A Technical Study of Long Term Evolution (LTE) and LTE-Advanced by Olufemi Amao

download A Technical Study of Long Term Evolution (LTE) and LTE-Advanced by Olufemi Amao

of 35

Transcript of A Technical Study of Long Term Evolution (LTE) and LTE-Advanced by Olufemi Amao

  • 8/13/2019 A Technical Study of Long Term Evolution (LTE) and LTE-Advanced by Olufemi Amao

    1/35

    1

    EEL-6936. Advanced Topics in Wireless Communications

    A Technical Study of Long Term Evolut ion (LTE) and LTE-Advanced

    By OlufemiAmao

  • 8/13/2019 A Technical Study of Long Term Evolution (LTE) and LTE-Advanced by Olufemi Amao

    2/35

    2

    Contents

    Introduction5

    1.BriefHistoryofCellularSystems.6

    2.BasicTransmissionSchemeinLTE.9

    2.1DownlinkTransmission.9

    2.1UplinkTransmission.11

    3.PhysicalLayerOverviewofLTE 13

    3.1DownlinkPhysical Layer.13

    3.2UplinkPhysicalLayerOverview..16

    4.Physical Channels andSignals..18

    4.1DownlinkPhysicalChannels..18

    4.2DownlinkPhysicalSignals20

    4.3UplinkPhysicalChannels21

    4.4UplinkPhysicalSignals21

    5.MIMOTechnologiesinLTEandLTEAdvanced22

    6.OtherLTEAdvancedTechnologies27

    6.1Carrieraggregation27

    6.2CoordinatedMultipointTransmission/Reception29

    6.3Relaying31

    Conclusion..33

    Reference...34

  • 8/13/2019 A Technical Study of Long Term Evolution (LTE) and LTE-Advanced by Olufemi Amao

    3/35

    3

    Figures

    Figure1.1:Cellularhistory.........................................................................................7

    Figure1.2:3Gevolution..............................................................................................8

    Figure2.1: OFDMSignalBlockGenerator..................................................................9

    Figure2.2: SchedulingconceptinOFDM..................................................................10

    Figure2.3:OFDMSignalrepresentedinFrequencyTimedomain.............................11

    Figure2.4:TransmitterstructureforSCFDMA.........................................................12

    Figure2.5:Differencesbetween SCFDMAandOFDM...........................................12

    Figure3.1:FDDFrameStructure.13

    Figure3.2:TDDFrame (for5msswitchpointperiodicity)14

    Figure3.3: OFDMresourceblockconcept15

    Figure3.4:Overviewofdownlinkphysicalchannelprocessing..16

    Figure3.5:Overviewofuplinkphysicalchannelprocessing.17

    Figure4.1:Transportchannelsmappedtophysicalchannelsinthedownlink.19

    Figure4.2:TransportchannelsmappedtophysicalchannelsintheUplink.21

    Figure5.1:SimplifiedtransmissionmodelforaMIMOsystemwith3TXandRXantenna22

    Figure5.2Closedloopspatialmultiplexingusing NantennaandMlayers.23

    Figure5.3:OpenloopspatialmultiplexingwithNantennasandMlayers25

    Figure5.4:SFBCwithtwotransmitantennasondownlink..26

    Figure5.5:SFBC+FSTDwithfourtransmitantennasondownlink.26

    Figure6.1:carrieraggregationtechniques.27

    Figure6.2:ExampleofLTEcarrieraggregationscheme..28

    Figure6.3:IntraandInterCoMPconcept..29

    Figure6.4:demodulationbasedonUEspecificRS.30

    Figure6.5:demodulationbasedoncellspecificRS.30

  • 8/13/2019 A Technical Study of Long Term Evolution (LTE) and LTE-Advanced by Olufemi Amao

    4/35

    4

    Figure6.6:Onewayrelaymodel.31

    Figure6.7:Twowayrelaymodel 31

    Figure6.8:Shared relaymodel 32

    Figure6.9:Powercomparisonanalysiswithdifferentrelaytechniques32

    Tables

    Table2.1Transmissionbandwidthconfiguration..............................................................10

    Table5.1:CodebookfortransmissionforTwo antennaports...........................................24

    Table5.2CodebookfortransmissionforFourantennaports.............................................24

  • 8/13/2019 A Technical Study of Long Term Evolution (LTE) and LTE-Advanced by Olufemi Amao

    5/35

    5

    Introduction

    InApril

    2008,

    astudy

    termed

    Requirement

    for

    Further

    Advancement

    for

    EUTRA

    also

    called

    LongTermEvolutionAdvanced(LTEAdvanced)wasinitiated.LTEAdvancedaimstoenhancethe

    systemperformanceandcapabilitiesinexistingLTE.ThemaingoalofLTEAdvancedistoensure

    thatalltherequirementofIMTAdvancedasdefinedbytheInternationalTelecommunication

    Union(ITU)ismetandevenexceeded.Hence,agoodunderstandingofLTEisrequiredinorderto

    understandandappreciatethekeytechnologicalcomponentsthatarebeingconsideredinLTE

    Advanced.LTEAdvancedshouldbebackwardcompatiblewithLTE.Anoverviewofthephysical

    layerinLTEisreviewedinthisreport;thisiscloselyfollowedwithareviewofsomeofthose

    componentsspecifictoLTEAdvanced.

  • 8/13/2019 A Technical Study of Long Term Evolution (LTE) and LTE-Advanced by Olufemi Amao

    6/35

    6

    Chapter1BriefHistoryofCellularsystems

    Cellularsystemshaveconstantlyevolvedsincetheywere firstproposed in1947.Their

    ubiquitousreachhasdrivenglobalorganizationssuchastheThirdGenerationPartnership

    Project(3GPP)tothedevelopmentsofmobiletechnologies.The3GPPisacollaborationof

    groupsoftelecommunicationsassociations,setuptomakeagloballyapplicablethirdgeneration

    (3G)mobilephonesystemspecification,withinthescopeoftheInternationalMobile

    Telecommunications2000(IMT2000)projectoftheInternationalTelecommunicationUnion

    (ITU). 3GPPTSGRANisthetechnicalspecificationgroupthathasdevelopedWidebandCode

    DivisionMultipleAccess(WCDMA),HighSpeedPacketAccess(HSPA),aswellasLTE.Thegroups

    iscurrently intheforefrontoffuturetechnologies.

    Thehistoryofthemobilecellularsystemsisoftendividedintogenerationstodistinguishthe

    technologicaldevelopmentandimprovementovertheyears.Firstgenerationcellularsystems

    (1G)suchasAMPS,werebasedonanalogcommunicationtechnologythatoftenprovidedsome

    voiceandverylimitedcircuitswitcheddataservices.FirstgenerationsystemsuseFrequency

    DivisionMultipleAccess(FDMA)andoperateinthe450and800MHzfrequencyband.

    Secondgenerationcellularsystems(2G),arebasedondigitalcommunicationstechnology.

    Comparedtotheirpredecessors,2Gsystemshadimprovedspectralefficiency(increased

    numberofuserspercell).Thiswaspossiblebecausedigitalvoicecouldbecompressedand

    multiplexedmoreeffectively,thusallowingforfargreatermobilephonepenetration.Basedon

    thetypeofmultiplexingused,2GsystemsarecategorizedaseitherTimeDivisionMultiplexing

    Access(TDMA) basedsuchasGSMorCodeDivisionMultipleAccess(CDMA)basedsuchasIS95.

