A5. Thermophysical Properties of Refrigerants

10
A5 Thermophysical Properties of Refrigerants Nitin Goel Intel Technology India Pvt. Ltd. R-22 (Chlorodifluoromethane) R-134a (1,1,12-Tetrafluoroethane) R-404A [R-125/143a/134a (44/52/4)] R-407C [R-32/125/134a (23/25/52) R-410A [R-32/125 (50/50)] Ammonia/Water Water/Lithium bromide The Montreal Protocol, signed in 1987 and later amended in 1990, 1992, 1997, and 1999 controls the production of ozone-depleting substances including refrigerants containing chlorine and/or bromine production chloro-fluoro-carbons (CFC). Pursuent to this treaty, refrigerants such as R-11 and R-12, ceased to exist in 1996 although continued use from existing stocks is permitted. In addition, hydrofluorocarbon (HCFCs) (such as R-22 and R-123) are being phased out, with complete cessation of production by January 1, 2030. These refrigerants are being replaced by HFC refrigerants which have zero ozone depletion potential. Common HFC refrigerants are R-32, R-125, 134a, and R-143a and their mixtures, such as, R-404A, R-407C, and R-410A. This appendix gives thermophysical properties of these HFC refrigerants and ammonia water and water–lithium bromide mixtures which are used in absorption refrigeration systems. Properties of R-22 are given to serve as a reference (Figure A5.1 through Figure A5.8). A5-1 q 2007 by Taylor & Francis Group, LLC

description

refrigerants

Transcript of A5. Thermophysical Properties of Refrigerants

Page 1: A5. Thermophysical Properties of Refrigerants

A5

q 2007 by Taylor & Francis Group, LLC

ThermophysicalProperties ofRefrigerants

Nitin Goel

Intel Technology India Pvt. Ltd.

R-22 (Chlorodifluoromethane)

R-134a (1,1,12-Tetrafluoroethane)

R-404A [R-125/143a/134a (44/52/4)]

R-407C [R-32/125/134a (23/25/52)

R-410A [R-32/125 (50/50)]

Ammonia/Water

Water/Lithium bromide

The Montreal Protocol, signed in 1987 and later amended in 1990, 1992, 1997, and 1999 controls the

production of ozone-depleting substances including refrigerants containing chlorine and/or bromine

production chloro-fluoro-carbons (CFC). Pursuent to this treaty, refrigerants such as R-11 and R-12,

ceased to exist in 1996 although continued use from existing stocks is permitted. In addition,

hydrofluorocarbon (HCFCs) (such as R-22 and R-123) are being phased out, with complete cessation

of production by January 1, 2030.

These refrigerants are being replaced by HFC refrigerants which have zero ozone depletion potential.

Common HFC refrigerants are R-32, R-125, 134a, and R-143a and their mixtures, such as, R-404A,

R-407C, and R-410A.

This appendix gives thermophysical properties of these HFC refrigerants and ammonia water and

water–lithium bromide mixtures which are used in absorption refrigeration systems. Properties of R-22

are given to serve as a reference (Figure A5.1 through Figure A5.8).

A5-1

Page 2: A5. Thermophysical Properties of Refrigerants

1000.01

0.02

0.04

0.06

0.080.1

0.2

0.4

0.6

0.81

2

4

6

810

20

0.01

0.02

0.04

0.06

0.080.1

0.2

0.4

0.6

0.81

2

4

6

810

20

150

0.70

0.80

0.90

1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.70

1.80

1.90

2.00

2.10

2.20 2.40

s =

2.20

kJ/

(kg·

K)

200 250 300 350

Enthalpy, kJ/kg

Pre

ssur

e, M

Pa

Properties computed with: NIST REFPROP Based on formulation of Kamei et al. (1995)version 7.0

400 450 500 550

0.30

0.40

0.60

0.801.0

1.52.0

3.0

4.0

6.0

10

15

20

3040

6080

100

150200

400500600700800900

1000

1050

1100

1150

1200

1250

1300

Sat

urat

ed li

quid

0.1

0.2

0.3

0.5

0.6

0.7

0.8

0.9

Sat

urat

ed V

apor

x =

0.4

n = 300 kg/m3

8.0

600

100 150 200

10

−10

−10 0 10 20 30 40 50 60 70 80 90 10

011

012

013

014

015

016

017

0

190

200

T =

180

°C

−20

−80

−70

−60

−50

−40

−30

−10

0

10

20

30

40

5060

7080

T = −20°C

−20

−30

−40

−50

−70

−80

T =

−6.

