravity-­‐gradient  

model.  

Spenser  Guerin  |  Controls  

Vehicle  Offset  from  Radial  Vector  

Page 29: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

29

RYAN ALLEN | CONTROLS CREW TRANSPORT VEHICLE

o  PRELIMINARY NON-GRAVITATIONAL FORCE MODEL o  IN-TRANSIT DELTA V CORRECTIONS

1/30/2014

Page 30: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

NON-GRAVITATIONAL FORCE MODEL

30

§  Solar  electromagnetic  radiation,  reflected  radiation,  and  non-­‐propulsive  mass  expulsion  forces  included  in  model.  

§  Model  intended  to  combine  with  environmental  torque  calculations.  

Ryan  Allen  |  Controls  

Reflected  Solar  Radiation  parameter  definition  

Page 31: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

PRELIMINARY DELTA-V CALCULATIONS

31 Ryan  Allen  |  Controls  

SOURCE   FORCE  [N]   ADDITION.  ΔV  [m/s]  

Solar  RadiaEon   8.936e-­‐5   4.022e-­‐04  

Reflected  Solar  RadiaEon  (Earth)   7.726e-­‐6   3.477e-­‐05  

Reflected  Solar  RadiaEon  (Moon)   5.733e-­‐7   2.580e-­‐06  

Mass  Expulsion  (Leaks)   7.625e-­‐7   3.4315e-­‐06  

§  Model  for  CTV  flight  from  LEO  to  Lunar  Orbit.  §  Can  be  applied  to  all  launch  vehicles  given  

mass  and  time  in  transition  orbit.  

Page 32: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

PRELIMINARY DELTA-V CALCULATIONS

32 Ryan  Allen  |  Controls  

§  %Analysis  of  Nongravitational  Forces  and  Space  Environmental  Torques  

§  %Ryan  Allen,  AAE450  Spacecraft  Design  §  %Version  1.0,  1/28/14  §  %Version  1.1,  1/29/14  §     §  %Forces  Accounted  for:  Solar  Radiation,  Reflected  Solar  

Radiation,  §  %Non-­‐propulsive  leaks  §  %Torques  Accounted  for:  TBD  §     §  %Input  Parameters  §  clear  all;  close  all;  clc;  

 

Page 33: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

PRELIMINARY DELTA-V CALCULATIONS

33 Ryan  Allen  |  Controls  

§  %All  values  initially  for  earth  for  testing  purposes:  §     §  k_elm  =  1.5;  %Reflectivity  constant  [dim.]  §  A  =  13.2;  %Effective  spacecraft  area  [m^2]  §  f0  =  1353;  %Solar  flux  constant  [W/m^2]  §  rss  =  1;  %Sun-­‐spacecraft  distance  [AU]  §  f_elm  =  f0/(rss^2);  %Energy  flux  [W/m^2]  §  c  =  299792458;  %Speed  of  Light  {m/s]  §  r  =  149597870700;  %Sun-­‐earth  distance  [m]  §  rm  =  146692378;  %Sun-­‐moon  distance  [m]  §  Rp  =  6378100;  %Radius  of  planet  Earth  [m]  §  Rpm  =  1737400;  %Radius  of  moon  [m]  §  rps  =  384400000/2;    %Planet-­‐spacecraft  distance  [m]  §  a  =  .11;  %Albedo  constant  [dim]  §  m_dot  =    5.4*10^-­‐10;  %Mass  flow  rate  [kg/s]  §  R  =  2077;  %Gas  constant  for  pressurization  gas  [J/kg-­‐K]  §  T0  =  300;  %Stagnation  temperature  [K]  §  k  =  1.667;  %Specific  heat  ratio  [dim]      

Page 34: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

PRELIMINARY DELTA-V CALCULATIONS

34 Ryan  Allen  |  Controls  

§  %Calculations  §  Fsolar  =  k_elm*A*f_elm/c  §  Frefe  =  pi*Rp^2*f0/(r^2)  §  Frefm  =  pi*Rpm^2*f0/(r^2)  §  F_leak  =  m_dot*(2*R*T0*(1+k)/k)^.5      

Page 35: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

HANI KIM | HUMAN FACTOR PRESSURIZED ROVER 1/30/2014 o  H.F. : PERSONAL ITEMS & CLOTHING & WASTE o  P.R. : MASS PER PERSON

Page 36: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

HABITAT

36

§  Personal  Item  •  0.4  x  0.33  x  0.2  m  (1)  •  Volume  :  0.027  •  Mass  restriction  :  neglect  •  Estimated  mass  :  15kg/crew  (2)  

§  Clothing  (research  area)  •  Skinsuit  (3)  +  ordinary  clothes  – Mineral  density  loss  from  weight  bearing  bones  – Painful  spine  elongation  (up  to  .7  cm)  

Figure  1:  Personal  carry-­‐on  dimension  

Page 37: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

WASTE & PRESSURIZED ROVER

37

§  Waste  (4)  •  Possible  uses  :    

–  Shielding    –  Energy  

Pressurized  Rover  Available  space  :  1.678  m^3  

Name   Volume  (m^3)   Mass  (kg)  Crew   0.079   80.000  

Food   0.060  (5)   0.617  (6)  

Oxygen   0.007   16.000  

Water   0.004   3.524  (6)  

Feces   0.008   0.109  (6)  

Urine   0.004   3.869  (6)  

Total     0.213   104.119  

•  Note  •  Value  per  person    •  Only  related  to  human  survival                (CommunicaEon  +  other  device  TBA)    

     

Figure  2:  Pressurized  dimension  by  Eric  

Feces  Name   Wet  weight  (kg/person/day)   Dry  weight  (kg/person/day)  

Feces   0.096  –  0.132   0.03  

General  composiEon  Substance   Approximate  percent  

Dead  bacteria   14  -­‐  30  Fats   10  -­‐  20  

Inorganic  maSer   10  -­‐  20  Protein   2-­‐3  

Food  residues   25  -­‐  40  

Page 38: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

APPENDIX

38

(1)  Based  on  average  underseat  bags  in  current  market.  (2)  Long,  W.A,  Fischer,  W.E.,  and  Brunelle,  R.J.,  “Framing  system  for  aircraft  passenger  seat”,  United  States  Patent,  4,375,300,  Mar.  1,  1983.  (3)  Waldie,  J.M.,  and  Newman,  D.J.,  “A  gravity  loading  countermeasure  skinsuit”,  Acta  Astronautica,  vol.  68,  issues  7-­‐8,  pp.  722-­‐730.  (4)  Wydeven,  T.,  and  Colub,  M.A.,  “Waste  Streams  In  A  Crewed  Space  Habitat”,  Waste  Management  &  research,  Vol.9,  1991,  pp.  91-­‐101.  (5)  Size  of  4.2  cu  ft  compact  refrigerator  (6)  Carrasquillo,  R.,  “ISS  Environmental  Control  and  Life  Support  System(ECLSS)  Future  Development  for  Exploration”,  2nd  Annual  ISS  Research  and  Development  Conference,  NASA  Headquarters,  Denver,  CO,  2013.  (7)  Guyton,  A.C.,  Textbook  of  Medical  Physiology,  W.B.  Saunders    Company  Philadelphia,  PA,  1981.  (8)  Diem,  K.,  and  Lentner,  C.,  Scientific  Table,  Basle,  1970.    

Page 39: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

APPENDIX

39

Waste  (4),  (7),  (8)  

Name   Wet  weight  (kg/person/day)   Dry  weight  (kg/person/day)  

Toilet  waste  

Urine   1.5  –  2.11   0.059  

Feces   0.096  –  0.132   0.03  

Toilet  paper   0.494   x  

Hygiene  water  

Laundry   12.5   x  

Shower/hand-­‐wash   5.5   x  

Dish-­‐wash   5.4  

Others  

Trash   0.816  -­‐  1.162   0.593  –  0.845  

Total     26.306  –  27.298   0.682  -­‐  0.934  

Page 40: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

40

BEN FISHMAN | HUMAN FACTORS PRESSURIZED ROVERS 1/30/2014 o  LIFE SUPPORT/OXYGEN

Page 41: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

HF: PRESSURIZED ROVER (LARGE)

41

§  Air  mixture  in  atmosphere  is  comprised  of:  •  78%  -­‐  Nitrogen  (N2)  •  21%  -­‐  Oxygen  (O2)  •  ~1%  -­‐  Water  vapor  &  other  inert  gases  

§  Average  human  consumes  0.64  kg  of  O2  /  day  [1]  •  Value  changes  based  on  energy  exerted  by  crew  

§  Sensors  that  take  readings  of  rover  environment  will  automatically  release  correct  amount  of  each  component  

§  To  supply  air  to  rover,  we  will  use  pressurized  industrial  cylinders  

§  Carbon  dioxide  scrubbers  will  filter  and  vent  CO2  to  space  via  bottom  of  rover  [2]  

Ben  Fishman  |  Human  Factors  

Page 42: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

HF: PRESSURIZED ROVER (LARGE)

42 Ben  Fishman  |  Human  Factors  

Type  of  Work   Number  of  Crew  

Amount  of  Air  (24  hrs.)  

Mass  of  Tanks*  (kg)  

Volume  of  Tanks  (m3)  

AcEve   2   433  L   10.7   0.37    

Intense   2   570  L   11.8     0.44    

AcEve   4  (emergency)  

866  L   22.2     0.62    

Intense   4  (emergency)  

1140  L   25     0.84    

*Includes  mass  of  elements  at  ~  200  PSI  [3]  •  Air  supply  fits  into  alloSed  

volume  required  by  rover  team  

•  Spacesuits  oxygen  will  be  supplied  by  burning  powdered  sodium  chlorate  (future  topic)  [4]  

Page 43: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

HF: PRESSURIZED ROVER (LARGE)

43

§  %%  AAE  450  §  %%  Oxygen  Calculations  for  Habitat    §  %%  Written  by  Ben  Fishman  §     §  clear  all;  close  all;  clc  §  %%  Pressurzed  Rover  Calculations  §     §  %  78%  nitrogen    §  %  21%  oxygen    §  %  1  %  water  vapor  §     §  %%%%%%  Insert  Number  of  Expected  Passengers  %%%%%%  §  num_people  =  4;  §  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  §     §     §  %%%%%%%%%  Values  for  Liters  of  Air/min  %%%%%%%%%%%  §  rest  =  6;  §  inter  =  28;  §  hard  =  50;  §  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  §     §     §  %%%%%%%%  By  weight  %%%%%%%%%%%%  §  mass_o2_rest  =  .64  *  num_people;  §  mass_o2_inter  =  .84  *  num_people;  §  mass_o2_hard  =  7.2  *  num_people;  §     §  conversion  =  1.251/1.429;  %this  is  done  by  density  §        Ben  Fishman  |  Human  Factors  