    TheinitialformofGSMoperatedinthe900,1800and1900MHzfrequencyandusedTDMAas

    itsmultiaccessschemeforcircuitbasedtransmissionofdigitizedvoice.Aninitialdatarateofup

    to9.6kb/swaspossible.Theprimarydataservicesin2Gweretextmessaging(SMS)andcircuit

    switcheddataservicessuchasemail.Theneedtoimprovetheexisting2Gusheredinafew

    upgradesthatresultedinsomepacketswitchedfunctionalityandwasknownas2.5Gbased

    cellulartechnology.GPRS,EDGEand1XRTTT.

    Thirdgenerationtechnologies3G,setthestagefortheinternationalizationofcellular

    standards. Priortothis,CDMAbasedsystemsweremainlydeployedinNorthAmericawhile

    GSMsystemswerecommoninEurope.Radioaccessdevelopmenton3Gishandledin3GPP,

    althoughtheinitialdevelopmentstartedbefore3GPPwasformed.Unlike2Gor2.5G,3Gallows

    simultaneoususeofvoiceanddataservicesandoperatedatahigherdatarates.Additional

    workon3Ghasbeendrivenbytheneedforacellularsystemthatwouldprovidereducedcost

    perbit,Increasedserviceprovisioning,flexibilityofuseonexistingandnewfrequencybands,

    simplifiedarchitectureandareasonableterminalpowerconsumption. Therehavebeen

    substantialresearchactivitiesdedicatedtowardsimproving3G.The3GPPdocumentsare

    dividedintoreleases,whereeachreleasehasasetofadded features,comparedtothe

  • 8/13/2019 A Technical Study of Long Term Evolution (LTE) and LTE-Advanced by Olufemi Amao

    7/35

    7

    previousreleases.3GinEuropewasnamedUniversalMobileTelecommunicationsServices

    (UMTS).

    WidebandCDMA(WCDMA)wasselectedasthetechnologyforUMTSinthepairedspectrum

    (FDD)andTDCDMA(TimeDivisionCDMA)intheunpairedspectrum(TDD).Itoffereda

    downlinkspeedofabout384Kbsandanuplinkofabout128Kbps.3GsystemsbasedonTDSCDMAwaslaterdevelopedinChinaandmergedasadditionaloptionforTDDmode.Thefirst

    majoradditionofradioaccessfeaturestoWCDMAwasinRelease5(HSDPA)andRelease6

    (EnhancedUplink).Together,theyarereferredtoas(HighSpeedPacketAccess)HSPA.HSPA

    providesamaxdownlinkspeedofabout 14Mbit/sanduplinkofabout5.7Mbit/s. HSPA+

    increasedHSPAsdataratesresultinginadownlinkof56Mbit/sandanuplinkofupto22Mbit/s

    inrelease7,usingthesameaccesstechnologyasrelease6butwithimprovedantenna

    technologyandhigherordermodulation.

    Release8offeredasignificantimprovementinperformanceovertheexisting3Gstandards.A

    feasibilitystudyontheLongTermEvolution(LTE)wasproposedin2004aspartofrel8.LTE

    representsanefficientpacketbasedradioaccessnetworkthatprovidesfullIPbased

    functionalitywithlowlatencyandlowcost.LTEisseenasanevolutionoftheUMTS/3GPP3G

    standardswithincreasedspeedsandgeneralimprovedperformance,althoughtherearemajor

    stepchangesbetweenLTEandits3GPPpredecessors. Anumberofnewtechnologiesthatmake

    uptheLTEsuiteswouldbeintroducedanddiscussedinsubsequentchaptersofthisreport.

    Figure

    1.1:

    Cellular

    history

  • 8/13/2019 A Technical Study of Long Term Evolution (LTE) and LTE-Advanced by Olufemi Amao

    8/35

    8

    Fourthgenerationsystems(4G)isexpectedtomeetIMTAdvancedrequirements foran allIP

    packetswitchednetworks,mobileultrabroadbandgigabitspeedaccessandmulticarrier

    transmission.LTErev8doesnotmeetthestandardsfor4Gsystems,hencetheneedforLTE

    Advancedasdescribedinrel9andbeyond.LTEAdvancedmeetstherequirementfor4G.LTE

    AdvancediscompatiblewiththefirstreleaseofLTE(LTErel8)equipmentandcansharethe

    samefrequencyband.TheITUhascoinedthetermIMTAdvancedtoidentifymobilesystems

    whosecapabilitiesgobeyondthoseofIMT2000

    Figure2.2:3gevolution

  • 8/13/2019 A Technical Study of Long Term Evolution (LTE) and LTE-Advanced by Olufemi Amao

    9/35

    9

    Chapter2 BasicTransmissionSchemeinLTE

    2.1 DownlinkTransmission

    LTE downlink transmission scheme is based on Orthogonal Frequency Division Multiplexing

    (OFDM).OFDMmakesuseofalargenumberofcloselypackedorthogonalsubcarriersthatare

    transmitted inparallel.Eachsubcarrier ismodulated independentlyat lowsymbolrate.When

    severalhundredsofthesesubcarriersarecombinedusingan IFFTprocess,theresult isadata

    rate similar to conventional singlecarriermodulation in the samebandwidth.As longas the

    orthogonalnaturesof the subcarriers aremaintained, subcarriersdonot interferewitheach

    other.Carrierspacing in LTE is fixedat15KHz. TheOFDMsignalgeneration isshown in the

    figure2.1below.

    Source(s) 1:NQAM

    Modulator

    QAM symbol rate =N/Tusymbols/sec

    Nsymbolstreams

    1/Tusymbol/sec

    IFFT

    OFDMsymbols

    1/Tusymbols/s

    N:1Useful OFDMsymbols

    Figure2.1:OFDMSignalBlockGenerator

    OFDMprovidesahighdegreeofrobustnessagainstchannelfrequencyselectivityduetoits

    relativelongsymboltimeandcyclicprefix.Thecyclicprefixensuresintersymbolinterference

    (ISI)doesnotspillintothenextFFTperiod,byensuringthatthedelayspreadiscontainedwithin

    thecyclicprefix.LTEdefinestwoformsofCyclicprefix;normalandextended. Cyclicprefix

    contributestotheoverall length of the OFDM symbol and are discarded before the FFT

    operation at the receiver. Anormalcyclicprefixofabout5sisusedinsmallcellenvironment,

    whileextendedcyclicprefixofsize17scanbeusedinenvironmentwithextremetime

    dispersionorinthecaseofSingleFrequencynetwork.

    InSinglecarrier,equalizationisoftenusedtocorrectsignaldistortionthatoccursdueto

    frequencyselectivenatureofthechannel.Theadditionalcomplexityassociatedwithusing

    equalizationathighbandwidthabove5MHz,makessinglecarrierunattractiveforLTE. OFDM

    providesadditionalbenefitstoLTEsuchastheabilitytoscheduleresourceinboththetimeand

    frequencydomainusingresourceblockconceptofOrthogonalFrequencyDivisionMultiple

    Access(OFDMA)asshowninfigure2.2and2.3.OFDMAallowssubsetsofthesubcarrierstobe

    allocateddynamicallyamongthedifferentusersonthechannelasshownbelow.

  • 8/13/2019 A Technical Study of Long Term Evolution (LTE) and LTE-Advanced by Olufemi Amao

    10/35

    10

    Figure2.2:schedulingconceptinOFDM

    Thecoreofthetransmissionaccessschemeistousesharedchanneltransmission.Ascheduler

    canvaryresourcesforeachtimeinstantandbywhichusersthesharedresourcesshouldbe

    assigned.Thepossibilityforchanneldependentschedulinginthefrequencydomainisuseful

    whenchannelsarevarying.Schedulingdecisionscanbetakenasoftenasonceevery1msand

    thegranularityinthefrequencydomainis180kHz.Inthefrequencydomainthedownlink

    subcarriersaregroupedintoresourceblocks,witheachresourceblockconsistingof12

    consecutivesubcarriers(12*15KHz=180KHz).