0°C

0

1500

1450

1400

1350

20 30 40 50 60 70 80 90

250 300 350 400 450 500 550 600

FIGURE A5.1 Pressure–enthalpy diagram for refrigerant R-22.

A5

-2H

an

db

ook

of

En

erg

yE

fficie

ncy

an

dR

en

ew

ab

leE

nerg

y

q 2007 by Taylor & Francis Group, LLC

Page 3: A5. Thermophysical Properties of Refrigerants

20 20

108

6

4

2

10.8

0.6

0.4

0.2

0.10.08

0.06

0.04

0.02

0.01

108

6

4

2

10.8

0.6

0.4

0.2

Pre

ssur

e, M

Pa

0.10.08

0.06

0.04

0.02

0.01100 150 200 250 300

Enthalpy, kJ/kg

350 400 450 500 550 600

100 150 200 250 300 350 400 450 500 550 600

Properties computed with: NIST REFPROP Based on formulation of Tsiner-Roth and Beehr (1994)version 7.0

–60

–50

–30

–20

–10 0

1013

00

1250

1200

1150

1100

1050

1000 900 800 700 600

9080

70

60

50

40

30

20

10

0

–20

–30

–40

–50

–60

400

300

200

150

10080

60

40

30

20

15

108.0

6.0

4.0

3.0

2.0

1.5

1.0

0.80

0.60

0.40

ρ=500 kg/m3

20 30 40 50 60 70 80 90 100

T=

–40˚

C

T=–10˚C

T=

160

˚C

1450

1400

1350

0.70

0.80

0.1

0.2

0.3

0.5

0.6

0.7

0.8

0.9

0 10 20 30 40 50 60 70 80 90 100

110

120

130

140

150

160

180

x =

0.4

Sat

urat

ed li

quid

Sat

urat

ed V

apor

0.90

1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.70

1.80

1.90

2.00

2.10

2.20

2.40s

= 2.

30 K

J/(k

g·K)

FIGURE A5.2 Pressure–enthalpy diagram for refrigerant R-134a.

Th

erm

oph

ysic

al

Pro

pertie

sof

Refrig

era

nts

A5

-3

q 2007 by Taylor & Francis Group, LLC

Page 4: A5. Thermophysical Properties of Refrigerants

10.08.0

6.0

4.0

2.0

1.00.8

0.6

0.4

0.2

0.1

0.08

0.06

0.04

0.02

0.01100 150 200 250 300 350 400 450 500 550 600

Enthalpy (kJ/kg)

0.1

0.2

0.4

0.6

0.81.0

2.0

4.0

6.0

8.010.0

20.0

40.0

60.0

80.0

100.0

Pre

ssur

e (b

ar)

100 150 200 250 300 350 400 450 500 550 600

Pre

ssur

e (M

Pa)

DuPont Fluorochemicals 0.00

10

0.00

110.

0012

0.00

13 0.001

4

0.001

5

0.00160.0018

0.00200.0030

0.0040

0.00500.0060

0.010

0.015

0.020

0.030

0.040

0.050

0.060

0.080

0.10

0.15

0.20

0.30

0.40

0.70

1.0

1.5

2.0

0.00

105

220 23

0 240

Volume = 0.0080 m'/kg

0.60

0.65

0.70

0.80

0.85

0.90

0.85

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50

1.55

1.60

1.65

1.70

1.75

1.80

1.85

1.90

1.95

2.00

2.05 2.10

2.15

2.25

2.30

2.35

2.40 2.45

2.500.75

Entro

py =

2.2

0 kj

/kg.

k

Tem

pera

ture

= −

50°C

Tem

pera

ture

= 1

40°C

Temperature = 0°C

0.00

075

0.00

080

0.00

085

0.00

090

0.00

095

−70

−60

−40

−30

−20

−10 0

10

20

30

40

50

60

60

50

40

30

20

10

−10

−20

−30

−40

−50

−60

−70

Satu

rate

d liq

uid

0.1

0.2

0.3 0.4

0.5

0.6

0.7

0.8

0.9

qual

ity =

Sat

urat

ed v

apor

−40

−30

−20

−10 10 20 30 40 50 60 70 80 90 10

0

110

120

130

150

160

170

180

190

200

210

0

Suva® 404A (R–404A)Pressure–Enthalpy Diagram(SI Units)

FIGURE A5.3 Pressure–enthalpy diagram for refrigerant R-404A.