 

Page 44: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

HF: PRESSURIZED ROVER (LARGE)

44

§  mass_n2_rest  =  .64  *  num_people  *  conversion  *  1.78;  §  mass_n2_inter  =  .84  *  num_people  *  conversion  *  1.78;  §  mass_n2_hard  =  7.2  *  num_people  *  conversion  *  1.78;  §  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

§  %%%%%%  Total  Calculations  by  Weight  %%%%%%%%  §  tot_air_rest  =  mass_o2_rest  +  mass_n2_rest;  §  tot_air_inter  =  mass_o2_inter  +  mass_n2_inter;  §  tot_air_hard  =  mass_o2_hard  +  mass_n2_hard;  §  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  §     §  %%%%%%%  Liter  Calculations  %%%%%%%%%%%%%%%%  §  o2_liter_rest  =  mass_o2_rest  *  142.9  §  o2_liter_inter  =  mass_o2_inter  *  142.9  §  n2_liter_rest  =  mass_n2_rest  *  125.1  §  n2_liter_inter  =  mass_n2_inter  *  125.1  §     §  %%%%%%%%%%%5%%%%  OUTPUT  %%%%%%%%%%%%%%%%%%%%%%%%  §  fprintf('Rest:  Need  %2.1f  kg  of  O2  and  %2.1f  kg  of  N2  to  have  a  total  of  %2.1f  kg  of  air  per  day  for  %1.0f  people

\n',mass_o2_rest,mass_n2_rest,tot_air_rest,num_people)  §  fprintf('Intermediate:  Need  %2.1f  kg  of  O2  and  %2.1f  kg  of  N2  to  have  a  total  of  %2.1f  kg  of  air  per  day  for  %1.0f  people

\n',mass_o2_inter,mass_n2_inter,tot_air_inter,num_people)  §  fprintf('Hard:  Need  %2.1f  kg  of  O2  and  %2.1f  kg  of  N2  to  have  a  total  of  %2.1f  kg  of  air  per  day  for  %1.0f  people

\n',mass_o2_hard,mass_n2_hard,tot_air_hard,num_people)  §  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

 

Ben  Fishman  |  Human  Factors    

Page 45: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

HF: PRESSURIZED ROVER (LARGE)

45

1.  Hooge,O.  “How  much  Oxygen  for  a  person  to  survive  in  an  air-­‐tight  enclosure?”  http://members.shaw.ca/tfrisen/how_much_oxygen_for_a_person.htm  

2.  Carbon  dioxide  scrubber.  Nov,  29,  2013.  http://en.wikipedia.org/wiki/Carbon_dioxide_scrubber  

3.  Airgas.  http://www.airgas.com/content/details.aspx?id=7000000000234  4.  Freudenrich,  Craig.  “How  Space  Suits  Work.”  

http://science.howstuffworks.com/space-­‐suit1.htm    

 

Ben  Fishman  |  Human  Factors    

Page 46: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

46

JESSICA CALLINAN | HUMAN FACTORS CTV SUPPLY AND CLOTHING

o  HUMAN FACTORS GROUP LEADER o  CREW TRANSPORT VEHICLE FOOD AND WATER SUPPLY o  CREW SIZING AND FORCES o  CREW CLOTHING

1/30/14

Page 47: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

CREW TRANSPORT VEHICLE | CREW

47

§  For  a  one  week  food  and  water  supply  for  8  crew  members[1]  

§  Dragon  capsule[5]  

•  Currently  designed  to  seat  7  with  standing  room  for  3  

 §  Forces  crew  can  

withstand[7]  •  Launch:  ~3  g’s    •  Re  –  entry:  ~7-­‐8  g’s  

Jessica  Callinan  |  Human  Factors  

CTV  Supply   Mass  (kg)   Volume  (m3)  

Food   112   0.4667  

Water   582.3708   2.4265  

Total   694.3708   2.8932  

Dragon  Capsule   Mass  (kg)   Volume  (m3)  

Launch   6000     25  

Return  (empty)   3000     11  

Page 48: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

CREW SIZING| CLOTHING

48

§  Height  of  crew[3]  

   

§  Weight  of  crew[2]:    

§  Clothing[4]  [6]  

Jessica  Callinan  |  Human  Factors  

Height   (m)  

Minimum   1.4859  

Maximum   1.9304  

Weight   (kg)  

Female   80  

Male   95  

Total  (colony)   700  

Clothing   Mass  (kg)   Volume  (m3)  

Individual   12.1274   4.0452  

Total  (colony)   97.0197   32.36  

Page 49: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

TABLE OF CLOTHING MASSES AND AMOUNTS

49 Jessica  Callinan  |  Human  Factors  

Clothing  Type   Mass  (kg)   Volume  (m3)  

Gym  Shoes  (2)   1.814368   -­‐  

Walking/comfortable  shoes  (2)   1.814368   -­‐  

T-­‐shirts  (8)   1.530873   -­‐  

Work  shirts  (2)   1.15   -­‐  

Pants  (2)     1.360776   -­‐  

Shorts  (2)     0.907184   -­‐  

Exercise  shorts  (6)   2.041164   -­‐  

Underwear  (10)   0.3118445   -­‐  

Socks  (10)   0.226796   -­‐  

Bras  (2)   0.170097   -­‐  

Sweater  (2)     0.8   -­‐  

Individual  Total   12.1274705   4.0452  

Colony  Total  (8)   97.019764   32.362  

Page 50: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

MATLAB CODE: CTV FOOD AND WATER-1

50

   

§  % Jessica Callinan adapted from Taylor Schultz §  % AAE 450 Spacecraft Design §  % Last Updated: 1/29/2014 §  §  % These numbers are based off the first launch SpaceX had to the ISS §  §  % SpaceX delivered 660 kg of cargo - half of this was food. This means that §  % there was approximately 330 kg of food sent up. It was stated this equaled §  %160 meals. §  §  §  % Food Weight Requirements §  num_people = 8; % Number of people in each colony §  §  weight_food = 2; % kg of food per person per day §  §  weight_colony_food = num_people * weight_food; % Weight of food per day per

colony §  §  weight_week_food = weight_colony_food * 7 % Weight of food per week per

colony §  §  % Water Weight Requirements §  water_person = 1000 * 3.78541; % kg of water per person per year (changed

gal to kg)

 

Jessica  Callinan  |  Human  Factors  

Page 51: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

MATLAB CODE: CTV FOOD AND WATER-2

51

§  water_week_person = water_person/52; % kg of water per person per week § 

§  weight_week_water = water_week_person * 8 % kg of water per colony per week § 

§  total_food_and_water = weight_week_food + weight_week_water %Total mass needed for delivery

§ 

§  % Volume Requirements

§  b = 6000/330; % Scaling factor from Dragon delivery

§ 

§  tot_vol = 25; % Dragon has 25 m^3 of total launch payload volume § 

§  vol_used = tot_vol/b; % Total volume of payload area used to deliver food

§ 

§  delivery = 330; % Amount delivered on mission (used for scaling)

§ 

§  vol_food = (weight_week_food / delivery) * vol_used % Volume needed for food delivery

§ 

§  vol_water = (weight_week_water / delivery) * vol_used % Volume needed for water delivery § 

§  total_vol = vol_food + vol_water % Total volume needed for delivery

 

Jessica  Callinan  |  Human  Factors  

Page 52: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

MATLAB CODE: HABITAT CLOTHING - 1

52

§  %Jessica Callinan §  % AAE 450 Spacecraft Design §  % Last Updated: 1/29/2014 §  §  %Clothing Requirements §  §  %These estimates are based off an article from Space.com where Dr. §  %Aspelund, a textiles, fashion merchandising, and design professor from the §  %University of Rhode Island is quoted saying that for a 30 year voyage, §  %each person would require 100 cubic feet of clothing. I have contacted Dr. §  %Aspelund and pending response these values are subject to change. §  §  %Clothing Volume Requirements §  §  %Individual Clothing Volume Requirements §  §  clothing_person_30year_ft = 1000; %ft^3 per 30 person per 30 years §  §  clothing_person_30year_m = clothing_person_30year_ft * 0.0283168; %Converting from

ft^3 to m^3 §  §  clothing_person_year = clothing_person_30year_m / 30; %Clothing required per year

(m^3) §  §  clothing_volume_person_mission = clothing_person_year * (30/7) %Clothing required

per 4 2/7 year mission (m^3)

 

Page 53: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

MATLAB CODE: HABITAT CLOTHING - 2

53

§  %Colony Clothing Volume Requirements §  §  clothing__volume_colony_mission = clothing_volume_person_mission * 8 %Clothing

required per colony per 4 2/7 year mission (m^3) §  §  §  %Individual Clothing Mass Requirements §  §  %Gym shoes - 2 lbs §  %Walking/comfortable shoes - 2 lbs §  %Average t-shirt - 6.75 oz, one for every 3 days of exercise and 1 under §  %every work shirt every 7 days §  %Average work shirt - 575 g, one for every 7 days §  %Average pants - 1.5 lbs, one for every 10 days §  %Avearge shorts - 1 lbs, one for every 10 days §  %Average exercise shorts - 0.75 lbs, one for every 3 days of exercise §  %Underwear ~ 1.1 oz, one pair for every two days §  %Socks - 0.8 oz, on pair for every two days §  %Bras ~ 3 oz, one for every week §  %Sweaters - 400g, as needed, bring 2 §  §  %This analysis will assume as much clohting as a typical astronaut would §  %take. At the moment we are assuming we will have washing capabilities and §  %will take two sets of clothes that can be interchanged during wash cycles. §  %These are assuming a 10 day cycle of clothes, and the calculation will §  %show a full 20 weeks of clothing.

