A Viscous Continuum Mechanics Approach - NAFEMS · A Viscous Continuum Mechanics Approach H....

37
4th FENet Annual Industry Meeting Lisbon Dec. 2004 Modelling the Swelling Phenomenon of Soils A Viscous Continuum Mechanics Approach H. Heidkamp C. Katz

Transcript of A Viscous Continuum Mechanics Approach - NAFEMS · A Viscous Continuum Mechanics Approach H....

4th FENet Annual Industry Meeting Lisbon Dec. 2004

Modelling the Swelling Phenomenon of Soils

A Viscous Continuum MechanicsApproach

H. HeidkampC. Katz

4th FENet Annual Industry Meeting Lisbon Dec. 2004

Contents

Swelling – essential characteristics

Constitutive modelling Final state relationTime-dependant extensionAlgorithmic aspects

Numerical studies

Conclusive remarks

4th FENet Annual Industry Meeting Lisbon Dec. 2004

Swelling – essential characteristics

4th FENet Annual Industry Meeting Lisbon Dec. 2004

Swelling – essential characteristics

Construction interferes chemical/ physical balanceLocal unloading of soil domain

Adsorption of water inbetween the layers of clay minerals (osmotic swelling)Chemical transition of anhydrite contents into gypsum

Initiation of a time-dependant swelling process(expansion of soil)

4th FENet Annual Industry Meeting Lisbon Dec. 2004

Swelling – practical impact

Expansion of soil is limited by support structures(e.g. tunnel lining)

Generation of significant swelling pressures

4th FENet Annual Industry Meeting Lisbon Dec. 2004

Swelling – practical impact

Structural damage due to extensive compressive stresses

Decrease of serviceability

4th FENet Annual Industry Meeting Lisbon Dec. 2004

Constitutive modelling

4th FENet Annual Industry Meeting Lisbon Dec. 2004

Constitutive modelling

Requirements from practice:

Estimation of the swelling strains/ stresses thatare to be expected

Few „basic“ parameters that can be calibrated from in-situ and laboratory measurements

Accounting for time effect → swelling strain evolution

3D

...

4th FENet Annual Industry Meeting Lisbon Dec. 2004

Constitutive modelling ( t = ∞ )

From load controlled oedometer tests (Huder & Amberg):

1D logarithmic relationship between stress and final swelling strain (Grob 1972)

Extension to 3D (Wittke-Gattermann 1998, Kiehl 1990):

„Principal swelling strains essentially depend onthe principal normal stress“

4th FENet Annual Industry Meeting Lisbon Dec. 2004

Constitutive modelling ( t = ∞ )

( )( )

0

0 0

0

0 ,log / ,log / ,

i iq

i q i i i i c

c i i c

kσ σ

ε σ σ σ σ σσ σ σ σ

⎧ ≤⎪= − ⋅ < <⎨⎪ ≥⎩

0,00,1

0,20,30,40,5

0,60,70,8

0,91,0

-800 -700 -600 -500 -400 -300 -200 -100 0 100 200

σ [kN/m2]

εq [%]Grob (eq. 2)Test dataUpper Limit

σ0

kq = 0,33%

σc = -2 kN/m2

i = 1..3

measure for magnitude of decompression

summarizes the swelling characteristics of the soil

4th FENet Annual Industry Meeting Lisbon Dec. 2004

Constitutive modelling ( t = ∞ )

( )( )

0

0 0

0

0 ,log / ,log / ,

i iq

i q i i i i c

c i i c

kσ σ

ε σ σ σ σ σσ σ σ σ

⎧ ≤⎪= − ⋅ < <⎨⎪ ≥⎩

0,00,1

0,20,30,40,5

0,60,70,8

0,91,0

-800 -700 -600 -500 -400 -300 -200 -100 0 100 200

σ [kN/m2]

εq [%]Grob (eq. 2)Test dataUpper Limit

σ0

kq = 0,33%

σc = -2 kN/m2

i = 1..3

4th FENet Annual Industry Meeting Lisbon Dec. 2004

Constitutive modelling ( t < ∞ )