A5

-4H

an

db

ook

of

En

erg

yE

fficie

ncy

an

dR

en

ew

ab

leE

nerg

y

q 2007 by Taylor & Francis Group, LLC

Page 5: A5. Thermophysical Properties of Refrigerants

100 150 200 250 300 350 400 450 500 550 600

100

Satu

rate

d liq

uid

0.1

0.2

Qua

lity

= 0.

3

0.4

0.5

0.6

0.7

0.8

0.9

Sat

urat

ed v

apor

0.60

0

10

20

30

40

50

60

70

80

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50

1.55

1.60

1.65

1.70

1.75

1.80

1.85

1.90

1.95 2.00

2.05

2.10

2.15

2.20

2.25

2.30

.

2.40

2.45

2.50 2.55

2.60

2.65En

tropy

= 2

.35

kJ\k

g.K

150 200 250

10

20

30

40

50

60

70

oc.p.

300

Enthalpy (kJ/kg)

350

–50

–40

–30

–20

–10 0 10 20 30 50 60 70 80 90 11

0

130

140

150

160

170

180

Tem

pera

ture

= 1

20°C

100

40

400 450 500

2.0

1.5

1.0

0.50

0.70

0.40

0.30

0.20

0.15

0.10

0.080

0.060

0.050

0.040

0.030

0.020

0.015

0.010

0.00600.0050

0.00400.00300.00250.00180.0016

0.0014

0.0013

0.00

12

0.00

15

0.0020

0.00

11

0.00

10

0.00

095

0.00

090

0.00

085

0.00

080

0.00

075

0.00

070

Volume = 0.0080 m3/kg

550 600

100.0

80.0

60.0

40.0

30.0

190 20

0 210 22

0

20.0

10.0

6.0

8.0

4.0

3.0

2.0

1.0

0.8

0.6

0.4

0.3

0.2

0.1

10.0

8.0

6.0

4.0

Dupont fluorochemicals

Pressure–Enthalpy diagram(SI units)

Suva® 407C (R–407C)

3.0

2.0

1.0

0.08

0.1

0.06

0.04

0.03

0.02

0.01

0.8

0.6

0.4

0.3

0.2

Pre

ssur

e (M

Pa)

FIGURE A5.4 Pressure–enthalpy diagram for refrigerant R-407C.

Th

erm

oph

ysic

al

Pro

pertie

sof

Refrig

era

nts

A5

-5

q 2007 by Taylor & Francis Group, LLC

Page 6: A5. Thermophysical Properties of Refrigerants

100 150 200 250 300 350

60

50

40

30

20

10

Temperature = 0°C

400 450 500 550 600

100

Sat

urat

ed li

quid

Sat

urat

ed v

apor

0.1

0.2

0.3

0.4

0.6

0.7

0.8

0.9

Qua

lity

= 0.

5

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.9 2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

Ent

ropy

= 1

.8 k

J/kg

.K

150 200 250 300 350 400 450 500 5508.0

6.05.0

4.0

3.0

2.0

1.5

1.0

0.80

0.60

0.40

0.30

0.20

0.15

0.10

0.0600.050

0.040

0.030

0.020

0.015

0.0100.008

0.0060.004

0.005

Volume = 0.50πY/kg

600

Enthalpy (kJ/kg)

Enthalpy (kJ/kg)

6

4

2

1

0.08

0.1

0.06

0.04

0.03

0.02

0.01

0.008

0.006

0.8

0.6

0.4

0.2

Pre

ssur

e (M

Pa)

6

4

2

1

0.08

0.1

0.06

0.04

0.02

0.01

0.008

0.006

0.8

0.6180

170

160

150

140

130

120

110

90 100

70 8060

403020100

Tem

pera

ture

= 5

0°C

0.4

0.2

Pressure (M

Pa)

Dupont fluorochemicals

Pressure–Enthalpy diagram(SI units)

Suva® 410A (R–410A)

®

FIGURE A5.5 Pressure–enthalpy diagram for refrigerant R-410A.