Jessica  Callinan  |  Human  Factors  

Page 54: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

MATLAB CODE: HABITAT CLOTHING - 3

54

§  gym_shoes = 2 * 0.453592 * 2; %lbs to kg, with 2 pairs of shoes §  §  walk_shoes = 2 * 0.453592 * 2; %lbs to kg, with 2 pairs of shoes §  §  tshirt = 6.75 * 0.0283495 * 8; %ounces to kg, with 4 t-shirts §  §  work_shirt = 575 * 0.001 * 2; %g to kg, with 2 work shirts §  §  pants = 1.5 * 0.453592 * 2; %lbs to kg, with 2 pairs of pants §  §  shorts = 1 * 0.453592 * 2; %lbs to kg, with 2 pairs of shorts §  §  exer_shorts = .75 * 0.453592 * 6; %lbs to kg, with 6 pairs of shorts §  §  underwear = 1.1 * 0.0283495 * 10; %ounces to kg, with 10 pairs of underwear §  §  socks = 0.8 * 0.0283495 * 10; %ounces to kg, with 10 pairs of socks §  §  bras = 3 * 0.0283495 * 2; %ounces to kg, with 2 bras §  §  sweaters = 400 * 0.001 * 2; %g to kg, with 2 sweaters §  §  clothing_mass_person_mission = gym_shoes + walk_shoes + tshirt + work_shirt... §  + pants + shorts + exer_shorts + underwear + socks + bras + sweaters §  %total mass of each persons clothing §  §  %Colony Clothing Mass Requirements §  §  clothing_mass_colony_mission = clothing_mass_person_mission * 8 %total mass of colony's

clothing

Jessica  Callinan  |  Human  Factors  

Page 55: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

REFERENCES

55

1.  Carrasquillo,  Robyn.  “ISS  ECLSS  Future  Development  for  Exploration.”  July  2013.  [http://www.nasa.gov/sites/default/files/files/issrdc_2013-­‐07-­‐17-­‐1600_carrasquillo2013.pdf]  

2.  Center  for  Disease  Control  and  Prevention.  “Body  Measurements.”  2010.  [http://www.cdc.gov/nchs/fastats/bodymeas.htm]  

3.  NASA.  “Astronaut  Requirements.”  January  2004  [http://www.nasa.gov/audience/forstudents/postsecondary/features/F_Astronaut_Requirements.html]  

4.  Moskowitz,  Clara.  “Packing  for  an  Interstellar  Space  Voyage:  What  to  Bring?”  September  2012.  [http://www.space.com/17763-­‐interstellar-­‐spaceflight-­‐clothing-­‐packing.html]  

5.  Spacex.  “Dragon.”  2013.  [http://www.spacex.com/dragon]  6.  Spector,  Dina.  “Here’s  What  Astronauts  Pack  When  They  Go  To  Space.”  

September  2013.  [http://www.businessinsider.com/what-­‐astronauts-­‐pack-­‐when-­‐they-­‐go-­‐to-­‐space-­‐2013-­‐9]  

7.  Wikipedia.  “g-­‐force.”  January  2014.  [en.wikipedia/wiki/G-­‐force]  

Jessica  Callinan  |  Human  Factors  

Page 56: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

56

ERIC MENKE | COMMUNICATION HEAVY ROVER SHIELDING

o  REDUCTION OF ROVER VOLUME/SHIELDING MASS o  SIZE USING REGOLITH VS. EXTRACTED IRON OXIDE o  LASER COMMUNICATION

1/30/2014

Page 57: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

HEAVY ROVER EARLY CONCEPTS

57

§  Shaved  off  ~4-­‐5  Mg  §  Al  wrapped  in  

carbon  fiber  

Eric  Menke  |  Communication  

Page 58: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

SHIELDING THICKNESS & COMM.

Eric  Menke  |  Communication  

*assuming  3  cm  thick  Al  walls  

Unrefined  regolith  fill  

Extracted  iron  oxide  fill  

Mass   4.634  Mg  

Volume   10.188  m3  

Mass   3.360  Mg  

Volume   4.671  m3  

Laser  Communication  

Download   Upload  Ground  Terminal  

Laser  on  Vehicle  

622  Mbps   20  Mbps   40  W   0.5  W  

Page 59: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

REFERENCES

59 Eric  Menke  |  Communication  

McKay,  D.S.,  Carter,  J.L.,  Boles,  W.W.,  Allen,  C.C.,  and  Allton,  J.H.,  "JSC-­‐1:  A  New      Lunar  Soil  Simulant,"  Engineering,  Construction,  and  Operations  in  Space  IV    American  Society  of  Civil  Engineers,  1994,  pp.  857-­‐866.  

 Washington,  D.,  "Laser  Demonstration  Reveals  Bright  Future  for  Space  Communication  ,"    

 NASA's  Goddard  Space  Flight  Center,  December  2013.[http://www.nasa.gov/content/    goddard/laser-­‐demonstration-­‐reveals-­‐bright-­‐future-­‐for-­‐space-­‐communication/    #.Uumq9Hfdh8E.    Accessed  1/29/13.]  

Page 60: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

60

CAMERON HORTON | AERODYNAMICS SAMPLE CARRIER RE-ENTRY

o  SCIENCE SAMPLE CARRIER RE-ENTRY POD DESIGN

JANUARY 30TH, 2014

Page 61: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

SAMPLE SIZE APPROXIMATION

61

§  Samples  will  be  primarily  of  Anorthosite  (An75)  •  [1]Density  ≈  2.67  g/cm3  (Mg/m^3)  

§  100  kg  sample  =  0.03745  m3  §  125  kg  sample  =  0.04682  m3  

§  Anorthosite  sample  is  approximately  56%  the  size  of  Stardust[2]    

 [1]  http://adsabs.harvard.edu/full/1979LPI....10..978P  [2]  http://www.jpl.nasa.gov/news/press_kits/stardust-­‐return.pdf  

Page 62: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

SCIENCE SAMPLE CARRIER POD

62

§  Anorthosite  max  sample  size  is  56%  the  size  of  Stardust  re-­‐entry  pod  

§  Scaled  up,  carrier  total  volume  ≈  0.103  m3  (0.6m  height,  1m  diameter)  

§  Carrier  material  volume  (total  volume  –  sample  volume)  ≈  0.05618  m3  

§  Total  mass  ≈  0.202  Mg  •  (0.125  Mg  for  samples  +  0.046  Mg  for  apertures/controls  +  0.036  Mg  for  shielding  

Apollo/CEV  pod  rendering  

Gallileo  pod  rendering  

MSL,MERS  pod  rendering  

All  models  created  in  CATIA  

Page 63: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

HEAT SHIELDING

63

§  [1]PICA  –  phenolic  impregnated  carbon  ablator  (similar  to  shielding  used  on  Apollo  capsules)  

§  [2]Withstands  heating  as  high  as  2,760  degrees  Celsius  (5000  degrees  Fahrenheit)  

§  Replaced  TPS  (thermal  protection  system)  §  [3]Low  density  ≈  300  kg/m3    

 [1]  http://www.nasa.gov/centers/ames/research/msl_heatshield.html  [2]  http://www.nasa.gov/centers/ames/news/releases/2008/08_43AR.html  [3]  http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20100026827_2010028571.pdf  

     

Page 64: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

BACKUP SLIDES - RISK IDENTIFICATION

64

§  Risks  •  Critical  Launch  Failure  –  loss  of  launch  vehicle  •  Launch  Window  failure  –  weather  •  Miscalculation  of  payload  sizing  •  Miscommunication  between  supplier  and  integrator  

•  ……  

References:  hSp://www.nasaspaceflight.com/2013/11/sls-­‐us-­‐proposals-­‐increasing-­‐payload-­‐desEnaEon-­‐opEons/  hSp://www.nasaspaceflight.com/2012/11/nasa-­‐payload-­‐fairings-­‐opEons-­‐mulE-­‐mission-­‐sls-­‐capability/  

Page 65: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

65

ERIK SLETTEHAUGH| STRUCTURES LAUNCH VEHICLE & SATS

o  PAYLOAD MASS PROPERTIES o  PAYLOAD FAIRING DIMENSIONS o  NUMBER OF LAUNCHES AND TIMELINE

1/30/2014

Page 66: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

MASS PROPERTIES - PAYLOAD

66 Erik  Slettehaugh  |  Launch  Vehicle  &  Sats  

Vehicle Group Items Volume (m^3) Mass (Mg)

Launch Vehicle & Com Sat4 Sats, 4 Tracking

Stations 27.63 8.40

Habitat & Sample Return VehicleHabs, Storage,

Shielding Support, Food, Water

873.51 230.64

Cargo Vehicle & Moon Lander Cargo Vehicle, Lander

225.00 71.30

Crew Transport Vehicle Transporter, Crew Capsule

75.00 13.29

Pressurized Rovers 2 Heavy & 4 Light Rovers, 24 Tires

147.65 68.00

Helper & Construction Robots 6 Helper Robots 51.60 7.20Single Colony 1325.16 384.03

3 Colonies & SATs 3991.11 1158.09

Estimated Totals

Total Values

Single Colony

Page 67: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

PAYLOAD DIMENSIONS & LAUNCHES

67 Erik  Slettehaugh  |  Launch  Vehicle  &  Sats  

Height = 19.1 m

Diameter = 8.4 m

Volume = 1058.48 m^3

Logistical Launch Timeline

Payload Fairing for SLS

Launches by Mass

# of Launches

2 6 3 12 6 6 3 3 6 47

Payload Sats

Helper Robots

& Cargo Vehicle

Tracking Stations

& Building Material

Habs, Shielding Support

Rovers Food & Water

Transport, Crew

Capsule, & Lander

Sample Return

Resupply Total Launches

Launch Vehicle

Mass Payload to TLI (Tans-lunar Injection) (Mg)

Mass Payload to LEO (Mg)

Mass (Mg)

Volume (m^3)

# of Launches by Mass

SLS 4-engine 38.10 129.73 1158.09 3991.11 30.40

Required PayloadLaunch Capability

Page 68: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

BACKUP SLIDES - MASS PROPERTIES

68 Erik  Slettehaugh  |  Launch  Vehicle  &  Sats    

Estimated Vehicle Group Contact Date Last Updated Notes Item Volume (m^3) Mass (kg)

Launch Vehicle & Com Sat Ian Bennett 1/28/2014 L2 COM Sat 3.91 1500.00 Ian Bennett 1/28/2014 1 Moon Sat 3.91 1500.00 Ian Bennett 1/28/2014 2 Moon Sat 3.91 1500.00 Ian Bennett 1/28/2014 3 Moon Sat 3.91 1500.00 Ian Bennett 1/29/2014 4 per colony 4 Tracking Stations 4.00 800.00 Ian Bennett 1/29/2014 1 Tracking Station 1.00 200.00 Sat Total 15.63 6000.00 Total 27.63 8400.00

Values for a Single Colony

Habitat & Sample Return Vehicle

1/23/2014

All going to be shipped in 1 or 2 units

Sleeping 70.00 ? 1/23/2014 Personal/Work 20.00 ? 1/23/2014 Showering/Toilet 8.00 ? 1/23/2014 Eating/Meeting 7.50 ? 1/23/2014 Food Storage/Preparation 7.50 ? 1/23/2014 Food Growing 2.50 ? 1/23/2014 Lab 63.00 ? 1/23/2014 Recreation/Exercise Room 90.00 ? 1/23/2014 Water filtration ? ? 1/23/2014 Air Lock 8.00 20.00

Andrew Emans 1/28/2014 This is not based on the above info Total Single Habitat (8ppl) 454.00 50000.00