    Inaddition,toaccommodatedifferentspectralregulationsandavailability,LTEisdesignedto

    supportvariablechannelbandwidthbyvaryingthenumberofsubcarriersusedfortransmission.

    Thesubcarrierspacingisconstantregardlessofthetransmissionbandwidth.Toallowfor

    operationindifferentlysizedspectrumallocations,thetransmissionbandwidthisinsteadvaried

    byvaryingthenumberofOFDMsubcarriers.Subcarriersaregroupedas12consecutivepairs

    knownasresourceblock.TheconceptofResourceBlockisexplainedinchapter3.

    Channel bandwidthBWChannel[MHz]

    1.4 3 5 10 15 20

    No of Resource Block(180KHz)

    6 15 25 50 75 100

    Table 2.1 Transmission bandwidth configuration

  • 8/13/2019 A Technical Study of Long Term Evolution (LTE) and LTE-Advanced by Olufemi Amao

    11/35

    11

    LTEcanalso bedeployed indifferentfrequencybands fromaslowas450MHzbandupto,at

    least,2.6GHzwithsupportforbothFrequecyDivisionDuplex(FDD)andTimedivisionDuplex

    (TDD).Thereisnospecified FFTsizeandsamplingfrequencyfortheLTEdownlink.The

    samplingratefs=_fNFFTisoftena multipleorsubmultipleof3.84MHzwhichcorrespondsto

    the chiprateinWCDMA.

    Figure2.3:OFDMSignalrepresentedinFrequencyTimedomain

    2.2.UplinkTransmission

    TheuplinkaccessinLTEusesSingleCarrierFrequencyDivisionMultipleAccess(SC

    FDMA).Comparedtothedownlink,thereissignificantlowerpoweravailabilityintheuplink.SC

    FDMAwaschosenbecauseitcombinesthelowpeaktoaverageratio(PAR)techniquesofsingle

    carriersystemswiththemultipathresistanceandflexibleallocationthatOFDMAoffers.SC

    FDMAcanbeseenasanOFDMmodulationthatisprecededbyaDiscreteFourierTransform

    (DFT)operation,hencetheyaresometimesreferredtoasDFTSOFDM.InSCFDMA,data

    symbolsinthetimedomainareconvertedtothefrequencydomainusingdiscreteFourier

    transform(DFT),inthefrequencydomaintheyaremappedtothedesiredlocationintheoverall

    channelbandwidthbeforebeingconvertedbacktotimedomainusinganinverseFFT(IFFT)

    .Cyclicprefixisthenaddedtothetimedomainsignal.

    UplinkLTEisbasedonorthogonalseparationofusers.Itisthetaskoftheuplinkschedulerto

    assignresourcesinbothtimeandfrequencydomaintodifferentusers.Mobiledevicesare

    allowedtotransmitwithinacellduringagiventimeintervalbythescheduler.Onlyacontiguous

    frequencyregioncanbeassignedtotheterminalsintheuplinkasaconsequenceoftheuseof

    singlecarriertransmissionin LTEuplink.ThisisoftenreferredtoaslocalizedDFTSOFDM

    transmission.Ablockdiagramshowingthetransmitterstructureandthedifferencebetween

    OFDMandSCFDMAisdepictedinfigure2.4andfigure2.5respectively.

    Sub-carriersFFT

    Time

    Symbols

    5 MHz Bandwidth

    Guard Intervals

    Frequency

  • 8/13/2019 A Technical Study of Long Term Evolution (LTE) and LTE-Advanced by Olufemi Amao

    12/35

    12

    DFTSub-carrierMapping

    CPinsertion

    Size-NTX Size-NFFT

    Coded symbol rate= R

    NTXsymbols

    IFFT

    Figure2.4:TransmitterstructureforSCFDMA.

    Figure2.5:Differencesbetween SCFDMAandOFDM

  • 8/13/2019 A Technical Study of Long Term Evolution (LTE) and LTE-Advanced by Olufemi Amao

    13/35

    13

    Chapter3 PhysicalLayerOverviewofLTE

    AlthoughLTEdownlinkanduplinkusesadifferentmultipleaccessschemes,OFDMAandSC

    FDMArespectively,theyshareacommonframestructure.Theframestructurerepresentsa

    timedomainrepresentationoftheslotandsymbol.

    Thesizeofvariousfieldsinthetimedomainisexpressedasanumberoftimeunit,

    FFTsizeKHzT 2048150001s seconds.Thisischosenforbackwardcompatibilitywith

    UMTS.(UMTSchiprate is3.84MHz oneeighthoftheassumedLTEsamplingfrequency).

    Downlinkanduplinktransmissionsareorganizedintoradioframesofsize10ms(

    ms10307200 sf TT ).Atype1framestructureisdefinedforFDD,whiletype2isdefinedfor

    TDD.ForFDD,10subframesareavailablefordownlinktransmissionand10subframesare

    availableforuplinktransmissionsineach10msinterval.Uplinkanddownlinktransmissionsare

    separatedinthefrequencydomain.Eachradioframeis ms10307200 sf TT longandconsists

    of20slotsstartingfrom 0to19,with length ms5.0T15360 sslot T .

    Figure3.1:FDDFrameStructure

    ForTDD,Eachradioframeoflength ms10307200 sf TT consistsoftwohalfframesoflength

    ms5153600 s T each.Eachhalfframeconsistsoffivesubframesoflength ms107203 s T .For

    eachsubframeinaradioframe,Ddenotesthesubframeisreservedfordownlink

    transmissions,UdenotesthesubframeisreservedforuplinktransmissionsandSdenotesa

    specialsubframewiththethreefieldsDwPTS,GPandUpPTS..ThelengthofDwPTSandUpPTS

    variesanditssubjecttothetotallengthofDwPTS,GPandUpPTSbeingequalto ms107203 s T .

  • 8/13/2019 A Technical Study of Long Term Evolution (LTE) and LTE-Advanced by Olufemi Amao

    14/35

    14

    Figure3.2:TDDFrame (for5msswitchpointperiodicity).

    10msradioframerepresentsthelargestunitoftime.Thisisfurtherdividedintoasubframeof1

    mswhichcontainstwo0.5msslots.AslotcontainssevenOFDMsymbolswhennormalcyclic

    prefixisusedandsixOFDMsymbolswhenextendedcyclicprefixisused.WhennormalCPis

    used,theCPlengthforthefirstOFDMsymbolineachslotisslightlylongerthanthatofthe

    othersixtoaccommodateanintegernumberofOFDM.Thisimpliesthatasubframe(1ms)

    consistsof14OFDMsymbols(inthecaseofnormalCP)and12OFDMsymbolinthecaseof

    extendedCP.

    Inthefrequencydomain,resourcesaregroupedintoresourceblocksmadeupof12consecutive

    subcarriersperslot,thiscorrespondstoabandwidthof180Khz.TheResourceElementdepicts

    thesmallestunitofresource,madeupofonesubcarrierforadurationofoneOFDMsymbol.A

    Resourceblockisthusmadeupof84resourceelementswhennormalCPisusedor72resource

    elementinthecaseofextendedCP.(12x7ofdm/slotand12x6ofdm/slotrespectively).Thisis

    showninfigure3.3

  • 8/13/2019 A Technical Study of Long Term Evolution (LTE) and LTE-Advanced by Olufemi Amao

    15/35

    15

    12

    Figure3.3: OFDMresourceblockconcept

  • 8/13/2019 A Technical Study of Long Term Evolution (LTE) and LTE-Advanced by Olufemi Amao

    16/35

    16

    3.1DownlinkPhysicalLayeroverview

    InLTE,theenhancedbasestationthatprovidesphysicallayerfunctionalityisreferredtoas

    evolvedNodeB(eNodeB).Thephysicallayerisprimarilyresponsiblefortranslatingdataintoa

    reliablesignalbetweentheeNodeBandtheUserEquipment(UE).Thephysicallayeralso

    interfaceswiththehigherlayers,specificallywiththeMAClayerviatransportchannels.DataisdeliveredtothephysicallayerintheformofTransportBlocksthatareofcertainsize.

