A Study of Majorana Dark Matterphys.cts.nthu.edu.tw/files/seminar_news/1562_26e8ce93.pdfStudy of...

62
Study of Majorana Fermionic Dark Matter Gwo-Guang Wong (CYCU) @NTU May 9, 2016 based on ArXiv1512.01991[hep-ph] in collaboration with Chun-Khiang Chua

Transcript of A Study of Majorana Dark Matterphys.cts.nthu.edu.tw/files/seminar_news/1562_26e8ce93.pdfStudy of...

Page 1: A Study of Majorana Dark Matterphys.cts.nthu.edu.tw/files/seminar_news/1562_26e8ce93.pdfStudy of Majorana Fermionic Dark Matter Gwo-Guang Wong (CYCU) @NTU May 9, 2016 based on ArXiv1512.01991[hep-ph]

Study of Majorana Fermionic Dark Matter

Gwo-Guang Wong (CYCU) @NTU

May 9, 2016

based on ArXiv1512.01991[hep-ph]in collaboration with Chun-Khiang Chua

Page 2: A Study of Majorana Dark Matterphys.cts.nthu.edu.tw/files/seminar_news/1562_26e8ce93.pdfStudy of Majorana Fermionic Dark Matter Gwo-Guang Wong (CYCU) @NTU May 9, 2016 based on ArXiv1512.01991[hep-ph]

Outline

• Why Dark Matter?

• Relic Density

• Why Majorana Fermionic Dark Matter?

• Model Construction

• Direct Search

• Indirect Search

• Summary and Conclusion

Page 3: A Study of Majorana Dark Matterphys.cts.nthu.edu.tw/files/seminar_news/1562_26e8ce93.pdfStudy of Majorana Fermionic Dark Matter Gwo-Guang Wong (CYCU) @NTU May 9, 2016 based on ArXiv1512.01991[hep-ph]

The first evidence of DM was observed by Fritz Zwicky in 1933.

The evidence of dark matter can be “seen” everywhere from(a) the galactic scale, (b) the scale of galaxy clusters, (c) the cosmological scale

𝐺𝑀(𝑟)𝑚

𝑟2= 𝑚

𝑣(𝑟)2

𝑟

⇒ 𝑣(𝑟) =𝐺𝑀(𝑟)

𝑟

Page 4: A Study of Majorana Dark Matterphys.cts.nthu.edu.tw/files/seminar_news/1562_26e8ce93.pdfStudy of Majorana Fermionic Dark Matter Gwo-Guang Wong (CYCU) @NTU May 9, 2016 based on ArXiv1512.01991[hep-ph]

From the cosmological scale,• the WMAP and Planck results based on (CMB) show that

0026.01198.0

8

3 & /

model, CDM thefittingBy

2

2

h

G

H

obs

CDM

ccCDM

( from PDG )

Page 5: A Study of Majorana Dark Matterphys.cts.nthu.edu.tw/files/seminar_news/1562_26e8ce93.pdfStudy of Majorana Fermionic Dark Matter Gwo-Guang Wong (CYCU) @NTU May 9, 2016 based on ArXiv1512.01991[hep-ph]

Boltzmann Equation

• The DM particles are assumed to be created thermally during the big bang, and froze out of thermal equilibrium in the early universe with a relic density. The evolution of DM abundance is described by

)2/()4(|vv| v& vv

frame. comoving in the |vv||vv| vwhere

][v3

22

lab1,lab2,

lab

annl Mann

2

21

2

21l M

l Mann

Gelmini] F. and P.Gondolo (1991) B360 Phys. [Nucl.

msmss

nnnnHndt

dnEqEq

Page 6: A Study of Majorana Dark Matterphys.cts.nthu.edu.tw/files/seminar_news/1562_26e8ce93.pdfStudy of Majorana Fermionic Dark Matter Gwo-Guang Wong (CYCU) @NTU May 9, 2016 based on ArXiv1512.01991[hep-ph]

• The DM became NR particles when they froze out of thermal equilibrium in the early universe.