Andrew Emans 1/28/2014 Garage 40.00 2000.00

1/28/2014 Single Unit: Water & Storage Container? 30.28 30283.00

Andrew Emans 1/28/2014 Shielding Support Material 9.00 70000.00

1/28/2014 Volume is for one container only Food (1 Colony) 322.63 77432.00

1/28/2014 EMU suit (1 suit) 2.20 115.00 1/28/2014 Total 8 Suits 17.60 920.00 Total 873.51 230635.00

Page 69: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

BACKUP SLIDES - MASS PROPERTIES

69 Erik  Slettehaugh  |  Launch  Vehicle  &  Sats    

Arika Armstrong 1/28/20145m diameter, 13m

long Cargo Vehicle (Dry Weight) 200.00 27000.00

Scott Sylvester 1/29/2014 Includeds: Inert, fuel

Lunar Lander 25.00 44300.00

Total 225.00 71300.00

Scott Sylvester 1/29/2014 Transporter (inert) 50.00 7500.00Scott Sylvester 1/29/2014 Crew Capsule (inert) 25.00 4400.00Scott Sylvester 1/29/2014 Crew NA 700.00Scott Sylvester 1/29/2014 Food NA 112.00Scott Sylvester 1/29/2014 Water NA 582.40

Total 75.00 13294.40

Saagar Unadkat 1/28/2014 1 Heavy Pressurized rover 17.83 10000.00Saagar Unadkat 1/28/2014 1 Heavy Pressurized rover 17.83 10000.00Saagar Unadkat 1/28/2014 1 Light Pressurized rover 10.00 9000.00Saagar Unadkat 1/28/2014 1 Light Pressurized rover 10.00 9000.00Saagar Unadkat 1/28/2014 1 Light Pressurized rover 10.00 9000.00Saagar Unadkat 1/28/2014 1 Light Pressurized rover 10.00 9000.00

Saagar Unadkat 1/28/2014 1 Tire (4per heavy&light rover) 3.00 500.00

Saagar Unadkat 1/28/2014 Total 24 tires 72.00 12000.00

Total 147.65 68000.00

Cargo Vehicle & Moon Lander

Crew Transport Vehicle

Pressurized Rovers

Page 70: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

BACKUP SLIDES - MASS PROPERTIES

70 Erik  Slettehaugh  |  Launch  Vehicle  &  Sats    

Arika Armstrong 1/29/2014 1 Helper Robot 8.60 1200.00 Arika Armstrong 1/29/2014 1 Helper Robot 8.60 1200.00 Arika Armstrong 1/29/2014 1 Helper Robot 8.60 1200.00 Arika Armstrong 1/29/2014 1 Helper Robot 8.60 1200.00 Arika Armstrong 1/29/2014 1 Helper Robot 8.60 1200.00 Arika Armstrong 1/29/2014 1 Helper Robot 8.60 1200.00

Total 51.60 7200.00Single Colony 1325.163 384029.400

3 Colonies & SATs 3991.114 1158088.2Total Values

Helper & Construction Robots

Launch Vehicle

Mass Payload to TLI (Tans-lunar

Interjection) (kg)

Mass Payload to LEO (kg)

Radius (m) (Could be 5m) Height (m)

Volume (m^3) (Rough Estimates) (Assume cylinder) (About 9 School

buses)

Required Payload Mass (kg)

Required Payload Volume (m^3)

# of Launches by mass

# of Launches by volume

SLS 4-engine 38100.00 129727.00 4.20 19.10 1058.48 1158090.00 3991.11 30.40 3.770612274SLS 2-engine 39700.00 4.20 19.10 1058.48 1158090.00 3991.11 29.17 3.770612274SLS 1-engine 38500.00 4.20 19.10 1058.48 1158090.00 3991.11 30.08 3.770612274

Page 71: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

BACKUP SLIDES - RISK IDENTIFICATION

71

§  Risks  •  Critical  Launch  Failure  –  loss  of  launch  vehicle  •  Launch  Window  failure  –  weather  •  Miscalculation  of  payload  sizing  •  Miscommunication  between  supplier  and  integrator  

•  ……  

Erik  Slettehaugh  |  Launch  Vehicle  &  Sats    

References:  hSp://www.nasaspaceflight.com/2013/11/sls-­‐us-­‐proposals-­‐increasing-­‐payload-­‐desEnaEon-­‐opEons/  hSp://www.nasaspaceflight.com/2012/11/nasa-­‐payload-­‐fairings-­‐opEons-­‐mulE-­‐mission-­‐sls-­‐capability/  

Page 72: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

DATE

72

ANDREW EMANS | STRUCTURES LUNAR RESOURCES

o  HABITAT SHIELDING o  REGOLITH AS A CONSTRUCTION MATERIAL

30 JAN 2014

Page 73: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

HABITAT SHIELDING

73

§  Total  shield  mass  needed  for  a  standing  13m/13m/3m  structure  varies  from  673Mg  –  749Mg.  

§  Burying  a  15m/30m/5m  carbon  fiber  structure  with  a  10  degree  slope  ramp  to  the  surface  reduces  the  amount  of  material  needed  from  Earth  to:  

Mass:  112  Mg  Volume:  70  m^3  §  The  structure  must  be  capable  of  supporting  at  least  

3.2  kPa  .  §  Less  dense  material  is  preferable  since  dense  

materials  can  amplify  the  effects  of  radiation.      

Page 74: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

LUNAR MATERIAL §  Lunar  glass  (LG)  

•  LG  is  relatively  easy  to  produce  on  the  Moon  and  allows  for  the  collection  of  gases  (H2,  N2,  C,  He,  Ar,  S)  and  metals  (iron,  aluminum,  titanium).    

•  Volume  for  thread  manufacturing  ~2  m^3.    •  Fiberglass  can  be  used  in  new  3D  printers  to  create  building  blocks,  

spare  parts,  tools,  etc.  §  Lunar  Bricks  

•  Sintering  releases  oxygen.  •  Automated  lunar  brick  maker  has  already  been  built    ~  3  m^3.    

§  Lunarcrete  •  Stronger  than  Earth  concrete  due  to  the  porosity  of  regolith  but  

requires  more  water  to  cure  for  the  same  reason.  •  Resin  can  be  applied  to  the  surface  of  lunar  dust  to  create  stiff  

pathways  and  hold  cave  walls  together.  Using  resins  in  the  habitat  caves  would  save  ~40  Mg  of  mass  from  Earth  per  shelter.  

74

Page 75: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

BACK-UP: REFERENCES

75

Allen,  C.C.,  Graf,  J.C.,  McKay,  D.S.,  “Sintering  Bricks  on  the  Moon,”  Engineering,  Construction,  and  Operations  in  Space  IV,  American  Society  of  Civil  Engineers,  1994,  pp.  1220-­‐1229.  [http://ares.jsc.nasa.gov/HumanExplore/Exploration/EXLibrary/DOCS/EIC049.HTML.  Accessed  1/20/14.]  

 Armstrong,  T.  W.,  Parnell,  T.A.,  Watts,  J.W.,  “Radiation  Effects  and  Protection  for  Moon  and  Mars  

Missions,”  NASA.  [http://science.nasa.gov/media/medialibrary/1998/05/11/msad28apr98_1a_resources/cosmic.pdf.  Accessed  1/25/14.]  

 Blacic,  J.D.,  “Mechanica  Properties  of  Lunar  Materials  Under  Anhydrous,  Hard  Vacuum  Conditions:  

Applications  of  Lunar  Glass  Structural  Components,”  Lunar  Bases  and  Space  Activities  of  the  21st  Century,  Washington  DC,  1984.  [http://library.lanl.gov/cgi-­‐bin/getfile?00261768.pdf.  Accessed  1/21/14.]  

 Ethridge,  E.E.,  Tucker,  D.S.,  “Processing  Glass  Fiber  from  Moon/Mars  Resources,”  NASA.  [http://

science1.nasa.gov/media/medialibrary/1998/05/11/msad28apr98_1a_resources/fiber.pdf.  Accessed  1/25/14.]  

 Lin,  T.D.,  Love,  H.,  and  Stark,  “Physical  Properties  of  Concrete  Made  with  Apollo  16  Lunar  Soil  Sample”  

Space  Manufacturing  6,  Proceedings  of  Eighth  Princeton/AIAA/SSI  Conference,  1987,  pp.  361-­‐366.  [http://www.nss.org/settlement/moon/library/LB2-­‐515-­‐ConcreteMadeFromApollo16sample.pdf.  Accessed  1/20/14.]  

 

Page 76: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

76

ARIKA ARMSTRONG/STRUCTURES CARGO SHIP SIZING

o  CARGO SHIP SIZING & UPDATES o  MATERIAL INVESTIGATIONS o  ISSUES WITH REGOLITH o  MACHINERY SIZING

01/30/14

Page 77: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

CARGO SHIP DESIGN

77

§  “Disposable”  one-­‐way  ship  from  Earth  to  moon  for  cargo  

§  Lander  enclosed  within  or  attached  outside  §  5  m  diameter  x  13  m  long,  Aluminum  walls  §  Dry  mass:  21.23  Mg  §  Pressurized  volume:  198  m³  §  Cargo  mass:  20.3  Mg  

Arika  Armstrong  |  Structures  

Page 78: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

COMBINED CARGO/LANDER DESIGN

78

§  Reuse  lander  in  habitat  •  Garage  •  Rooms  •  Storage  

§  Control  systems/thermal  control  included  §  Dry  mass:  35  Mg  §  Pressurized  volume:  150  m³  

Arika  Armstrong  |  Structures  

Page 79: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

79

FINU LUKOSE | PROPULSION COMMUNICATION SATELLITES; ROVER MOTORS

o  COMMUNICATION SATELLITE PROPULSION o  ROVER MOTOR SIZES

01/30/2014

Page 80: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

COMMUNICATION SATELLITES

80

§  Communications  satellites  of  comparable  size  propulsion  systems  (i.e.  MRO,  LRO)  •  Medium  sized  thrusters,  tank  volume,  mass  •  Assumption  of  using  hydrazine  monopropellant;  common  monopropellant  for  satellites  

•  Look  into  greater  detail  on  electric  propulsion  

Finu  Lukose  |  Propulsion  

Parameter   Value  

Propellant  Tank  Volume   1.2  m3  

Propellant  Mass   1200  kg  Power  (Valve,  controls)   ~0.5kW  

Page 81: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

ELECTRIC MOTORS SIZING

81

§  Electric  motors  of  Manned  Lunar  Rover,  scaling  based  on  existing  motors  

§  Similar  system  to  LRV  envisioned  •  Per-­‐wheel  electric  drive  unit  

Finu  Lukose  |  Propulsion  

Parameter   Value  

Volume  (Space  for  motor)   4  m3  

Mass  (of  motor  system)   80  kg  [per  wheel]  

Power   15kW  4  wheel  scheme:  3.8  kW  6  wheel  scheme:    2.5  kW  

Page 82: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

LUNAR ROVING VEHICLE

82

§  Unshielded  and  light  for  transport  of  two  passengers  

§  Mass  of  vehicle  ~210  kg  §  Capable  of  additional  payload  ~490  kg  §  Each  wheel  DC  series  wound  motor  ~190  W  at  

10,000  rpm  •  Maneuvering  by  DC  motor  ~75  W  

§  Existing  system  used  as  possible  scale  

Finu  Lukose  |  Propulsion  

Page 83: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

WORKS CITED

83

§  Houghton,  Martin  B.;  Tooley,  Craig  R.;  Saylor,  Richard  S.  (July,  2007).  Mission  Design  and  Considerations  for  NASA’s  Lunar  Reconnaissance  Orbiter.  