Basic idea illustrated by means of a rheological model

1

E

σ

η

y

σσ

kq

E

η σσ

Parallel coupling of “swelling“ and dashpotdevice

4th FENet Annual Industry Meeting Lisbon Dec. 2004

Constitutive modelling ( t < ∞ )

Time dependency via a formal viscous approach

( ), q q q⎛ ⎞⎜ ⎟⎜ ⎟⎝ ⎠

∞= −φ σ ε ε σ ε

Vector valued creep function ϕ

, qq η

⎛ ⎞⎜ ⎟⎜ ⎟⎝ ⎠=

φ σ εε&

Define the rate of swelling strains as

with the retardation time η

4th FENet Annual Industry Meeting Lisbon Dec. 2004

Constitutive modelling - Algorithm

Displacement FEM framework with incremental(time stepping) global solution strategy

σ∆ ⇒ ∆ε

e q plt t t q pl

⎛ ⎞⎜ ⎟⎜ ⎟⎝ ⎠

+∆

∆ =∆ +∆ +∆

= − +∆ +∆

ε ε ε ε

C σ σ ε ε

Additive strain decomposition

Integrate swelling strain rates over time increment → backward-Euler approach

1 1, ,t t

t tq q qt

d tτη η⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

+∆+∆∆ = ≈ ⋅∆∫ε φ σ ε φ σ ε

4th FENet Annual Industry Meeting Lisbon Dec. 2004

Constitutive modelling - Algorithm

Set of 9 nonlinear equations in the 6+3 unknowns

Solved by linearization → Newton-Raphson update scheme

q∆εt tσ+∆ and

k

qq k

kt

δ

η δ∞

⎛ ⎞⎜ ⎟⎝ ⎠

=

∂− +

∂ ∆

C I σ R

εI ε r

σ

( ) ( ),t t t t tq q pl

+∆ +∆∆ = ∆ − − − ∆ − ∆R σ ε ε C σ σ ε ε

1 1;

kq q qk k k k

δ δ+ += + ∆ = ∆ +σ σ σ ε ε ε

( ) ( ), ,t t t tq q qt

η+∆ +∆∆ = − + ⋅ ∆∆

r σ ε φ σ ε ε

Heidkamp, H. & Katz, C. 2002. Soils with swelling potential - Proposal of a final state formulation within an implicit integration scheme and illustrative FE-calculations. Eds.: H.A. Mang, F.G. Rammerstorfer, J. Eberhardsteiner. Proceedings of the 5th

World Congress on Computational Mechanics, Vienna, Austria.

Heidkamp, H. & Katz, C. 2004. The swelling phenomenon of soils – Proposal of an efficient continuum modelling approach.Ed.: W. Schubert. Proceedings of the EUROCK 2004 & 53rd Geomechanics Colloqium, Salzburg, Austria.

4th FENet Annual Industry Meeting Lisbon Dec. 2004

Numerical studies

4th FENet Annual Industry Meeting Lisbon Dec. 2004

Numerical studies – 1D example

One dimensional case: Unloading under constant stress conditions

Time < 0loading

Time = 0unloading

Time = tswelling strain

evolution

4th FENet Annual Industry Meeting Lisbon Dec. 2004

Numerical studies – 1D example

From previous developments, the analytical solution can be derived as

( )

( )0

0

1

tq q

tq q

t d

d

ε ε τ

ε ε τη∞

=

= −

&

( ) 1t

q qt e ηε ε⎛ ⎞⎜ ⎟⋅⎜ ⎟⎝ ⎠

−∞= −

: Axiale Quelldehnung, eta=100 h : Axiale Quelldehnung (analyt.)

: Axiale Quelldehnung, eta=1000 h : Axiale Quelldehnung (analyt.)