• From Maxwell velocity distribution,

• The velocity averaged DM annihilation cross section can be written as

)v(vbaall)v(

)v1/11(2 & )(

42NR

ann

22

ann

O

mss

)/1(b/ 6av 2

ann xOx

)20( T

m

xv

vvvvvv

kTvm/6

22

2

3

2

12

2

0

2

211

2

1

2

2

0

)parameteratuer out temper(freeze where T

mx

Page 7: A Study of Majorana Dark Matterphys.cts.nthu.edu.tw/files/seminar_news/1562_26e8ce93.pdfStudy of Majorana Fermionic Dark Matter Gwo-Guang Wong (CYCU) @NTU May 9, 2016 based on ArXiv1512.01991[hep-ph]

• At Tf , DM interaction rate is equal to the Universe expansion rate, namely,

• The freeze-out temperature parameter can be solved numerically by

g* is the total effective number of relativistic degrees of freedom

• By solving the Boltzmann Equation, the relic density is approximately

)(vann f

eq

f THn

)30,20(~)/(2

)/6(

8

45)2(ln

2/1

*

3

PL

f

f

ff

f

fT

mx

xxmg

xbaMmgccx

)(3v

)( where

)()(

GeV1004.1

321

2

ann

*PL

-192

fff

x

f

f

CDM

xObxaxdxx

xJ

xJmgMh

f

)miracle (WIMP v

cpb1.0~

Page 8: A Study of Majorana Dark Matterphys.cts.nthu.edu.tw/files/seminar_news/1562_26e8ce93.pdfStudy of Majorana Fermionic Dark Matter Gwo-Guang Wong (CYCU) @NTU May 9, 2016 based on ArXiv1512.01991[hep-ph]

Weakly Interactive Massive Particles (WIMPs)

• WIMPs are NR, non-luminous and non-baryon particles with masses in the range from few GeV to few TeV and they can interact with ordinary matter only via the weak interactions.

• The lightest neutral WIMPs consist of the cold DM.

• CDM is old for long time existence with ~27% Relic abundance

Page 9: A Study of Majorana Dark Matterphys.cts.nthu.edu.tw/files/seminar_news/1562_26e8ce93.pdfStudy of Majorana Fermionic Dark Matter Gwo-Guang Wong (CYCU) @NTU May 9, 2016 based on ArXiv1512.01991[hep-ph]

Schematic Diagram for Boltzmann Equation

tvT

m

kTvm

2

0

2

0

1

2

3

2

1

Page 10: A Study of Majorana Dark Matterphys.cts.nthu.edu.tw/files/seminar_news/1562_26e8ce93.pdfStudy of Majorana Fermionic Dark Matter Gwo-Guang Wong (CYCU) @NTU May 9, 2016 based on ArXiv1512.01991[hep-ph]

Dark Matter Detection Strategies

• Direct Detection in underground laboratories• DM-nucleus elastic scattering

• Detectors waiting for WIMPs colliding

• Annihilation signatures in astrophysical observation• DM annihilation processes have been ceased after the

freeze-out stage in the cosmological scale to give the present DM relic density.

• However, DM annihilation to SM particles still occur today in regions of high DM density and result in the indirect search for end products as excesses relative to products from SM astrophysical processes.

• DM direct production at colliders

Page 11: A Study of Majorana Dark Matterphys.cts.nthu.edu.tw/files/seminar_news/1562_26e8ce93.pdfStudy of Majorana Fermionic Dark Matter Gwo-Guang Wong (CYCU) @NTU May 9, 2016 based on ArXiv1512.01991[hep-ph]

Why study Majorana fermionic DM ?

• In direct search, a Dirac DM particle usually companied with large SI cross section via vector-vector interaction but not via scalar-scalar interaction

246

10)3.2(8.4~

3)(

gv

mg

ud

hN

Page 12: A Study of Majorana Dark Matterphys.cts.nthu.edu.tw/files/seminar_news/1562_26e8ce93.pdfStudy of Majorana Fermionic Dark Matter Gwo-Guang Wong (CYCU) @NTU May 9, 2016 based on ArXiv1512.01991[hep-ph]

Majorana Fermionic DM Model Construction-Step 1

Multiplets 2I+1 2I+1 2 2

, :

Z2 odd 2-comp Weyl Spinors.