§  Garulli,  Andrea;  Giannitrapani,  Antonio;  Leomanni,  Mirko;  Scortecci,  Fabrizio.  (November  2011).  Autonomous  Lower  Earth  Orbit  Station  Keeping  With  Electric  Propulsion.  

§  VIA  Motors.  (2014).  The  New  E-­‐REV  Powertrain  from  VIA  Motors.  

§  Viotti,  Michelle.  (Jan,  2014).  Mars  Reconnaissance  Orbiter  –  Spacecraft  Parts:  Propulsion.  Retrieved  from  http://web.archive.org/web/20060331051038/http://mars.jpl.nasa.gov/mro/mission/sc_propulsion.html  

Finu  Lukose|  Propulsion  

Page 84: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

84

PROPULSION SCIENCE SAMPLE RETURN

o  BRYAN FOSTER o  ELECTROMAGNETIC LAUNCHERS

1/29/2014

Page 85: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

RAILGUN CONCEPT

85 Bryan  Foster  |  Science  Sample  Return  

Mass  (kg)  

Volume  (m^3)  

Force  (kN)  

Current  (kA)  

Voltage  (V)  

Power  (MW)  

Energy  (MJ)  

Launches  

250   .0821   1187.94   1399.75   374.26   523.88    

261.94    

1  

125   .0410   593.97    

1032.12   275.97   284.83    

142.41    

2  

25   .0082   118.79    

518.81    

138.72   71.97    

35.98    

5  

10   .0033   47.51    

357.29    

95.53   34.13   17.06   25  

5   .0016   23.75    

273.43    

73.11   19.99    

9.99    

50  

Lunar  Escape  Velocity   2375.89  m/s  

Page 86: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

CURRENT TECHNOLOGY

86

§  Navy  prototype:  3.2  kg,  10.4  MJ,  2500  m/s  §  Fire  6-­‐10  rounds  §  Apollo  Missions:  20-­‐110  kg  of  samples  §  Orion  module  capacity:  100  kg  

Bryan  Foster  |  Science  Sample  Return    

Page 87: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

ASSUMPTIONS

87

§  Semi-­‐infinite  conductive  rails  §  Length  of  10  meters  §  Rail  radius  of  0.02  meters    §  Sample  density  will  be  an  average  density  of  

the  3  main  lunar  rock  types  §  Launch  will  take  half  a  second  §  Railgun  dimensions  will  depend  on  the  

chosen  sample  size  

Bryan  Foster  |  Science  Sample  Return    

Page 88: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

DERIVATION OF THE FORCE EQUATION

88

§  𝐹=𝐼𝐿𝑥𝐵  §  Lorentz  force  equation  §  𝐵(𝑠)=   𝜇↓0 𝐼/2𝜋𝑠   §  Biot-­‐Savart  law  §  𝐵(𝑠)=   𝜇↓0 𝐼/2𝜋 ( 1/𝑠 + 1/𝑑−𝑠 )  §  𝐵↓𝑎𝑣𝑔 =   1/2𝑑 ∫𝑟↑𝑑−𝑟▒𝐵(𝑠)𝑑𝑠   =   𝜇↓0 𝐼/4𝜋𝑑 ∫𝑟↑𝑑

−𝑟▒( 1/𝑠 + 1/𝑑−𝑠 )𝑑𝑠 =   𝜇↓0 𝐼/2𝜋𝑑 ln 𝑑−𝑟/𝑟    §  𝐹=𝐼𝑑𝐵↓𝑎𝑣𝑔 =   𝜇↓0 𝐼↑2 /2𝜋 ln 𝑑−𝑟/𝑟    

Bryan  Foster  |  Science  Sample  Return    

Page 89: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

MATLAB CODE

89

§  %Bryan  Foster  §  %AAE  450  §  %Rail  Gun  sizing  code  §     §  clc  §  clear  §  close  all  §     §  %%  §  %Escape  Velocity  §  mmoon  =  7.34767309*10.^22;  %kg  §  rmoon  =  1737.4;  %km  §  G  =  6.67384*10.^-­‐11;  %m^3/kg  s^2  §  ve  =  ((2*mmoon*G)/(rmoon*1000)).^(1/2)  %m/s  §  %%  §  %Force  §  m  =  [250,  125,  25,  10,  5];  §  for  i  =  1:5  §         F(i)  =  m(i).*ve./.5  %N  §  end  

Bryan  Foster  |  Science  Sample  Return    

Page 90: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

MATLAB CODE CONT.

90

§  %%  §  %Amps  §  mu0  =  4.*pi.*10.^-­‐7;  %V  s/A  m  §  rho  =  3046;  %kg/m^3  §  r  =  .02;  %m  §  for  j  =  1:5  §         Vol(j)  =  m(j)/rho;  §         d(j)  =  (Vol(j)).^(1/3);  §         I(j)  =  ((F(j).*2.*pi)./(4.*pi.*(10.^(-­‐7)).*log((d(j)-­‐r)./r))).^(1/2)  %Amperes  §  end  §  %%  §  %Voltage  §  rescopper  =  1.68.*10.^-­‐8;  %Ohms  m    §  L  =  20;  %m  §  A  =  (r.^2)*pi;  %m^2  §  Rc  =  rescopper.*(L./A)  §  for  k  =  1:5  §         Volt(k)  =  Rc.*I(k)  %Volts  §  end  §  %%  §  %Power  §  for  c  =  1:5  §         Power(c)  =  Volt(c).*I(c)  %Watts  §         Energy(c)  =  Power(c).*.5  %Joules  §  end  

Bryan  Foster  |  Science  Sample  Return    

Page 91: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

ERIC A FLORES | PROPULSION CREW TRANSPORT VEHICLE

o  PRELIMINARY ENGINE ANALYSIS o  PRELIMINARY FUEL AND OXIDIZER TANK ANALYSIS

1/30/14

Page 92: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

ENGINE ANALYSIS Like  the  Old  Days?  

92

Engine   Fuel   Oxidizer  

Lunar  Lander  

Descent  Stage  

TR-­‐201  (TRW)  Aerozine-­‐50  (50%  Hydrazine  and  50%  

UDMH)  

Nitrogen  Tetroxide  (N2O4)  

Lunar    Descent  Module  Engine  (LDME)  

Aerozine-­‐50  (50%  Hydrazine  and  50%  

UDMH)  

Nitrogen  Tetroxide  (N2O4)  

Ascent  Stage  

RS-­‐  18  (In  Development  -­‐  Rocketdyne)   Liquid  Methane  (CH4)   Liquid  Oxygen  (O2)  

Lunas  Ascent  Module  Engine  (LAME)  

Aerozine-­‐50  (50%  Hydrazine  and  50%  

UDMH)  

Nitrogen  Tetroxide  (N2O4)  

Transport   2nd  Stage   J-­‐2  (Rocketdyne)   Liquid  Hydrogen   Liquid  Oxygen  (O2)  

Same  Fuel  and  

Oxidizer!  

Page 93: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

PROPELLANT TANKS

93

8.4  m  

8.4  m  8.4  m  

Fuel  

       Oxidizer  

Fuel  

Vehicle   Stage  Total  Mass  Propellant  (includes  Mass  Engine)

[Mg]  

Total  Space  Volume  [m^3]  

Lunar  Lander  

Descent  Stage  

   

31.3455   30.197  

Ascent  Stage   9.515   9.167  

Transport   2nd  Stage   97.913   1165.94686  

Total  Lunar  Lander  Propellant  Volume  

[m^3]  39.364  

Total  Tranport  Propellant  Volume  

[m^3]  1165.94686  

Page 94: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

ATTACHMENTS

94

§  http://www.braeunig.us/space/comb-­‐OH.htm  (Mixture  Ratio  of  L.Hydrogen  and  L.Oxygen)  

§  http://www.braeunig.us/space/comb-­‐NA.htm  (Mixture  ratio  of  Aerodine-­‐50  and  Nitrogen  Tetroxide)  

§  https://engineering.purdue.edu/AAE/Research/Propulsion/Info/rockets/liquids  (Good  Engine  Tables)  

§  https://engineering.purdue.edu/AAE/Research/Propulsion/Info/rockets/liquids  (Delta  V  for  LEO  to  LLO)  

§  http://airandspace.si.edu/explore-­‐and-­‐learn/topics/apollo/apollo-­‐program/spacecraft/saturn_v.cfm  (SLS  Stages  Info)  

§  http://www.braeunig.us/space/propel.htm  (good  analysis)  

Page 95: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

ATTACHMENTS

95

Vehicle   Stage   Engine   Fuel   Oxidizer   Fuel  Density  (kg/m^3)  

Oxidizer  Density  (kg/m^3)  

Isp  (sec)  

Lunar  Lander  

Descent  Stage  

TR-­‐201  (TRW)  Aerozine-­‐50  (50%  Hydrazine  and  50%  

UDMH)  

Nitrogen  Tetroxide  (N2O4)  

903   1450   303  

Lunar    Descent  Module  Engine  

(LDME)  

Aerozine-­‐50  (50%  Hydrazine  and  50%  

UDMH)  

Nitrogen  Tetroxide  (N2O4)  

903   1450   311  

Ascent  Stage  Lunas  Ascent  Module  Engine  

(LAME)  

Aerozine-­‐50  (50%  Hydrazine  and  50%  

UDMH)  

Nitrogen  Tetroxide  (N2O4)  

903   1450   311  

Transport   2nd  Stage   J-­‐2  (Rocketdyne)   Liquid  Hydrogen   Liquid  Oxygen  (O2)   70.85   1141   421  

Page 96: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

ATTACHMENTS

96

Mass  Engine  (kg)  

Total  Mass  Propellant  

(includes  Mass  Engine)[kg]  

Mixture  RaEo  

Mass  of  Fuel  (kg)  

Mass  of  Oxidizer  (kg)  