Time [h]0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Swelling Strain [0/00]

0

2

4

6

8

10

( ) ( )0log / 1q

tq qt k e η

ε

ε σ σ∞

⎛ ⎞⎜ ⎟⎜ ⎟⎝ ⎠

−= − ⋅ ⋅ −14444244443

identical to the 1D relation proposed by Kiehl (1990) for description of the swelling strain evolution

4th FENet Annual Industry Meeting Lisbon Dec. 2004

Numerical studies – Calibration

Swelling modulus - Fit to oedometric test data on Caneva Stiff Clay

Oedometric testing (Huder-Amberg)of Caneva stiff clay

0

1

2

3

4

5

6

-800 -700 -600 -500 -400 -300 -200 -100 0

Axial stress [kN/m²]

Axi

al s

wel

ling

stra

in [%

]

Test data EDO7 [Barla 2004]

Test data EDO8 [Barla 2004]

SWEL calibrated: Kq=3,10 [%]

SWEL calibrated: Kq=0,88 [%]

Test-data taken from:Barla, M. 1999. Tunnels in Swelling Ground – Simulation of 3D Stress Paths by Triaxial Laboratory Testing. PhD Thesis, Politecnico di Torino, Italy.

4th FENet Annual Industry Meeting Lisbon Dec. 2004

Numerical studies – Calibration

Time dependent swelling evolution - Fit to triaxial test data on Caneva Stiff Clay

Time dependent swelling evolution upon triaxial shear loading

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

0 1000 2000 3000 4000 5000 6000 7000 8000

Time [min]

Volu

met

ric s

wel

ling

stra

in [%

]

Triaxial Test Data CNV3 [Barla 2004]

SWEL calibrated: Kq=2,80 [%], Retardation Time=26 [h]

SWEL calibrated: Kq=2,70 [%], Retardation Time=20 [h]

Test-data taken from:Barla, M. 1999. Tunnels in Swelling Ground – Simulation of 3D Stress Paths by Triaxial Laboratory Testing. PhD Thesis, Politecnico di Torino, Italy.

4th FENet Annual Industry Meeting Lisbon Dec. 2004

Numerical studies – Engineering ex.

2D FEM simulation of high-speed railway track in swellable soil

Swellable Clay

Sand

Rock

Monitoring of heaving due to swelling

Relalistic background: Construction of high speed railway track Nuremberg – Ingolstadt, GermanyWolffersdorff v., P.A. & Rosner, S. & Wegerer, P. 2004. Planung von bautechnischen Lösungen in den quellgefährdeten Einschnittender Hochgeschwindigkeitsstrecke Nürnberg – Ingolstadt. 28. Baugrundtagung der DGGT in Leipzig.

4th FENet Annual Industry Meeting Lisbon Dec. 2004

Numerical studies – Engineering ex.

1st excavation step, ∆t = 2 a

Time dependent heavings due to swelling

0,00

5,00

10,00

15,00

20,00

25,00

30,00

35,00

0 5 10 15 20 25

Time [years]

Hea

ving

s du

e to

sw

ellin

g [m

m]

4th FENet Annual Industry Meeting Lisbon Dec. 2004

Numerical studies – Engineering ex.

2nd excavation step , ∆t = 0.5 a

Time dependent heavings due to swelling

0,00

5,00

10,00

15,00

20,00

25,00

30,00

35,00

0 5 10 15 20 25

Time [years]

Hea

ving

s du

e to

sw

ellin

g [m

m]

Time dependent heavings due to swelling

0,00

5,00

10,00

15,00

20,00

25,00

30,00

35,00

0 5 10 15 20 25

Time [years]

Hea

ving

s du

e to

sw

ellin

g [m

m]

4th FENet Annual Industry Meeting Lisbon Dec. 2004

Numerical studies – Engineering ex.

Soil exchange, ∆t = 1 a

Time dependent heavings due to swelling

0,00

5,00

10,00

15,00

20,00

25,00

30,00

35,00

0 5 10 15 20 25

Time [years]

Hea

ving

s du

e to

sw

ellin

g [m

m]

4th FENet Annual Industry Meeting Lisbon Dec. 2004

Numerical studies – Engineering ex.

Installation of superstructure , ∆t = 0.5 a

Time dependent heavings due to swelling

0,00

5,00

10,00

15,00

20,00

25,00

30,00

35,00

0 5 10 15 20 25

Time [years]

Hea

ving

s du

e to

sw

ellin

g [m

m]

4th FENet Annual Industry Meeting Lisbon Dec. 2004

Numerical studies – Engineering ex.