    ScramblingModulation

    mapper

    Layermapper

    Precoding

    Resource

    elementmapper

    OFDMsignal

    generation

    Resource

    elementmapper

    OFDMsignal

    generationScrambling

    Modulation

    mapper

    layersantenna

    portscodewords

    Figure

    3.4:

    Overview

    of

    downlink

    physical

    channel

    processing.

    Toreducetransmissionerrors,a24bitCyclicRedundancyCheck(CRC)andchannelcodingare

    appendedtoeachblockofdata.TheCRCisusedatthereceivertodetecterrorsinthedecoded

    transportblock.Inaddition,scramblingisappliedtoalldownlinkphysicalchannelstoreduce

    interferencerejection.Thescramblingsequenceusesanorder31Goldcode,whichcanresultin

    231sequencesthat arenotcyclicshiftsofeachother.QuadraticPermutationPolynomial(QPP)

    basedTurbocodingisusedinLTEwithanoverallcoderate(R)of1/3.AQPPbasedreducesthe

    complexityoftheTurboencoder/decoderbecausetheyaremaximumcontentionfree,which

    impliesthattheyprovidemaximumflexibilityinsupportedparallelism.ForexampleifK=512,

    supportedparallelismfactorswill include{1,2,4,8,16,32,64,128,256,512}.Trellis

    terminationisusedfortheturbocoding.

    LTEemploysabitlevelscramblingonalltransportchannels.Theblockofbitsundergoesan

    exclusiveoroperationwithabitlevelscramblingsequence.Scramblinghelpsthereceiverto

    fullyutilizetheprocessinggainbyreducinginterferenceatthereceiver.Differentscrambling

    sequencesareusedindifferentneighboringcellthusrandomizinginterferingsignalsatthe

    receiverafterdescrambling. MBSFNbasedtransmissionusescellcommonscrambling,the

    samesequenceisusedinallparticipatingcells.

    Themodulationmappertakesblockofscrambled binarydigits,0or1,asinputandoutputsa

    complexvaluedmodulationsymbols,x=I+jQ.LTEsupportsthefollowingmodulationschemes;

    QPSK,16QAMand64QAM.InthecaseofQPSK,twobitsarerepresentedby1symbol,whilein

    16QAMand64QAMfourandsixbitsarerepresentedpersymbolrespectively.Notallchannels

    supportsthethreemodulationscheme.Forexample,whiletheDownlinkSharedChannel(DL

    SCH)supportsallthreemodulationschemes,BroadcastChannel(BCH)onlysupportsQPSK.

  • 8/13/2019 A Technical Study of Long Term Evolution (LTE) and LTE-Advanced by Olufemi Amao

    17/35

    17

    Layermappingandprecoding arepartofantennamappingprocessandtheyrelatetoMultiple

    InputMultipleOutput(MIMO)application.TheconceptofMIMOisusedinLTEandLTE

    Advancedandisdiscussedinchapter5.Splittingantennamappingintotwosteps makesit

    easiertodescribethedifferentMIMOschemesthatareusedinLTE.Thelayermappingprovides

    demultiplexingofthemodulationsymbolsofeachcodewordintooneormultiplelayers.The

    numberoflayersisalwaysasleastasmanyasthenumberoftransportblockstobetransmitted.

    Precodingtakessymbolsfromeachlayerthatwasproducedfromlayermapping,andprocesses

    themtogether.Theresultisthenmappedtodifferentsubcarriers(frequencydomain)and

    antennaport(spatialdomain).

    MIMOsystemsaredefinedintermsofthenumberoftransmitterandthenumberofreceivers.

    Forexample,a4x2MIMOimpliesthereare4transmittersand2receivers.A2x2MIMOsystem

    hasequalnumberoftransmitterandreceiver(2Transmitterand2Receivers)resultingina1:1

    relationshipwithrespecttolayersandthetransmittingantennaport.However,a4X2hasa2:1

    relationshipresultinginredundancyinoneorbothdatastreams.Layermappingspecifieshow

    theextratransmitterantennasareused.Themappingconfigurationemployeddependsonthe

    multiantennaschemethatisbeingused.

    3.2UplinkPhysicalLayer overview

    Asmentionedinsection2.2,uplinktransmissionisbasedonSCFDMA.CRCinsertion,Channel

    codingandbitlevelscramblingaresimilartothedownlinkphysicallayerdescribedinsection

    3.1.Uplinkscramblingishowevermobileterminalspecific,thusdifferentterminalsusedifferent

    scramblingsequence.LTEUplinkalsosupports QPSK,16QAMand64QAMmodulationscheme.

    Figure3.5:Overviewofuplinkphysicalchannelprocessing.

  • 8/13/2019 A Technical Study of Long Term Evolution (LTE) and LTE-Advanced by Olufemi Amao

    18/35

    18

    Chapter4 PhysicalChannelsandSignals

    Thephysicalchannelsintheuplinkanddownlinkoperatedifferentlyduetothedifferent

    requirementsandconstraints.Thedownlinkphysicalchannelcorrespondstoasetofresource

    elementscarryinginformationoriginatingfromhigherlayerssuchastheMAClayer.Dataona

    transportchannelisorganizedintotransportblockswithinaTransmissionTimeInterval(TTI).EachtransportblockhasaTransportFormat(TF)thatspecifieshowthetransportblockistobe

    transmittedovertheradiointerface.Suchspecificationincludes,themodulationscheme,block

    size,ratecontrolandantennaemapping.

    4.1DownlinkPhysicalChannels

    Thefollowingdownlinkphysicalchannelsaredefined;

    PhysicalBroadcastChannel,PBCH

    PhysicalDownlinkSharedChannel,PDSCH

    PhysicalMulticastChannel,PMCH

    PhysicalDownlinkControlChannel,PDCCH

    PhysicalControlFormatIndicatorChannel,PCFICH

    PhysicalHybridARQIndicatorChannel,PHICH

    ThefollowingphysicalsignalsareusedinLTEdownlink;

    Primarysynchronizationsignal

    Secondarysynchronizationsignal

    Referencesignals

    PhysicalBroadcastChannel(PBCH)

    Thephysicalbroadcastchannelcarriescellspecificsysteminformationthatareusedto

    configureandallowaccesstootherchannelsneededinthecell.Itistransmittedinthecenterof

    thechannelandoccupies72subcarriers(equivalentto6RB).Inthetimedomain,thePBCHis

    locatedinslot1ofthefirstfourOFDMsymbols.Theonlymodulationschemesupportedis

    QPSK.

    PhysicalDownlinkSharedChannel(PDSCH)

    DownlinkdataistransmittedviathePDSCHchannel.ThechannelissharedamongmultipleUEs

    inthetimedomain.LTEfeaturessuchasspatialmultiplexing,rateadaptationandchannel

    dependentschedulingaresupportedinthischannel.UnlikePBCH,themodulationscheme

    supportedareQPSK,16QAMand64QAM.

  • 8/13/2019 A Technical Study of Long Term Evolution (LTE) and LTE-Advanced by Olufemi Amao

    19/35

    19

    PhysicalMulticastChannel(PMCH)

    ThischannelisresponsiblefortransportingMulticastChannel(MCH).Italsosupports

    QPSK,16QAMand64QAM.