Volume  of  Fuel  (m^3)  

Volume  of  Oxidizer  (m^3)  

Total  Space  Volume  (m^3)  

136.078              

179   31345.490   1.9   20536.700   10808.790   22.743   7.454   30.197  

82   9515.270   1.9   6234.142414   3281.128   6.904   2.263   9.167  

1788.100   97912.829   5   81594.024   16318.805  1151.644664   14.30219534   1165.946859  

Delta-­‐V  (LEO  to  LLO)**  [m/s]   4040  

g0  [kg*m/s^2]   9.81  

Total  Mass  CTV  Dry  (Includes  Lunar  Propellant)  [kg]   58995  

CTV  Total  Mass  (Complete)  [kg]   156907.8  

Page 97: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

ATTACHMENTS

97

Delta-­‐V  (LEO  to  LLO)**  [m/s]   4040  

g0  [kg*m/s^2]   9.81  

Total  Mass  CTV  Dry  (Includes  Lunar  Propellant)  [kg]   58995  

CTV  Total  Mass  (Complete)  [kg]   156907.8  

Page 98: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

98

ANDREW POWIS | POWER/THERMAL HEAVY ROVER POWER SYSTEMS

o  VEHICLE TEAM LEADER: PRESSURIZED ROVERS

o  FUEL CELLS AND BATTERIES

1/30/2014

Page 99: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

HEAVY ROVER LAYOUT AND MISSION PROFILE

99 Andrew  Powis  |  Power/Thermal  

System   Mass  (Mg)   Volume  (m3)   Power  (kW)  

Power   3.5   6.5   0  

Shielding/Structures   20   5.3   0  

Life  Support   0.2   1   0.5  

Drive  Train   4   14   16  (max)  

Mechanisms   0.5   1   1  

Tolerance  Factors   1.15   1.15   1.3  

Total   32.4   32.0   17.5  

Shielding  (regolith)  

Cabin  

Eric  Menke  &  Andrew  Powis  Krista  GarreS  

Page 100: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

POWER SYSTEMS

100 Andrew  Powis  |  Power/Thermal    

Proton  Exchange  Membrane  Fuel  Cell  (PEMFC)  

Reactant/Product   Storage  Mass  (Mg)[1,2]   Storage  Volume  (m3)[1,2]  

Oxygen   1.18   1.50  

Hydrogen   1.78   3.92  

Water   0.493   0.493  

Fuel  Cell  Power  Source  

Lithium-­‐Ion  Bahery  Reactant/Product   Storage  Mass  (Mg)[4]   Storage  Volume  (m3)[4]  

BaSery   6.58   2.66  

Total  Power  for  Mission  476.9  x  2  kWh  

Page 101: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

FUEL CELL TYPES

101

§  PAFC:  Phosphoric  acid  (electrolyte)  fuel  cell.  §  PEMFC:  Proton  exchange  membrane  fuel  cell.  §  SOFC:  Solid  oxide  fuel  cell.  §  MCFC:  Molten  carbonate  (electrolyte)  fuel  cell.  §  AFC:  Alkaline  (electrolyte)  fuel  cell.  §  DMFC:  Direct  methanol  fuel  cell.  

Andrew  Powis  |  Power/Thermal    

Page 102: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

FUEL CELL POWER RANGES

102 Andrew  Powis  |  Power/Thermal    

Based  on  the  above  table  and  details  from  [1],  the  appropriate  fuel  cell  types  for  consideraEon  are  the  PAFC,  PEMFC  and  SOFC  types.  Below  is  a  comparaEve  analysis  of  the  qualitaEve  properEes  of  each  of  these  fuel  cell  types.  

Page 103: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

FUEL CELL COMPARISON

103 Andrew  Powis  |  Power/Thermal    

Cell  Type   Pros   Cons  PAFC   •  Developed  and  understood  

technology.  •  Highly  reliable  and  robust.  

•  High  temperatures  required.  •  Considerable  size/mass  penalty  for  

hydrogen  reforming  system.  •  Hydrogen  storage.  

PEMFC   •  Solid  and  immobile  electrolyte.  

•  Simple  and  robust  design.  •  Low  operaEng  temperature.  •  The  new  preference  at  NASA.  •  Quick  start  up  Eme.  

•  Hydrogen  storage.  •  Difficult  to  manage  water  build  up  

in  electrolyte.  

SOFC   •  High  reacEon  rates  (due  to  temperature).  

   

•  Very  high  operaEng  temperature  (.  •  Complex  cooling  system.  •  Lengthy  start  up  Eme.  

Table  1:  Advantages  and  Disadvantages  of  the  three    appropriate  fuel  cell  types  indicated  from  Figure  1  [1].

Page 104: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

FUEL CELL CHOICE

104

§  Despite  the  power  requirements  required  for  the  Heavy  Rover,  the  best  fuel  cell  option  appears  to  be  the  proton  exchange  membrane  fuel  cell  PEMFC,  due  to  the  simplicity  and  robustness  of  this  design.  The  infrastructure  supporting  this  power,  primarily  consists  of  fuel  storage  (in  particular  hydrogen),  whereas  other  cell  types  require  alternative  systems  to  reform  and  manage  reactants.  

§  The  PEMFC  also  enjoys  a  wide  range  of  operating  powers,  allowing  the  output  power  to  be  scaled  depending  on  the  application  and  required  output  at  any  given  time.  Therefore  this  technology  will  be  compatible  for  use  in  the  Light  Rover,  reducing  the  maintenance,  knowledge  and  tools  required  to  design,  construct  and  maintain  the  rovers  on  Earth  and  the  Moon.  

§  The  primary  issue  with  the  PEMFC  (and  indeed  all  of  the  above  fuel  cell  types)  is  the  storage  of  reactants.  Alternatives  for  storing  hydrogen  are  explored  below.  

 

Andrew  Powis  |  Power/Thermal    

Page 105: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

HYDROGEN STORAGE

105 Andrew  Powis  |  Power/Thermal    

Storage  Method   Storage  Efficiency   Notes  Gas   •  Simplest  method.  

•  Indefinite  storage  Eme.  •  No  purity  limits  on  the  Hydrogen.  •  Disadvantage  in  weight  penalty.  

Liquid   •  Compact  and  comparaEvely  light  compared  to  gas  storage.  •  Store  hydrogen  as  LH2  and  skim  gas  as  it  evaporates.  •  Not  an  indefinite  storage  Eme.  •  Requires  heavy  cryogenics.  

Metal  Hydride   •  Safe  due  to  the  endothermic  nature  of  the  hydrogen  release  reacEon.  

•  Good  volumetric  efficiency.  •  Long  refill  Emes.  •  Exhaust  gas  is  non  recoverable.  

Carbon  Nano-­‐Tubes   Unknown   •  SEll  undergoing  research.  

Methanol   •  Similar  to  metal  hydride  storage.  •  Exhaust  gas  is  non-­‐recoverable.  

Alkali  Metal  Hydrides   •  Similar  to  metal  hydride  storage.  •  Necessary  to  dispose  of  poisonous  exhaust.  

Table  2:  Storage  efficiency  and  comments  regarding  hydrogen  storage  methods  for  fuel  cell  consumpEon  [1].

Page 106: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

CHOICE OF HYDROGEN STORAGE

106

§  For  preliminary  design  of  the  heavy  rover  power  system  the  gas  storage  method  was  chosen.  This  was  due  to  the  robust  and  inert  nature  of  the  storage  method.  Ideally  this  method  will  also  allow  reversal  of  the  fuel  cell  process  (electrolysis)  to  recover  pure  oxygen  and  hydrogen,  effectively  allowing  the  fuel  cell  to  be  treated  as  a  battery.  

§  The  proposed  storage  method  is  a  tank  with  an  aluminium  inner  liner,  around  which  is  wrapped  a  composite  of  aramid  fibre  and  epoxy  resin.  The  material  has  high  ductility,  giving  it  good  burst  behaviour  and  a  storage  efficiency  of  3.1%.  Furthermore  this  storage  design  has  a  volume  efficiency  of  0.071   𝑚↑3   𝑝𝑒𝑟  𝑘𝑔  𝑜𝑓   𝐻↓2   

§  At  this  stage  however,  alternative  storage  options  will  not  be  ruled  out,  in  the  case  that  the  storage  efficiency  of  the  hydrogen  is  insufficient.  

Andrew  Powis  |  Power/Thermal    

Page 107: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

OXYGEN STORAGE

107

§  Oxygen  storage  efficiency  was  gauged  from  commercially  available  oxygen  tanks  from  Luxfer  [2].  Each  tank  has  an  inner  liner  made  from  aluminium  alloy  and  strengthened  with  carbon-­‐fiber.  The  storage  efficiency  for  oxygen  at  

3000  𝑝𝑠𝑖  is  37.2%  and  the  volume  or  storage  is,  

§  0.00342   𝑚↑3   𝑝𝑒𝑟  𝑘𝑔  𝑜𝑓   𝑂↓2   

Andrew  Powis  |  Power/Thermal    

Page 108: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

BATTERY PERFORMANCE

108 Andrew  Powis  |  Power/Thermal    

Property   Value  Energy  Density  Specific  Energy  Operalng  Life    deep  cycles  Temperature  range    to    

Lithium-­‐ion  bahery  performance. Space  rated  lithium-­‐ion  baSeries  have  been  used  in  various  applicaEons  for  decades.  One  of  the  most  recent  examples  of  such  an  applicaEon  is  the  baSery  used  with  the  Mars  Science  Laboratory  on  Curiosity. The  performance  of  this  baSery  was  obtained  from  the  manufacturers  website  [4]  and  key  parameters  are  tabulated  below.    

Table  3:  ProperEes  of  the  Mars  Science  Laboratory  lithium  ion  baSeries.

Page 109: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

REFERENCES

109

§  [1]  Larminie,  J.,  Dicks,  A.,  Fuel  Cell  Systems  Explaine,  John  Wiley  &  Sons,  West  Sussex,  2003.  