: SM Higgs doublet.

Isospin I I 1/2 1/2

Hypercharge -Y Y 1/2 -1/2

1 ~

2

1 2

12

Page 13: A Study of Majorana Dark Matterphys.cts.nthu.edu.tw/files/seminar_news/1562_26e8ce93.pdfStudy of Majorana Fermionic Dark Matter Gwo-Guang Wong (CYCU) @NTU May 9, 2016 based on ArXiv1512.01991[hep-ph]

2

,,'

3

2

2

222

1,

24

ΔΔ )(

2

12cos3

)(4

1)sin

4

1(2sin)1(2()

cos(

sduq N

n

qn

p

qp

Lmn

Wmn

nm WZ

J

SSqT

ZAZIM

g

Unsuccessful Model

• The cross section of DM scattering off nuclei is

excluded by the experimental upper limit from direct detections.

• In fact, two mass degenerate Majorana fermions form a Dirac fermion.

~10−40𝑐𝑚2

↑𝜃 = 𝜋/4

Page 14: A Study of Majorana Dark Matterphys.cts.nthu.edu.tw/files/seminar_news/1562_26e8ce93.pdfStudy of Majorana Fermionic Dark Matter Gwo-Guang Wong (CYCU) @NTU May 9, 2016 based on ArXiv1512.01991[hep-ph]

Model Construction-Step 2

Multiplet 2I+1 2I+1 2 2

, :

Z2 odd 2-comp Weyl Spinors.

: SM Higgs doublet.

Fields

Isospin I I 1/2 1/2

Hypercharge -Y Y 1/2 -1/2

1 ~2

][~

(IV) ],[~

(III) ],[ (II) ],[ (I) 2121 newnewnewnew

1 2

14

Page 15: A Study of Majorana Dark Matterphys.cts.nthu.edu.tw/files/seminar_news/1562_26e8ce93.pdfStudy of Majorana Fermionic Dark Matter Gwo-Guang Wong (CYCU) @NTU May 9, 2016 based on ArXiv1512.01991[hep-ph]

Model Construction

Multiplet 2I+1 2I+1 2I 2I 2I+2 2I+2 2I 2I 2I+2 2I+2

field

Isospin I I I-1/2 I-1/2 I+1/2 I+1/2 I-1/2 I-1/2 I+1/2 I+1/2

Hyper-

charge-Y Y -(Y-1/2) (Y-1/2) -(Y-1/2) (Y-1/2) -(Y+1/2) (Y+1/2) -(Y+1/2) (Y+1/2)

1 2 3 4 5 6 7 8 9 10

][~

(IV) ],[~

(III) ],[ (II) ],[ (I) 2121 newnewnewnew

15

Page 16: A Study of Majorana Dark Matterphys.cts.nthu.edu.tw/files/seminar_news/1562_26e8ce93.pdfStudy of Majorana Fermionic Dark Matter Gwo-Guang Wong (CYCU) @NTU May 9, 2016 based on ArXiv1512.01991[hep-ph]

Model Construction

To have Majorana DM, need Y=1/2,I=n+1/2

Y=1/2, I=n+1/2, Multiplet 2n+2 2n+2 2 2 2n+1 2n+1 2n+3 2n+3 2n+1 2n+1 2n+3 2n+3

I 1/2 1/2 n+1/2 n+1/2 n n n+1 n+1 n n n+1 n+1

Y=1/2 1/2 -1/2 -1/2 1/2 0 0 0 0 -1 1 -1 1

1~

2 3 4 5 6 7 8 9 10

4~3 and6~5

16

Page 17: A Study of Majorana Dark Matterphys.cts.nthu.edu.tw/files/seminar_news/1562_26e8ce93.pdfStudy of Majorana Fermionic Dark Matter Gwo-Guang Wong (CYCU) @NTU May 9, 2016 based on ArXiv1512.01991[hep-ph]