Remaining heaving, ∆t → ∞

Time dependent heavings due to swelling

0,00

5,00

10,00

15,00

20,00

25,00

30,00

35,00

0 5 10 15 20 25

Time [years]

Hea

ving

s du

e to

sw

ellin

g [m

m]

4th FENet Annual Industry Meeting Lisbon Dec. 2004

Numerical studies – Engineering ex.

2D evolution of the volumetric swelling strain

4th FENet Annual Industry Meeting Lisbon Dec. 2004

Conclusive remarks

4th FENet Annual Industry Meeting Lisbon Dec. 2004

Conclusive remarks

Engineering design: Importance of appropriate considerationof swelling phenomena

Based on a 3D extension of Grob‘s swelling law: Proposal of an implicit formulation within a viscous framework → accounting for time dependency

Two essential material parameters:→ kq representing the swelling potential→ η modelling the time evolution

Model can be calibrated according to test data → test data is, however, often significantly scattered → rises issue of safety assessment

Applicability to practical engineering problems

4th FENet Annual Industry Meeting Lisbon Dec. 2004

Thank you for your attention.Questions?

[email protected]

4th FENet Annual Industry Meeting Lisbon Dec. 2004

Finite-Element simulationsLoading of the concrete lining with evolving swelling process

M 1 : 100

XYZ

24.3

24.222.3

22.117.9

17.7

-16.1-15

.9

10.610.5

-8.03

-6.86-4.45

1.97

1.941.93 1.781.75

1.631.53

1.05

-0.734

0.717

0.714

0.641

-0.502

0.438

0.376

Sector of system Beams Group 1 2Beam bending moment My, nonlinear Loadcase 5 PHASE III: Innerlining, 1 cm spacious = 1500. kNm (Min=-16.1) (Max=24.3)

-4.00 -2.00 0.00 2.00 4.00 6.00 m

12.00

10.00

8.00

6.00

4.00

2.00

0.00

-2.00

M 1 : 100

XYZ

Sector of system Beams Group 1 2Deformed Structure from LC 104 MAX-VY Enlarged by 130.0

-4.00 -2.00 0.00 2.00 4.00 6.00 m

12.00

10.00

8.00

6.00

4.00

2.00

0.00

-2.00

0.301

0 .3 00

0 .299

0.298

0.296

0.2 940. 29 2 0.2900.2 86

0.283

0.282

0.278

0.278

0.275

0.2 72

0.272

0.268

0. 268

0.2 65

0.2 65

0. 26 4

Vector of nodal displacements, Loadcase 105 MAX-VY, 1 cmspacious = 4.00 mm (Max=0.301)

M 1 : 100

XYZ

-1177 -1058-7

90.3 758.8758.8

661.8

606.6

606.6

540.5

470.2

435.3

393.4

-364.7

220.3

114.7

-114.6 -96.6

55.0

-54.8 52.2

47.9

37.5

25.5

25.4

-21.1

16.0

-13.9-13.3

Sector of system Beams Group 1 2Beam bending moment My, nonlinear Loadcase 21 PHASE IV: Swell..Loading 10.0%, 1 cm spacious = 1500. kNm (Min=-1177.)(Max=758.8)

-4.00 -2.00 0.00 2.00 4.00 6.00 m

12.00

10.00

8.00

6.00

4.00

2.00

0.00

-2.00

M 1 : 100

XYZ

Sector of system Beams Group 1 2Deformed Structure from LC 104 MAX-VY Enlarged by 130.0

-4.00 -2.00 0.00 2.00 4.00 6.00 m

12.00

10.00

8.00

6.00

4.00

2.00

0.00

-2.00

1 .01

0 .865 0 .8 63

0.777

0.73

2

0 .7 25

0.6460.614

0.600

0.600

0.598

0.587

0.578

0.554

0.549

0.5220.4

76

0.465

0.4400.435

0.2800.277

Vector of nodal displacements, Loadcase 121 MAX-VY, 1 cmspacious = 4.00 mm (Max=1.01)

M 1 : 100

XYZ

-2019 -1821

-136

9

12681268

1129

1009

1009

890.4

807.2

705.8

682.9

-635.6

391.0

-202.9

171.5

-99.3-99.091.6

86.5

66.4

54.4

49.4

43.7

-37.1

29.1

-19.3-18.4

Sector of system Beams Group 1 2Beam bending moment My, nonlinear Loadcase 23 PHASE IV: Swell..Loading 20.0%, 1 cm spacious = 1500. kNm (Min=-2019.)(Max=1268.)