 §  [2]  “L6X  composite  cylinder  specifications”,  Luxfer  Gas  Cylinders,  Boston,  

MA.  [http://www.luxfercylinders.com/products/medical-­‐cylinders/195-­‐l6x-­‐carbon-­‐composite-­‐full-­‐wrap-­‐medical-­‐cylinders?units=1.  Accessed  1/29/2014]  

 §  [3]  “Densities  and  Molecular  Weights  of  Some  Common  Gases”,  The  

Engineering  ToolBox,  [http://www.engineeringtoolbox.com/gas-­‐density-­‐d_158.html.  Accessed  1/29/2014]  

 §  [4]  “Lithion,  Inc.  –  World  Class  and  Beyond”,  Yardney  Technical  Products,  

Inc.  [http://www.yardney.com/Lithion/lithion.html.  Accessed  1/27/2014]  

Andrew  Powis  |  Power/Thermal    

Page 110: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

MISSION PROFILE

110

§  % Code written by Krista Garrett to demonstrate speed and power profiles §  % for the pressurized rover on the moon. §  % AAE 450 §  % Written January 24, 2014. §  §  %Modified to represent Heavy Rover mission profile §  %Andrew Powis January 28, 2014. §  §  clear; clc; close all; §  §  % Calculate the maximum speed of the rover on flat terrain by assuming the maximum

power is consumed when the % pressurized rover is traveling up an incline of 30 degrees a a speed of 10 km/hr

§  §  % Set the friction coefficient for the lunar surface §  friction_coeff_lunar_dirt = 0.7; % unitless (coefficient) §  §  % Set the mass of the pressurized rover in kg §  mass_rover = 30500; % kg §  §  % Set the acceleration due to lunar gravity §  lunar_gravity = 1.622; % m/s^2

Andrew  Powis  |  Power/Thermal    

Page 111: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

MISSION PROFILE

111

§  §  % % % §  % The equations for Power used in this code: §  % power = speed*mass*gravity*(friction_coeff_lunar_dirt*cos(incline_angle) +

sin(incline_angle)) §  % % % §  §  % Find power needed to get the rover up an incline of 30 degrees at a speed of 10

km/hr (10000 m/hr) §  §  velocity_up_30_incline = 10; % km/hr §  §  % Need to convert this to m/s §  velocity_up_30_incline_meters_per_second = velocity_up_30_incline*1000/(60*60); % m/

s §  §  % Calculate the maximum power §  max_power =

velocity_up_30_incline_meters_per_second*mass_rover*lunar_gravity*(friction_coeff_lunar_dirt*cosd(30)+sind(30))

§  §  % Assign the range of the rover: §  range_rover = 50000; % m

 

Andrew  Powis  |  Power/Thermal    

Page 112: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

MISSION PROFILE

112

§  % Create a matrix for the distances: §  step_size = 1; §  distance_traveled = [0:step_size:range_rover]; % MAY NEED TO CHANGE THE STEP SIZE §  §  % The distance for each leg is given in meters §  §  % Set the initial incline and elevation §  incline(1) = 0; elevation(1) = 0; §  §  j = 2; % Counter §  §  % % % --------------------------------------------------------------------- §  % This while statements can be copied and pasted to create the desired §  % terrain for the mission. §  % % % --------------------------------------------------------------------- §  §  while distance_traveled(j) <= 5000; §  incline(j) = 11.3; % degrees §  elevation(j) = elevation(j-1) + tand(incline(j))*step_size; % m §  j = j+1; §  end  

Andrew  Powis  |  Power/Thermal    

Page 113: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

MISSION PROFILE

113

§  while distance_traveled(j) <= 10000; §  incline(j) = -11.3; % degrees §  elevation(j) = elevation(j-1) + tand(incline(j))*step_size; % m §  j = j+1; §  end §  §  while distance_traveled(j) <= 20000; §  incline(j) = 0; % degrees §  elevation(j) = elevation(j-1) + tand(incline(j))*step_size; % m §  j = j + 1; §  end §  §  while distance_traveled(j) <= 24000; §  incline(j) = 30; % degrees §  elevation(j) = elevation(j-1) + tand(incline(j))*step_size; % m §  j = j + 1; §  end

§  while j <= 28000 §  incline(j) = -30; % degrees §  elevation(j) = elevation(j-1) + tand(incline(j))*step_size; % m §  j = j + 1; §  end § 

Andrew  Powis  |  Power/Thermal    

Page 114: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

MISSION PROFILE

114

§  while j <= 30000 §  incline(j) = 30; % degrees §  elevation(j) = elevation(j-1) + tand(incline(j))*step_size; % m §  j = j + 1; §  end §  §  while j <= 34000 §  incline(j) = 0; % degrees §  elevation(j) = elevation(j-1) + tand(incline(j))*step_size; % m §  j = j + 1; §  end §  §  while j <= 36000 §  incline(j) = -30; % degrees §  elevation(j) = elevation(j-1) + tand(incline(j))*step_size; % m §  j = j + 1; §  End §  while j <= 40000 §  incline(j) = 0; % degrees §  elevation(j) = elevation(j-1) + tand(incline(j))*step_size; % m §  j = j + 1; §  end §  §  while j <= length(distance_traveled) §  incline(j) = 5.71; % degrees §  elevation(j) = elevation(j-1) + tand(incline(j))*step_size; % m §  j = j + 1; §  end

Andrew  Powis  |  Power/Thermal    

Page 115: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

MISSION PROFILE

115

§  % % % --------------------------------------------------------------------- §  % Calculate the velocity achieved by the rover during each phase §  % % % --------------------------------------------------------------------- §  for k = [1:1:length(distance_traveled)] §  speed_achieved_with_max_power(k) = max_power/

(mass_rover*lunar_gravity*(friction_coeff_lunar_dirt*cosd(incline(k)) + sind(incline(k))));

§  speed_in_kilometers_per_hour(k) = speed_achieved_with_max_power(k)*(60*60)/1000; % km/hr

§  end §  §  max_power_array = max_power*ones([1,length(distance_traveled)]); §  §  % % % --------------------------------------------------------------------- §  % Assume a constant speed of 10 km/hr and calculate the power usage. §  % % % --------------------------------------------------------------------- §  §  constant_speed = 10000/(60*60); % 10 km/hr converted to m/s §  constant_speed_array_km_per_hour = 10*ones([1,length(distance_traveled)]); §  §  for m = [1:1:length(distance_traveled)] §  power(m) =

constant_speed*mass_rover*lunar_gravity*((friction_coeff_lunar_dirt*cosd(incline(m)) + sind(incline(m))));

§  end §  §  time_step = step_size/constant_speed; %s §  total_power = sum(power.*time_step) %kWh

Andrew  Powis  |  Power/Thermal    

Page 116: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

MISSION PROFILE

116

§  % % % --------------------------------------------------------------------- §  % PLOTS §  % % % --------------------------------------------------------------------- §  §  % To plot distance in kilometers, convert from meters to kilometers. §  distance_traveled_kilometers = distance_traveled./1000; % km §  §  % Plots when the rover uses maximum power §  figure(1); §  §  subplot(3,1,1); plot(distance_traveled_kilometers, elevation); §  grid on; xlabel('Distance (km)'); ylabel('Elevation (m)'); title('Elevation

Profile'); §  §  subplot(3,1,2); plot(distance_traveled_kilometers, speed_in_kilometers_per_hour); §  grid on; xlabel('Distance (km)'); ylabel('Speed (km/hr)'); title('Speed of Rover'); §  §  subplot(3,1,3); plot(distance_traveled_kilometers, max_power_array); §  grid on; xlabel('Distance (km)'); ylabel('Power (W)'); title('Power Usage'); §  §  % Plots when the rover travels at a constant speed §  figure(2); § 

Andrew  Powis  |  Power/Thermal    

Page 117: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

MISSION PROFILE

117

§  subplot(3,1,1); plot(distance_traveled_kilometers, elevation,'LineWidth',2); §  grid on; xlabel('Distance (km)','fontsize',14); ylabel('Elevation (m)','fontsize',

14); title('Elevation Profile','fontsize',16,'FontWeight','bold'); §  §  subplot(3,1,2); plot(distance_traveled_kilometers,

constant_speed_array_km_per_hour,'color','green','LineWidth',2); §  grid on; xlabel('Distance (km)','fontsize',14); ylabel('Speed (km/hr)','fontsize',

14); title('Speed of Rover','fontsize',16,'FontWeight','bold'); §  §  subplot(3,1,3); plot(distance_traveled_kilometers, power,'color','red','LineWidth',

2); §  grid on; xlabel('Distance (km)','fontsize',14); ylabel('Power (W)','fontsize',14);

title('Power Usage','fontsize',16,'FontWeight','bold'); §  ylim([0, 12*10^4])

Andrew  Powis  |  Power/Thermal    

Page 118: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

PEMFC CODE

118

§  %AAE450 - Spacecraft Design §  %Andrew Powis §  §  %For a given power requirement (Wh) this script determines the required §  %storage weight and volume of reactants for a Proton Exchange Membrane Fuel §  %cell. §  §  %Refer to provided Fuel Cell Notes for references. §  §  clear; §  clc; §  close all; §  §  %%%%%%%%%%%%%%%%%%%%%%%INPUTS%%%%%%%%%%%%%%%%%%%%%%%%%% §  §  %Required energy (Ws) §  Pe = 1.717e+09; §  §  §  %%%%%%%%%%%%%%%%%%%%%%%%CONSTANTS%%%%%%%%%%%%%%%%%%%%%%% §  §  %Faraday's Constant (C/mol) §  F = 96485.3399;

Andrew  Powis  |  Power/Thermal    

Page 119: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

PEMFC CODE

119

§  %Atomic Mass of O2 §  mO2 = 2 * 15.9994; §  §  %Atomic Mass of H2 §  mH2 = 2 * 1.00794; §  §  %Atomic Mass of water §  mH2O = 18.015; §  §  %%%%%%%%%%%%%%%%%%%%%%VARIABLES%%%%%%%%%%%%%%%%%%%%%%%% §  §  §  %Storage efficiency for H2 by weight. [1] §  meffH2 = 0.031; §  §  %Storage efficiency for O2 by weight [2]. §  meffO2 = 0.37196; §  §  %Storage efficiency for H2 by volume, m^3/kg [1]. §  veffH2 = 0.070967742; §  §  %Storage efficiency of O2 per volume, m^3/kg [2]. §  veffO2 = 0.003417077;

Andrew  Powis  |  Power/Thermal    

Page 120: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

PEMFC CODE

120

§  %Output voltage (V) inherent to PEMFC, improve accuracy with a better estimate. §  Vc = 0.65; §  §  %Number of cells §  ncells = 10; §  §  %%%%%%%%%%%%%%%%%%%CALCULATIONS%%%%%%%%%%%%%%%%%%%%%%%%%%% §  §  %Seconds of operation §  %Secs = Hrs * 3600; §  §  %Output Current (Amps) §  I = Pe / (Vc * ncells); §  §  §  %O2 usage (moles/s) §  O2_moles = Pe / (4*Vc*F); §  §  %O2 usage (kg/s) §  O2_kg = O2_moles * mO2 * 10^-3; §  §  §  %H2 usage (moles/s) §  H2_moles = Pe / (2*Vc*F); §  §  %H2 usage (kg/s) §  H2_kg = H2_moles * mH2 * 10^-3;