A5

-6H

an

db

ook

of

En

erg

yE

fficie

ncy

an

dR

en

ew

ab

leE

nerg

y

q 2007 by Taylor & Francis Group, LLC

Page 7: A5. Thermophysical Properties of Refrigerants

210 Saturation pressure, kPaEnthalpy of saturated vapor, kJ/kg vapor

Enthalpy of saturated liquid, kJ/kg liquidVapor composition, kg NH1/kg vapor

200

190

180

170

160

150

140

130

120

110

100

90

80

70

60

50

40

30

20

10

0

−10

−20

−30

−40

−50

0.0 0.1

10

20

30

40

50

75

100

125

150

200

225

250

300

350

400

500

600

700

800

900

1000

1150

1300

1450

1600

1800

20002200

2500

0.30

0

0.50

0

0.60

0

0.70

0

0.75

0

0.80

0

0.85

0

0.90

0

0.920

0.940

0.960

0.980

0.990

0.995

0.997

0.999

0

1001350

1400

1450

1500

1600

1700

1800

400

300

200

100

−100

−200

−300

−400

0

500

600

700

200

300

400

500

600

10000

8900

7800

6800

5800

4800

38003400

4300

5300

6300

7300

8300

9400

31002800250022002000180016001450130011501000900

800700600500

450400

350300

250225200

175150125

10075

5040

30

1225

1250

1275

1300

−100

−200

−300

−400

28003100

34003800

43004800

53005800

63006800

73007800

83008900

9400

10000

450

0.2 0.3 0.4 0.5

Ammonia in saturated liquid, kg (ammonia)/kg (liquid)

Tem

pera

ture

, °C

0.6 0.7 0.8 0.9 1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

210

200

190

180

170

160

150

140

130

120

110

100

90

80

70

60

50

40

30

20

10

0

−10

−20

−30

−40

−50

FIGURE A5.6 Enthalpy–concentration diagram for ammonia/water solutions prepared by Kwang Kim and Keith Herold, Centre for Environmental Energy Engineering,

University of Maryland at Colleage Park.

Th

erm

oph

ysic

al

Pro

pertie

sof

Refrig

era

nts

A5

-7

q 2007 by Taylor & Francis Group, LLC

Page 8: A5. Thermophysical Properties of Refrigerants

500

450

400

350

300

250

200

150

100

50

00 10 20 30 40 50 60 70

Lithium bromide concentration, mass%

180170

160150

140

130

120

110

90

80

70

60

50

40

30

10

20

100°C

Ent

halp

y, k

J/kg

sol

utio

n

Equations Concentration range 40 < x < 70% LiBr Temperature range 15 < t < 165°Ch = Σ0

4 + rΣ04 + r2Σ0

4AnX7 BnXn CpXn in kJ/kg, where t = °C and X = %LiBr

A0 = −2024.33

A2 = −4.88161

A4 = −2.913705 E-4A3 = 6.302948 E-2

A1 = 163.309B0 = 18.2829

B2 = 3.248041E-2

B4 = 1.8520569 E-6B3 = −4.034184 E-4

B1 = −1.1691757C0 = −3.7008214 E-2

C2 = −8.1313015 E-5

C4 = −4.4441207 E-9C3 = 9.9116628 E-7

C1 = 2.8877666 E-3

FIGURE A5.7 Enthalpy–concentration diagram for water/lithium bromide solutions.

A5-8 Handbook of Energy Efficiency and Renewable Energy

q 2007 by Taylor & Francis Group, LLC

Page 9: A5. Thermophysical Properties of Refrigerants

Equations

1. t = S0B0X"+t'S0A0X" Solution temperature, °C2. t ′ = (t –S0B0X" )/S0A0X" Refrigerant temperature, °C

3. log P = C+DIT' + E/T 2 P = kPa T ′= K

4. Γ =-2E

D+|D2−4E(C−log P)|0.5

3 3

3 3

A0 = −2.007 55 B0 = 124.937 C = 7.05D = −1596.49D = −104 095.5

B1 = −7 710.49B2 = 0.152 286B3 = −7.950 90 E-04

A1 = 0.169 76

A3 = 1.976 68 E-05

Range: −15 < t ' < 110°C 5 < t < 175°C 45 < X < 70% LiBr

A2 = −3.133 362 E-03

0

10

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

1

2

3

4

5

10

20

30

40

50

100

150

200

20

30

40

50

60

70

80

90

100

110

120

Solution temperature,°C

Refrig

eran

t tem

pera

ture

, °C

030

%40

%

70%

60%

50%

Sat

urat

ion

pres

sure

(P

), k

Pa

FIGURE A5.8 Equilibrium chart for aqueous lithium bromide solutions reprinted by permission of Carrier Corp.

Th

erm

oph

ysic

al

Pro

pertie

sof

Refrig

era

nts

A5

-9

q 2007 by Taylor & Francis Group, LLC

Page 10: A5. Thermophysical Properties of Refrigerants