    PhysicalDownlinkControlChannel(PDCCH)

    PDCCH carries the channelallocationand control information. It ismadeupofoneormore

    consecutiveControlChannelElements (CCEs),whereacontrolchannelelement ismadeupof

    nine resourceelementgroups.OnlyQPSKmodulation is supported in this channel.AControl

    FormatIndicator(CFI)thatiscarriedbythePhysicalControlFormatIndicatorchannel(PCFICH)

    indicatesthenumberofOFDMsymbolthatisallocatedforthePDCCH.

    PhysicalControlFormatIndicatorChannel(PCFICH)

    ThePhysicalControlFormatIndicatorchannel(PCFICH)isthephysicalchannelthatcarriesthe

    CFIwhichdictatesthenumberofOFDMsymbolsusedfortransmissionofPDCCHina

    subframe.ItislocatedatOFDMsymbol0ofeverysubframe.Inthefrequencydomain,thesub

    carriersallocatedforPCFICHisdeterminedbyCellIDinformation.

    PhysicalHybridARQIndicatorChannel,PHICH

    AcknowledgementandNegative Acknowledgement(ACKandNAK) aresenttotheUEviathe

    PHICH.

    Figure4.1Transportchannelsmappedtophysicalchannelsinthedownlink

  • 8/13/2019 A Technical Study of Long Term Evolution (LTE) and LTE-Advanced by Olufemi Amao

    20/35

    20

    4.2DownlinkPhysicalSignals

    Onthedownlink,LTEdefinesthreephysicalsignals;

    PrimarySynchronization

    SecondarySynchronization

    ReferenceSignals

    Theprimaryandsecondarysynchronizationsignalsarespecificsequencesinsertedintothelast

    twoOFDMsymbolsinthefirstslotofsubframeszeroandfive.Theyaremainlyusedforcell

    searchprocedure.Inadditiontotheprimaryandsecondarysynchronizationsignals,thecell

    searchprocedurealsoexploitsthereferencesignalsaspartofitsoperation.Inthetimedomain,

    boththeprimaryandsecondarysignalsaretransmittedtwiceper10msradioframe.Inthe

    frequencydomain,thesignalsalwaysoccupythecentral62subcarriersofthechannel.This

    ensuresthecellsearchprocedureisthesameregardlessofthechannelbandwidth.TheUE

    determinesthetimingandcenterfrequencyfromthePrimarysynchronizationsignal.

    Theprimarysynchronizationsignalsinthesubcarriersaremodulatedusingafrequencydomain

    ZadoffChusequence.AZadoffChusequenceisaConstantAmplitudeZeroAutocorrelation

    (CAZAC)sequencewaveformwithexcellentautocorrelationpropertiesandlowcrosscorrelation

    withothersequences.Whenappliedtoradiosignals,itresultsinanelectromagneticsignalof

    constantamplitude.Thephaseofeachsubcarrierisdeterminedbytherootindexnumberina

    sequencegeneratorwiththerootindexnumbercorrespondingtothecellidentity.Thereare

    504uniquecellidentitiesandthepowerlevelineachsubcarriersarethesame.

    Thesecondarysynchronizationsignalisusedtoidentifythecellidentitysubgroups.Its

    frequencyrepresentationissimilartotheprimarysynchronizationdescribedabove.The

    sequencegenerationfunctionutilizesaninterleavedconcatenationoftwolength31binary

    sequence.The504uniqueidentitiesmentionedintheparagraphaboveisgroupedinto168

    uniquecellidentitygroups(from0to167),witheachgroupcontainingthreeuniqueidentities.

    Thelaterisachievedbycyclicshiftingeachsequence.Theprimarysynchronizationgivesthe

    identityinformation.

    Referencesignalsareusedtoreducethepossibilityofamplitude,phaseandtimingerrorsinthe

    receivedsignals.Sucherrorsmighthavebeenintroducedbytheradiochannelandimpairments

    fromthetransmitter.Thereferencesignalsdonotcarryanyuniqueinformationbutprovides

    knownphaseandamplitudereferencethatcanbeusedtoreliabledecodesignalsthatwould

    havebeenerroneouslydecodedinitsabsence. Inthetimedomain,thereferencesignalsare

    generatedeverytwosymbolsperslotwhileinthefrequencydomain,theyareallocatedinevery

    sixthsubcarriers.Inadditiontocellspecificreferencesignals,LTEdefinesMBSFNreference

    signalsandUEspecificreferencesignals.

  • 8/13/2019 A Technical Study of Long Term Evolution (LTE) and LTE-Advanced by Olufemi Amao

    21/35

    21

    4.3UplinkPhysicalChannel

    Thefollowingphysicalchannelsareusedintheuplink;PhysicalUplinkSharedChannel(PUSCH),

    PhysicalUplinkControlChannel(PUCCH)andthePhysicalRandomChannel(PRACH).

    PUSCHisthechannelthatcarriesusertraffic.SimilartothePDSCH,themodulationscheme

    supportedareQPSK,16QAMand64QAM.UplinkSharedChannel(ULSCH)andUplinkControl

    information (UCI)arealsotransportedviathischannel.PUCCHcarriesuplinkcontrol

    Informationsuchasschedulingrequests,periodicChannelQualityIndicator(CQI),and

    acknowledgements.RandomaccesspreamblessenttoeNodeB isinitiatedvia thePRACH.It

    shouldbenotedthataUEcannottransmitonbothPUCCHandPUSCHsimultaneously.This

    impliesthatiftheUEneedstosenddatainthesamesubframeasthescheduledperiodicCQI

    report,PUSCHwouldbeusedinsteadof PUCCH.

    Figure4.2TransportchannelsmappedtophysicalchannelsintheUplink

    UplinkPhysicalSignals

    4.4UplinkPhysicalSignals

    LTEdefinestwophysicalsignalsintheuplink,namelyDemodulationReferencesignal(DMRS)

    andtheSoundingReferenceSignal(SRS).DMRSisusedforuplinkchannelestimationand

    synchronization.ItfacilitatescoherentdemodulationbasedontheZadhoffChusequence,

    whichprovidesitwithgoodtimedomainautocorrelationpropertiesandconstantamplitude.In

    thefrequencydomain,itisthesamesizeastheassignedresource,whileinthetimedomain;it

    istransmittedinthefourthSCFDMAsymbolofthePUSCHslot.SRSisalsobasedonthe

    ZadhoffChusequenceanditsusedtofacilitatefrequencydependentscheduling.Subcarrier

    allocationisdictatedbythebandwidthallocationconfiguredintheSRS.

  • 8/13/2019 A Technical Study of Long Term Evolution (LTE) and LTE-Advanced by Olufemi Amao

    22/35

    Chap

    Ina

    amat

    techn

    rank

    down

    requi

    effici

    4x4

    SUM

    secti

    syste

    trans

    tosu

    trans

    SUM

    user.

    loop

    matri

    preco

    er5MIMO

    IMOsystem

    rixchannelo

    ologiessuch

    ,dedicated

    linkandupli

    rementsfor

    ncyof15bp

    oruplinktra

    Figure5.1

    IMOisappli

    n4.1,theP

    sprovidea

    itantennas

    portconfigu

    itantennas

    IMOspatial

    Twooperati

    patialmultip

    xindicator(P

    dingisappli

    echnologies

    ,multiplestr

    fNtNrpaths

    asSingeuser

    Beamformin

    kpeakrate,

    TEAdvance

    /HZ,Spatial

    nsmissionis

    implifiedtra

    dtothePDS

    SCHisrespo

    peakrateof

    withSUMI

    rationwithu

    intheuplink

    ultiplexing

    nalmodesa

    lexingmode.