-4.00 -2.00 0.00 2.00 4.00 6.00 m

12.00

10.00

8.00

6.00

4.00

2.00

0.00

-2.00

M 1 : 100

XYZ

Sector of system Beams Group 1 2Deformed Structure from LC 104 MAX-VY Enlarged by 130.0

-4.00 -2.00 0.00 2.00 4.00 6.00 m

12.00

10.00

8.00

6.00

4.00

2.00

0.00

-2.00

1 .58

1 .55

1 .4 7

1.46

1 .33

1.3 2

1.25 1.22

1.111.05

0.975

0.927

0.919

0.86

5

0.863

0.8590.74

1

0.737 0.724

0.705

0.601 0.577

Vector of nodal displacements, Loadcase 123 MAX-VY, 1 cmspacious = 4.00 mm (Max=1.58)

M 1 : 100

XYZ

-2701 -2440

-184

7

16661666

1499

1321

1321

1164

1077

914.1

913.4

-860.9

530.8

-277.2

212.1

-137.9-137.5

122.2115.1

91.8

81.5

59.8

-49.4

42.2

40.6

-21.8-19.8

Sector of system Beams Group 1 2Beam bending moment My, nonlinear Loadcase 25 PHASE IV: Swell..Loading 30.0%, 1 cm spacious = 1500. kNm (Min=-2701.)(Max=1666.)

-4.00 -2.00 0.00 2.00 4.00 6.00 m

12.0

010

.00

8.00

6.00

4.00

2.00

0.00

-2.0

0

M 1 : 100

XYZ

Sector of system Beams Group 1 2Deformed Structure from LC 104 MAX-VY Enlarged by 130.0

-4.00 -2.00 0.00 2.00 4.00 6.00 m

12.0

010

.00

8.00

6.00

4.00

2.00

0.00

-2.0

0

2 .1 9

2 .0 8

2. 07

2 .0 7

1.78 1.75

1 .7 3

1.72

1.501.44

1.32

1.26

1.24

1.17

1.09

1.08

0.998

0.981

0.979

0.927

0.899 0.866

Vector of nodal displacements, Loadcase 125 MAX-VY, 1 cmspacious = 4.00 mm (Max=2.19)

M 1 : 100

XYZ

-380

4

-2631 -2530

22912291

2084

1819

1819

1595

513

1281

1244

-1240

749.5557.2

-401.7

268.2

-204.8174.5

164.0

135.9

89.2

-65.8

59.5-54.0

22.1

-21.7-16.1

Sector of system Beams Group 1 2Beam bending moment My, nonlinear Loadcase 29 PHASE IV: Swell..Loading 50.0%, 1 cm spacious = 1500. kNm (Min=-3804.)(Max=2291.)

-4.00 -2.00 0.00 2.00 4.00 6.00 m

12.0

010

.00

8.00

6.00

4.00

2.00

0.00

-2.0

0

M 1 : 100

XYZ

Sector of system Beams Group 1 2Deformed Structure from LC 104 MAX-VY Enlarged by 130.0

-4.00 -2.00 0.00 2.00 4.00 6.00 m

12.0

010

.00

8.00

6.00

4.00

2.00

0.00

-2.0

0

3 .23

3 .0 8

3.05

2 .89

2.65 2.60

2 .39

2.38

2.162.09

1.89

1.82

1.78

1.71

1.47

1.46

1.44 1.41

1.40

1.39 1.34

1.32

Vector of nodal displacements, Loadcase 129 MAX-VY, 1 cmspacious = 4.00 mm (Max=3.23)

M 1 : 100

XYZ

-467

5

-325

4 -3124

27732773

2539

2205

205

1927

55

1562

-1546

1498

912.1683.3

-506.4

304.5

-261.4220.0

207.1

174.2

117.8

75.4

-75.2

-72.1

-17.1-8.49

-1.37

Sector of system Beams Group 1 2Beam bending moment My, nonlinear Loadcase 33 PHASE IV: Swell..Loading 70.0%, 1 cm spacious = 1500. kNm (Min=-4675.)(Max=2773.)