Andrew  Powis  |  Power/Thermal    

Page 121: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

PEMFC CODE

121

§  %Water produced (moles/s) §  H2O_moles = Pe / (2*Vc*F); §  §  %Water produced (kg/s) §  H2O_kg = H2O_moles * mH2O * 10^-3; §  §  §  %Heating rate (W) §  heat = Pe * (1.25 / Vc - 1); §  §  §  %Oxygen required for entire mission. §  O2 = O2_kg; §  §  %Mass of oxygen and storage equiptment. §  O2_storage_kg = O2 / meffO2 §  §  %Volume of oxygen storage. §  O2_storage_m3 = O2*veffO2 §  §  §  %Hydrogen required for entire mission §  H2 = H2_kg §  §  %Mass of oxygen and storage equiptment. §  H2_storage_kg = H2 / meffH2

Andrew  Powis  |  Power/Thermal    

Page 122: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

PEMFC CODE

122

§  %Volume of hydrogen storage. §  H2_storage_m3 = H2 * veffH2 §  §  §  %Water produced over entire mission. §  H2O = H2O_kg §  §  %Water storage volume. §  H2O_storage_m3 = H2O_kg/1000 §  §  Total_reactant_mass = H2_storage_kg+O2_storage_kg §  Total_storage_vol = H2O_storage_m3+H2_storage_m3+O2_storage_m3

 

Andrew  Powis  |  Power/Thermal    

Page 123: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

PEMFC CODE

123

§  %AAE450 - Spacecraft Design §  %Andrew Powis §  §  %For a given power requirement (Wh) this script determines the required §  %storage weight and volume of a lithium-ion battery. §  §  clear §  clc §  close all; §  §  %%%%%%%%%%%%%%%%%%%%%%VARIABLES%%%%%%%%%%%%%%%%%%%%%%%% §  §  %Required power (kWh) §  Pe = 477; §  §  %Hours of operation §  Hrs = 20; §  §  %Lithium-Ion Battery capacity, based on Curiosity Rover battery (Wh/kg) §  cap = 145; §  §  %Lithium-Ion Battery size, based on Curiosity Rover battery (kWh/L) §  vcap = 358;

Andrew  Powis  |  Power/Thermal    

Page 124: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

PEMFC CODE

124

§  %%%%%%%%%%%%%%%%%%%CALCULATIONS%%%%%%%%%%%%%%%%%%%%%%%%%%% §  §  %Battery mass §  mbat = (Pe*1000)/cap §  §  %Battery volume §  vbat = Pe/vcap §  §  %Battery density §  dbat = mbat/vbat; § 

Andrew  Powis  |  Power/Thermal    

Page 125: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

125

DIVINAA BURDER|POWER/THERMAL POWER SYSTEMS/RE-ENTRY

o  LUNAR FISSION SURFACE POWER SYSTEMS o  RADIOISOTOPE THERMOELECTRIC GENERATORS (RTG) o  RE-ENTRY CAPSULE SHIELDING

January 30,2014

Page 126: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

FISSION REACTORS & RTGS Fission  Surface  Power  Systems  Ø  How  it  Works  

•  Splitting  uranium  atoms  in  a  reactor  to  generate  heat  that  is  converted  into  electrical  power  

Ø  Advantages  •  Can  withstand  harsh  environments  •  Lifetime  of  8  years  •  Affordable  

Ø  Specifications  •  Mass:  6  tons    •  Power:  40  kW    •  Reactor  Volume:  0.15  m3  

Ø   Applications  •   Power  habitats/equipment  

–  Located  at  a  safe  distance  (~250  m  from  habitat  

–  Aluminum  shielding  to  protect  from  radiation  

–  Require  at  least  2  per  habitat  •  Charge  rovers  

–  5-­‐10  days  

Radioisotope  thermoelectric  generators  (RTG)s  

Ø  Specifications  •  Mass:  40-­‐80  kg    •  Power:  250-­‐500  W  •     Volume:  0.018-­‐2  m3  

Ø  Applications  •   Back-­‐up  power  for  habitat    

–  Used  in  conjunction  with  solar  panels  

•  Used  by  rovers  for  charging  at  waypoints  

126 Divinaa  Burder  |  Power  &  Thermal  1.  FSP  Image  based  on  :  NASA  Science  News  hSp://science1.nasa.gov/science-­‐news/science-­‐at-­‐nasa/2009/15may_sErling/  2.  RTG  Image  based  on  :  hSp://www.myspacemuseum.com/alsep01b.htm  

Page 127: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

RE-ENTRY CAPSULE SHIELDING

127

§  Based  on  SpaceX  Dragon  Capsule  §  Shielding  

•  PICA-­‐X  (Phenolic  Impregnated  Carbon  Ablator)  tiles  •  Re-­‐usable  (less  than  1  cm  burns  off  during  re-­‐entry)  •  Thickness:  8  cm  /tile  •  Mass:  1  kg  /  tile  •  Tile  Dimensions:25.4  cm  x  9.7  cm  x  8cm  •  Withstands  temperatures  higher  than  1600  °C  (3000  °  F)  •  Lightweight,  “slightly  more  dense  than  balsa  wood”[2]  

 

Divinaa  Burder  |  Power  &Thermal    

Page 128: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

FISSION REACTOR COMPARED TO ISS Ø  Primary  Components  

•  Heat  Source  •  Power  Conversion  •  Heat  Rejection  •  Power  Conditioning  &  Distribution  

(PCAD)  Ø  Structure  Description  

•  Stainless  steel  based,  UO2  fueled  pumped,  NaK  fission  reactor  coupled  to  free  piston  stirling  converters  

Ø  Process  •  Power  transferred  from  Reactor  to  Power  

Conversion,  and  then  to  Heat  Rejection.    •  Electrical  power  generated  by  power  

conversion  processed  through  PCAD  to  user  loads  

Ø  Radiation  •  No  radiological  risk    •  Provide  shielding  for  FSP  •  Similar  to  habitat  shielding  •  Can  control  reactivity  •  Average  gamma  dose  in  local  region  above  

shield  =  5MRad  

Ø  Primary  Components  •  Solar  panels  

•  75-­‐90  kW  generated  •  Wingspan  of  240  ft  •  Solar  panels  

•  Each  power  channel  supplies  11  kW  •  Nickel-­‐hydrogen  batteries  •  Can  route  power  to  user  loads  •  Primary  &  Secondary  Power  Distribution  •  25  kW  used  for  science  applications    

128

Page 129: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

REFERENCES

129

[1]    Poston,  D.I.,  Kapernick,  R.J,  "Reference  Reactor  Module  Design  for  NASA's  Lunar  Fission  Surface  Power  System,"  Proceedings  of  Nuclear  and  Emerging  Technologies  for  Space  2009,  Atlanta,  GA,  June  14-­‐19,  2009.    [2]    NASA  

•   Radioisotope  Power  systems,  http://solarsystem.nasa.gov/rps/types.cfm  •  NASA  Developing  Fission  Surface  Power  Technology  

http://www.nasa.gov/home/hqnews/2008/sep/HQ_08-­‐227_Moon_Power.html  •  NASA/DOE  Team  Moving  Forward  on  Fission  Surface  Power  Technology  

http://www.nasa.gov/centers/glenn/news/pressrel/2009/09-­‐036_fission.html  [3]  SpaceX  

•   Pica  Heat  Shielding,  http://www.spacex.com/news/2013/04/04/pica-­‐heat-­‐shield  •  Dragon  Capsule:  http://www.spacex.com/dragon  •  Dragon  Capsule  infographic  :  http://www.space.com/12033-­‐spacex-­‐dragon-­‐space-­‐capsule-­‐infographic.html  

[4]  Universe  today    •  Space  X  Dragon  capsule:  www.universetoday.com/94217/spacexs-­‐dragon-­‐now-­‐with-­‐seating-­‐for-­‐seven/  

 •  Fission  Reactors:  

http://www.universetoday.com/17937/nasa-­‐looks-­‐at-­‐fission-­‐reactors-­‐for-­‐power-­‐on-­‐the-­‐moon/  

Page 130: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

130

JOSEPH AVELLANO | POW./THERM. CARGO VEHICLE POWER

o  LOW EARTH ORBIT o  SOLAR PANELS o  RECHARGEABLE BATTERIES

1/30/2014

Page 131: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

LEO POWER OBSTACLES

131

§  Multi-­‐junction  solar  cells  •  26%  -­‐  44%  eff.  

§  Sun’s  Radiation  •  Max:  1413   𝑊/𝑚↑2    •  Min:  1312   𝑊/𝑚↑2      

§  Low  Earth  Orbit  •  Altitude:  160  km  –  2000  km  

•  Period:  88  min  –  127  min    

§  Dark  Period  •  ~38.88%  of  total  period  •  ~34  –  49  min    

Page 132: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

CARGO VEHICLE POWER NEEDS

132

§  Solar  Panels  •  At  40%  eff.  :  546.4    •  3  square  meters  •  Mass  =  ~45  kg  •  Volume  =  ~.0762    •  Power  =  ~1639.2  Watts  

 §  Lithium  Ion  Batteries  

•  Mass  =  ~3.2  kg  •  Volume  =  ~.003  •  Power  =  ~1.5  kW  

Navigalon  system/sensors  

Power  required    

IMU   22  waSs  

Star  Tracker   12  waSs  

Other  Systems   Power  required  

GPS   ~12  waSs  

CommunicaEons   ~100  waSs  

Thermal  Control   ~1000  waSs  

§  Total  Power  =  ~1144  Watts  

Page 133: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

133

ANDREW COX | PROJECT MANAGER THIS, THAT, AND THE OTHER

o  NEW (AND IMPROVED) SPREADSHEET

1/30/2013

Page 134: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

SPREADSHEET USAGE

134

§  Thank  you  to  those  who  have  contributed!  •  Structures  team  with  initial  guestimates  •  Comm  Sat,  CTV,  Hab,  Cargo  Transport  

§  Need  more  numbers  from:  •  Moon  Landers,  Const.  Bots,  Helper  Bots,  SSC  

§  Almost  nobody  has  power  numbers  –  we  need  those  ASAP  so  P&T  can  work!  

Andrew  Cox  |  PM  

Page 135: AAE 450 SENIOR DESIGN WEEK 03 PRESENTATIONS€¦ · 3 parth shah | apm launch mission timeline o organizational items o launch mission timeline 1/30/2014

IMPROVED VEHICLE SPECS SHEET

135

§  Moved  to  Google  Drive  •  Wiggio  kept  duplicating  the  file  without  preserving  modifications  

•  GD  is  faster  and  has  more  features  •  Link  is  posted  on  Wiggio  where  the  spreadsheet  used  to  be  

§  Explanation  and  Feature  Walkthrough  •  Link  

Andrew  Cox  |  PM