    MI)fromthe

    donthetra

    n LTEandL

    eamsaresen

    etweenthe

    MIMO(SU

    getc arebei

    cellthrough

    ,peakspect

    multiplexing

    einginvesti

    nsmissionm

    CH,henceiti

    nsibleforcar

    150Mbpsfor

    Ospatialm

    ptoeighttr

    .

    sesMIMOt

    redefined;cl

    Intheclose

    UEistakeni

    smittedsign

    22

    EAdvanced

    tviamultipl

    transmitand

    IMO),multi

    ngusedinL

    ut,aswella

    alefficiency

    withantenn

    ated.

    delforaMI

    sonlysuppo

    ryingdownli

    twotransmi

    ltiplexing.In

    nsmitanten

    chnologyto

    osedloopsp

    loopspatia

    ntoconsider

    al.

    antennas.T

    receiveante

    userMIMO(

    EandLTEA

    saveragecel

    of30bps/HZ

    configuratio

    Osystem

    rtedonthed

    kdatafrom

    tantennasa

    LTEAdvanc

    asinthedo

    improveper

    atialmultipl

    lmultiplexin

    ationbythe

    hestreamsp

    nnas.Variou

    MUMIMO),

    vancedtoi

    lcoverage.T

    anduplinks

    nof8x8for

    ith3TXand

    ownlink.As

    theeNodeB

    d300Mbps

    d,SUMIMO

    nlinkandu

    ormanceto

    xingmodea

    mode,the

    NodeBthes

    assesthroug

    MIMO

    losedloop

    prove

    support th

    ectral

    downlinkan

    RXantenna

    escribed in

    totheUE.LT

    forfour

    areextende

    tofour

    ardsasingl

    ndtheopen

    recoding

    patialdomai

    h

    e

    d

    E

    d

    n

  • 8/13/2019 A Technical Study of Long Term Evolution (LTE) and LTE-Advanced by Olufemi Amao

    23/35

    23

    Figure5.2Closedloopspatialmultiplexingusing NantennaandMlayers

    TheclosedloopspatialmultiplexingrequirestheUEtofeedbacktherankindicator(RI),thePMI

    andthechannelqualityindicatorCQIintheuplink.TheRIindicatesthenumberofspatiallayers

    thattheUEscurrentchannelconditioncansupport.TheeNodeBmaydecidethetransmission

    rank(M)basedontheRIreportedbytheUEorbasedonotherfactorssuchasavailablepower

    transmission.The eNodeBsendsthescheduledUEtheintendedprecodingmatrix,thatwould

    beusedaspartofthedownlinkcontrolinformationusingathreebitTransmitPrecodingMatrix

    Indicator(TPMI)fieldfortwotransmitantennasandasixbitTPMIfieldforfourtransmit

    antennas.Withoutcyclicdelaydiversity(CDD),precodingforspatialmultiplexingisdefinedby

    )(

    )(

    )(

    )(

    )(

    )1(

    )0(

    )1(

    )0(

    ix

    ix

    iW

    iy

    iy

    P

    Ydenotesthecomplexsymboltransmittedonthenthantenna,xdenotesthemodulation

    symboltransmittedonthemthlayerandWdenotestheNXMprecodingmatrix.For

    transmissionontwoantennaports, 1,0p ,theprecodingmatrix )(iW oftable5.1isused

    whilefor transmissiononfourantennaports, 3,2,1,0p ,theprecodingmatrixtable5.2is

    employed.

  • 8/13/2019 A Technical Study of Long Term Evolution (LTE) and LTE-Advanced by Olufemi Amao

    24/35

    24

    Codebookindex

    Number of layers

    1 2

    0

    1

    1

    2

    1

    10

    01

    2

    1

    1

    1

    1

    2

    1

    11

    11

    2

    1

    2

    j

    1

    2

    1

    jj

    11

    2

    1

    3

    j

    1

    2

    1 -

    Table 5.1: Codebook for transmission for Two antenna ports 1,0 .

    Codebookindex

    nu Number of layers

    1 2 3 4

    0 Tu 11110 }1{

    0W 2}14{

    0W 3}124{

    0W 2}1234{

    0W

    1 Tjju 111 }1{

    1W 2}12{

    1W 3}123{

    1W 2}1234{

    1W

    2 Tu 11112 }1{

    2W 2}12{

    2W 3}123{

    2W 2}3214{

    2W

    3 Tjju 113 }1{

    3W 2}12{

    3W 3}123{

    3W 2}3214{

    3W

    4 Tjjju 2)1(2)1(14 }1{4W 2}14{4W 3}124{4W 2}1234{4W 5 Tjjju 2)1(2)1(15

    }1{5W 2

    }14{5W 3

    }124{5W 2

    }1234{5W

    6 Tjjju 2)1(2)1(16 }1{

    6W 2}13{

    6W 3}134{

    6W 2}1324{

    6W

    7 Tjjju 2)1(2)1(17 }1{7W 2}13{7W 3}134{7W 2}1324{7W 8 Tu 11118

    }1{8W 2

    }12{8W 3

    }124{8W 2

    }1234{8W

    9 Tjju 119 }1{

    9W 2}14{

    9W 3}134{

    9W 2}1234{

    9W

    10 Tu 111110 }1{

    10W 2}13{

    10W 3}123{

    10W 2}1324{

    10W

    11 Tjju 1111 }1{

    11W 2}13{

    11W 3}134{

    11W 2}1324{

    11W

    12 Tu 111112 }1{

    12W 2}12{

    12W 3}123{

    12W 2}1234{

    12W

    13 Tu 111113 }1{

    13W 2}13{

    13W 3}123{

    13W 2}1324{

    13W

    14 Tu 111114 }1{

    14W 2}13{

    14W 3}123{

    14W 2}3214{

    14W

    15 Tu 111115 }1{

    15W 2}12{

    15W 3}123{

    15W 2}1234{

    15W

    Table 5.2 Codebook for transmission for Four antenna ports 3,2,1,0 .

  • 8/13/2019 A Technical Study of Long Term Evolution (LTE) and LTE-Advanced by Olufemi Amao

    25/35

    25

    Theprecodingcodebooksshownabovearedesignedtohaveconstantmodulus,thusallphysical

    transmitantennakeepthesametransmitpowerlevelregardlessoftheprecodingmatrix.This

    ensurestheefficiencyofthepoweramplifier.Theprecodingmatrixesarenested,thatis,each

    precodingmatrixinahigherranksubcodebookcanfindatleastoneprecodingmatrixinalower

    rankprecodingmatrix.ThispropertyensuresproperperformanceincaseswhentheeNodeB

    decidestousetransmissionrankthanwhatisindicatedintheRI.

    Openloopspatialmultiplexingareused insituationwhenthefeedbackreceivedfromtheUEis

    unreliable,forexamplewhentheUEismovingatafastspeedcausingchannelconditiontovary

    fasterthanthefeedbackcanreport.Theopenloopisillustratedinthefigurebelowconsistingof

    NantennasandMlayerswithNgreaterorequaltoM.

    Figure 5.3: Open-loop spatial multiplexing with Nantennas and Mlayers.

    UnlikeSUMIMO,MUMIMOschemeissupportedinboththedownlinkanduplinkLTE.Inthe

    uplink,TwoormoreUEscanbescheduledtotransmitusingthesametimefrequency.Tomake

    eachsignalunique,theeNodeBassignsorthogonalreferencesignalstotheschedulesUEs.A

    ZadoffChusequenceisdefinedasthebasesequencefortheuplinkreferencesignals.

    OrthogonalreferencesignalscanbecreatedfromthecyclicallyshiftedZadofffChusequence.

    ThuseachUEcanbeassignedadifferentcyclicallyshiftedZadofffChusequence,resultingin

    uniquereferencesignalforeachUE.Fordatatransmissionontheuplink,acyclicshiftvalueis

    alwaysincludedinthecontrolsignalandneedstobereceivedbeforeaUEcanstarttransmitting

    data.ThisistrueevenincaseswhereMUMIMOschemeisnotused.