-4.00 -2.00 0.00 2.00 4.00 6.00 m

12.0

010

.00

8.00

6.00

4.00

2.00

0.00

-2.0

0

M 1 : 100

XYZ

Sector of system Beams Group 1 2Deformed Structure from LC 104 MAX-VY Enlarged by 130.0

-4.00 -2.00 0.00 2.00 4.00 6.00 m

12.0

010

.00

8.00

6.00

4.00

2.00

0.00

-2.0

0

4 .05

3 .8 7

3.84

3 .58

3.34 3.28

2 .95

2.94

2.692.61

2.34

2.29

2.21

2.16

1.79

1.781.78

1.781.76

1.75

1.72

1.66

Vector of nodal displacements, Loadcase 133 MAX-VY, 1 cmspacious = 4.00 mm (Max=4.05)

M 1 : 100

XYZ

-5723

-4008 -3854

33553355

3094

2671

71

2317

3 -1937

1894

1800

1102822.8

-640.9 -334.6

327.5

280.7266.4

223.5

159.7

-97.1

93.5

-79.5

-38.6

5.64-4.00

Sector of system Beams Group 1 2Beam bending moment My, nonlinear Loadcase 39 PHASE IV: Swell..Loading 100.0%, 1 cm spacious = 1500. kNm (Min=-5723.)(Max=3355.)

-4.00 -2.00 0.00 2.00 4.00 6.00 m

12.0

010

.00

8.00

6.00

4.00

2.00

0.00

-2.0

0

M 1 : 100

XYZ

Sector of system Beams Group 1 2Deformed Structure from LC 104 MAX-VY Enlarged by 130.0

-4.00 -2.00 0.00 2.00 4.00 6.00 m

12.0

010

.00

8.00

6.00

4.00

2.00

0.00

-2.0

0

5 .05

4 .8 3

4.79

4 .46

4.1 7 4.11

3 .68

3.65

3.343.27

2.89

2.88

2.75

2.74

2.24

2.23

2.202.20

2.20

2.18

2.101.80

Vector of nodal displacements, Loadcase 139 MAX-VY, 1 cmspacious = 4.00 mm (Max=5.05)

4th FENet Annual Industry Meeting Lisbon Dec. 2004

Numerical studies – Engineering ex.

FEM simulation of high-speed railway track in swellable soil

Soil Exchange

Excavation step 1

Sand

Swellable Clay

Rock

Railway Dam

Excavation step 2

4th FENet Annual Industry Meeting Lisbon Dec. 2004

Constitutive modelling - Algorithm

Displacement FEM framework with incremental (time stepping) global solution strategy

σ∆ ⇒ ∆ε

4th FENet Annual Industry Meeting Lisbon Dec. 2004

Constitutive modelling - Algorithm

Displacement FEM framework with incremental(time stepping) global solution strategy

σ∆ ⇒ ∆ε

Additive strain decomposition

e q plt t t q pl

⎛ ⎞⎜ ⎟⎜ ⎟⎝ ⎠

+∆

∆ =∆ +∆ +∆

= − +∆ +∆

ε ε ε ε

C σ σ ε ε

4th FENet Annual Industry Meeting Lisbon Dec. 2004

Numerical studies

The proposed model was implemented into thegeotechnical finite element program TALPA thatwas used for subsequent numerical simulations

4th FENet Annual Industry Meeting Lisbon Dec. 2004

Numerical studies – Engineering ex.

2nd excavation step , ∆t = 0.5 a

4th FENet Annual Industry Meeting Lisbon Dec. 2004