    Rank1transmissionistheonlymodesupported inthedownlinkwhenMUMIMOschemeis

    used.Differentrank1precodingmatricesareusedwhenmultipleUEsareconfiguredtousethe

    sametimefrequencyresource.PerUEpreconfiguredPowerlevelmightbehardtomaintainin

    MUMIMO,hencetheneedtointroduceda1bitsignalingtoindicateiftheUEneedstoreduce

    itspowerby half(3dB).

    TransmitdiversityisanotherMIMOschemeusedinLTEandLTEAdvanced.Inthedownlink,the

    diversityschemecanbeappliedtoallthephysicalchannels,notjustthePDSCH.TheUE

    recognizesthenumberoftransmitantennabyblindlydecodingthePBCH.Spacefrequency

  • 8/13/2019 A Technical Study of Long Term Evolution (LTE) and LTE-Advanced by Olufemi Amao

    26/35

    26

    blockcode(SFBC)isusedinthecaseoftwotransmitantenna.ForeasierUEimplementationand

    toproviderobustnessagainstcorrelationbetweenchannelsfromdifferenttransmitantennas,a

    combinationofSFBCandfrequencyswitchedtransmitdiversity(FSTD)isusedinthecaseoffour

    transmitantenna.Thisisshowninfigure5.4and5.5below.

    Figure5.4:SFBCwithtwotransmitantennasondownlink.

    Figure5.5:SFBC+FSTDwithfourtransmitantennasondownlink

  • 8/13/2019 A Technical Study of Long Term Evolution (LTE) and LTE-Advanced by Olufemi Amao

    27/35

    27

    Chapter6:Other LTEAdvancedTechnologies

    6.1carrieraggregation

    CarrieraggregationtechnologyisintroducedinLTEAdvanced tosupportveryhighdatarate

    transmissionsovera wider frequencybandwidthsthanexistingLTEsupports.LTErel8as

    showninTable2.1,supportsabandwidthrangingfrom1.4Mhzto20Mhz,whileLTEAdvanced

    should supportabandwidthextensionupto around100MHz.Inorder tosupportawider

    transmissionbandwidth whilepreservingbackwardcompatibilitywithLTERel8,Carrier

    aggregationtechniquehasbeenintroduced.Itinvolvestheaggregationofmultiplebasic

    frequencyblockscalledcomponentcarriers(CC)witheachCChavingamaximumof110

    resourceblocks(RBs)(whichissupportedintheLTERel8).Otherradioparameterssuchasthe

    subcarrierspacing,subframelengthandphysicalchannelparameters thatwasdiscussedin

    previouschapters,remainsthesameacrossCCs.ThisistoensureallLTEandLTEAdvancedUEs

    canworkinthesamenetwork.

    Figure6.1carrieraggregationtechniques

    TwotypesofCarrieraggregationtechniquesarebeingproposedforLTEAdvanced;Continuous

    andNoncontinuous.Continuouscarrieraggregationinvolvesusingmultipleavailable

  • 8/13/2019 A Technical Study of Long Term Evolution (LTE) and LTE-Advanced by Olufemi Amao

    28/35

    28

    componentcarrierthatareadjacenttoeachotherwhiletheNoncontinuousaggregation

    techniquesinvolvesusingcomponentcarriersthatareseparatedalongthefrequencyband.

    WhileContinuouscarrieraggregationwouldseemeasiertoaccomplished,mostservice

    providersmightfindithard(ifnotimpossible)toobtaincontinuous100MHzfrequencyband

    duetothescarcityinspectrumallocation.WithNoncontinuousCarrierAggregationtechnique,

    dataistransmittedovermultipleseparatedcarriersacrossalargefrequencyrangewith

    differentchannelcharacteristics.Noncontinuouscarrieraggregationschemecanbe

    implementedeitheratthemediumaccesscontrol(MAC)orthePhysicallayer.Ifimplementedin

    theMAClayer,transmissionparametersareconfiguredindependentlyforeachcomponent

    carrier.Thisimpliesthateachcomponentcarriermaintainsitsowntransmissionconfiguration

    parameters(suchasthemodulationscheme,codingrateandMIMOconfiguration)inthe

    physicallayeraswellasintheMAClayer.Inthephysicallayeraggregationscheme,asingleMAC

    entityisusedbyalltheaggregatedcomponentcarriers.BackwardcompatibilityforLTERel8 is

    ensuredbyusingthesameconfigurationparametersandschemes.

    Figure6.2 ExampleofLTEcarrieraggregationscheme

    Tosupportasymmetricdatatrafficintheuplinkanddownlink,anumberofschemeshavebeen

    proposedtoaidtheeNodeBinidentifyingtheexactcomponentcarriersthataUEhasselected

    forthedownlink.Thefirstschemeproposestheconfigurationofaphysicalrandomaccess

    channel(PRACH)oneachcomponentcarrierwithdifferentparameters.TheeNodeBcanextract

    thenumberofcomponentcarriersthattheUEisusingfromRACHpreambleviaanuplink

    componentcarrier.Thesecondschemeinvolvestheconfigurationon allthedownlink

    componentcarrierswiththesamePRACHparameters.Allassociateddownlinkcomponent

    receivesabroadcastviaaninitialrandomaccessresponsewithspecifictransmission

  • 8/13/2019 A Technical Study of Long Term Evolution (LTE) and LTE-Advanced by Olufemi Amao

    29/35

    29

    configuration.TheeNodeBcanthenextractthecomponentcarriersthatarebeingusedbythe

    UE.A thirdschemeissimplebutlessflexible.Itusesonlyonedownlinkcomponentcarrierto

    bearthecontrolchannelsrelevanttotherandomaccessprocess.Withthisschemeinuse,the

    eNodeBdoesnot havetodetectthedownlinkcomponentcarriersthatareinusebythe UE.

    6.2 CoordinatedMultipointTransmission/Reception

    CoordinatedMultipointTransmissionandReception(CoMP) isanothercandidatetechnology

    being consideredforLTEAdvanced.CoMPinvolvestheuseofantennasfrommultiplecellsites

    inacoordinatedfashion.Bycoordinatingtransmissionbetweenmultipleantennas,higher

    systemcapacityandimprovedcelledgedataratecanbeachieved.Beamformingorprecoding

    gainscanbeachieved by takingintoaccounttheinstantaneouschannelconditions.Thereare

    twocategoriesforcoordinatingmultipleantennas;Dynamicschedulingcoordinationand Jointtransmission/reception.CoMPcanbeusedwithinacelloracrossmultiplecells.

    Figure6.3:IntraandInterCoMPconcept

    InIntrasiteCoMP,thecoordinationiswithinthecellandlesscomplex,whileinIntersiteCoMP

    thecoordinationcanspanacross2ormorecells,thusitisconsideredmorecomplexwith

    respecttotheformer.

    ChannelestimationonthedownlinkcanbeobtainedusingUEspecificreferencesignalsorcell

    specificreferencesignal.InthecaseofUEspecific,referencesignalissubjecttothesame

  • 8/13/2019 A Technical Study of Long Term Evolution (LTE) and LTE-Advanced by Olufemi Amao

    30/35

    30

    transmittersideprecodingasthedata,beforetransmittingfrommultipleantenna.TheUEdoes

    notneedtobeawareofthetransmissionpointsinvolved,hencethismethodcanbeusedin

    existingLTErel8.Inaddition,standardizedcodebookordifferentdeploymentscenariosarenot

    needed.

    Figure6.4:demodulationbasedonUEspecificRS

    Withcellspecificreferencesignals,theUEneedstotakeintoaccounttheweightsappliedatthe

    differenttransmissionpoints.Thisimpliestheuseofstandardizedtransmissionweightsand

    codebooks.Maximumratiocombinationandinterferencerejectioncombiningcanbeusedto

    coherentlycombinesignalsintheuplink.Onthetransmitterside,theknowledgeofthechannel

    isalsousedtodeterminetheCoMPprocessing.The UEcanreportthequalityofthenetwork

    usingtheCQIwiththeaidofreferencesignals.

    Figure6.5:demodulationbasedoncellspecificRS

  • 8/13/2019 A Technical Study of Long Term Evolution (LTE) and LTE-Advanced by Olufemi Amao

    31/35

    31

    6.3 Relaying

    Arelayutilizesmultihopcommunication toenhancethetargeteddatarateinLTEAdvanced.

    Fromalinkbudgetperspective,reducingthedistancebetweenthetransmitterandreceivercan

    increasethepowerrate.Severalrelaytechniqueshavebeendevelopedoverthepastdecades

    suchastheanalogrepeater,thatusesacombinationofdirectionalantennasandpower

    amplifierstorepeatthetransmitsignal.Thefirstcommercialwirelessnetworktoincorporate

    multihopcommunicationwasIEEE802.16j.InLTEAdvanced,threerelaytechniquesarebeing

    considered;onewayrelay,twowayrelay,andsharedrelay.

    Onewayrelaymodelismadeupofonesingleantennarelaypersectorsservingonlyusersinits

    sector.Communicationtakesplaceintwoorthogonalphases,thefirstphasebeingtheeNodeBs

    transmissiontotherelay,whilethesecondphaseinvolvestherelaystransmissiontotheUE.A

    decodeandforwardoperationisthenperformed.Onewayrelaycanenhancecapacitynearthe

    celledgebutmightbelimitedbyinterference.

    Figure6.6:Onewayrelaymodel

    Twowayrelaymodelalsocalledbidirectionalrelayingismadeupofasingleamplifyand

    forwardrelaypersectorandallowsimultaneousuplink/downlinkcommunication.Twoway

    relaymodelavoidsthehalfduplexlossofonewayrelaybecausebothUEandeNodeBtransmit

    totherelayatthesametimeinthefirsttimeslot.Therelaythenrebroadcastduringthe

    secondslot,hencecommunicationstilltakesplaceintwoorthogonalphase.DownlinkanduplinkratecanbemaximizedwithTwowayrelaymodelduetothefullduplexadvantage.With

    theaidofchannelstateinformationandknowledgeoftheirownmessages,theUEandeNodeB

    areabletodecodeinformationfromanotherparty.Duetoamplifyandforwardnatureoftwo

    wayrelaying,ithasapotentialtoamplifyinterference.

  • 8/13/2019 A Technical Study of Long Term Evolution (LTE) and LTE-Advanced by Olufemi Amao

    32/35

    32

    Figure6.7:Twowayrelaymodel

    SharedrelayusesapointtomultipointtechniquewhereseveraleNodeBcansharetherelay.

    SimilartoOnewayrelay,itusesadecodeandforwardmechanism,howevermultipleantenna

    relayareplacedattheintersectionofmultiplecells.Therelaythendecodesthesignalsfromthe

    intersectingbasestations.Interferencecanbecanceledbyusingmultiplereceiveantennaswith

    MIMOtechnologies.ExploitingtheMIMOMAC(multipleaccess)channeltodecodethree

    signalscochannelandthenusingMIMObroadcastchanneltodeliverthreeinterferencefree

    signals.Thiswouldresultinthe removalof muchofthedominantinterference.Byspatially

    removinglocalinterference,sharedrelayensuresthehighestratewhencomparedtotheother

    relaymethodsthatwaspreviouslydiscussed.

    Figure6.8:Shared relaymodel

    Figure6.9:Powercomparisonanalysiswithdifferentrelaytechniques

  • 8/13/2019 A Technical Study of Long Term Evolution (LTE) and LTE-Advanced by Olufemi Amao

    33/35

    33

    Conclusion

    ThereportlookedatthephysicallayerinLTEandsomecandidatetechnologyproposedinLTE

    Advanced.BackwardcompatibilitywithLTErel8isanimportantpriorityindevelopingLTE

    Advanced.Withregardstocarrieraggregation,thisimpliesthatUEsincapableofsupporting

    LTEAdvancedmustbeabletodemodulateanddecodethedownlinkdatachannelfromoneof

    thecomponentcarrierswithoutperformanceloss.Asdiscussedinsection6.1,therearetwo

    methodsproposedforcarrieraggregation;continuousandnoncontinuous.Forcontinuous

    spectrumallocation,theUEmightbeaffectedbyinterferencefromadjacentcomponent

    carriers.Toavoidsuchcondition,Guardbandsmaybenecessarybetweenadjacentcomponent

    carriers.Consequently,theneedforanintercarrierguardbandmayresultinlossin

    transmissionbandwidth.Toaccountforthelossduetoguardbandandensurethe20MHz

    transmissionbandwidthispreserved,theentiretransmissionbandwidthmightneedtobewider

    than20MHz.

  • 8/13/2019 A Technical Study of Long Term Evolution (LTE) and LTE-Advanced by Olufemi Amao

    34/35

    34

    References

    1. 3GPP, TR 36.814, "Further Advancements for E-UTRA; Physical LayerAspects".

    2. 3GPP, TR 36.913, "Requirements for Further Advancements for E-UTRA

    (LTE-Advanced) (Release 8)".

    3. LTE-Advanced Evolving LTE towards IMT-Advanced, Stefan Parkvall, Erik

    Dahlman, Anders Furuskr, Ylva Jading, Magnus Olsson, Stefan Wnstedt,

    Kambiz Zangi

    4. HSPA to LTE-Advanced, Rysavy Research

    5. Investigation on Optimum Radio Parameter Design in Layered OFDM for LTE-

    Advanced, Kazuaki Takeda, Satoshi Nagata, Yoshihisa Kishiyama, Motohiro

    Tanno, Kenichi Higuchi, and Mamoru Sawahashi

    6. Device-to-Device Communication as an Underlay to LTE-Advanced Networks,

    Klaus Doppler, Mika Rinne, Carl Wijting, Cssio B. Ribeiro, and Klaus Hugl, Nokia

    Research Center

    7. Long Term Evolution: Towards 4th Generation of Mobile Telephony and Beyond

    Sao Tomai1, Grega Jaku2

    8. Progress on LTE Advanced-the new 4G standard, Eiko Seidel

    9. LTE The UMTS Long Term Evolution from Theory to Practice, Stefania

    Sesia,Issam Toufik,Mathew Baker.

    10. Overview of the 3GPP Long Term Evolution Physical Layer, Jim Zyren

    11. 3G Evolution HSPA and LTE for Mobile Broadband, Erik Dahlman,StefanParkvall,Johan Skold and Per Beming.

    12. UMTS Long Term Evolution (LTE) Technology Introduction: Application Note

    1MA111, RHODE & SCHWARZ.

    13. Technical Solutions for the 3G Long-Term Evolution Hannes Ekstrm et al.

  • 8/13/2019 A Technical Study of Long Term Evolution (LTE) and LTE-Advanced by Olufemi Amao

    35/35

    14. Carrier Aggregation for LTE-Advanced Mobile Communication Systems

    Guangxiang Yuan et al

    15. LTE-Advanced The solution for IMT-Advanced, Hideshi Murai, Maria

    Edvardsson, Erik Dahlman

    16. Illustration of MIMO channel matrix in a wireless communication system using

    multiple transmitters (Tx) and receivers (Rx) , Benjamin Baumgrtner

    17. LTE and the Evolution to 4G Wireless, Moray Rumney