Lagrangian for Neutral WIMP Masses

sign). the to(up and where

..~

~

~

~

2

1

2

1

0

5

0

6

0

3

0

4

0

10

0

1

2/15

1,2/1,2/110

0

9

0

2

2/15

1,2/1,2/19

0

8

0

1

2/14

1,2/1,2/18

0

7

0

2

2/14

1,2/1,2/17

0

6

0

1

2/13

0,2/1,2/16

0

5

0

2

2/13

0,2/1,2/15

0

4

0

1

2/12

0,2/1,2/14

0

3

0

2

2/12

0,2/1,2/13

0

9

0

10

5

1,15

0

7

0

8

4

1,14

0

5

0

6

3

0,03

0

3

0

4

2

0,02

0

1

0

2

1

2/1,2/11

0

cHgg

gg

gg

gg

Lm

[5 mass paramters: 1~5, 8 Yukawa couplings:g3~10. ]

Page 18: A Study of Majorana Dark Matterphys.cts.nthu.edu.tw/files/seminar_news/1562_26e8ce93.pdfStudy of Majorana Fermionic Dark Matter Gwo-Guang Wong (CYCU) @NTU May 9, 2016 based on ArXiv1512.01991[hep-ph]

Lagrangian for Neutral WIMP Masses

0)(00000)1(2

2)(

)(000000

000)(000)1(2

)(

00)(000)1(2

)(0

000002

)(

2

000002

)(

2

00)1(2

)(

2

)(

2

)(0)(

)1(2

2)(0

)1(2

)(0

22)(0

5

10

59

4

18

1

4

17

3

5

1

6

2

34

9

75

1

3

1

1

108

1

641

1

n

n

n

n

n

n

n

n

n

nnn

n

nn

n

n

nvg

vg

n

nvg

n

nvg

vgvg

vgvg

vgn

nvgvgvg

n

nvg

n

nvgvgvg

Y

and ) , , , , , , ,( where.. 2

1 0

10

0

9

0

8

0

7

0

5

0

3

0

2

0

1

0000 TT

m cHYL ) 2

1 ( nI

[5 mass parameters: 1~5, 8 Yukawa couplings: g3~10. ]18

Page 19: A Study of Majorana Dark Matterphys.cts.nthu.edu.tw/files/seminar_news/1562_26e8ce93.pdfStudy of Majorana Fermionic Dark Matter Gwo-Guang Wong (CYCU) @NTU May 9, 2016 based on ArXiv1512.01991[hep-ph]

Lagrangian for Majorana Fermion Masses with I=Y=1/2

0*

0

0

*

0

0

0

0*0

00

510

59

3

56

2

34

9

53

1

10

641

0

10

0

9

0

5

0

3

0

2

0

1

0000

~)()(~

0000

0000

00022

00022

022

0

022

0

and ) , , , , ,( where.. 2

1

jRijLij

j

j

RijLij

i

i

i

jiji

jiji

ij

TT

m

PNPNPNPNN

N

vg

vg

vgvg

vgvg

vgvgvg

vgvgvg

Y

cHYL

19

Page 20: A Study of Majorana Dark Matterphys.cts.nthu.edu.tw/files/seminar_news/1562_26e8ce93.pdfStudy of Majorana Fermionic Dark Matter Gwo-Guang Wong (CYCU) @NTU May 9, 2016 based on ArXiv1512.01991[hep-ph]

DM sector of MSSM as a special case of the model with I=1/2, Y=1/2

Comparing to MSSM, Rep. 117, (1985) 75]

MSSM relation

GUT relation: when embedding SU(2)xU(1) in GUT.

.0 ,0 , , ,

) //tan that Note (

,cossin2 ,coscos2

,sinsin2 ,sincos2

),( , ,

),like(wino ),like(bino ' ),likehiggsino(~ ,~

10,9,8,75423121

5634

65

43

5

1

2

2

1

3

0

5

0

3

20

2

10

1

21

21

gMM

gggg

mgmg

mgmg

i

ii

WZWZ

WZWZ

HH

HH

W 2

32 tan3

5

20

Page 21: A Study of Majorana Dark Matterphys.cts.nthu.edu.tw/files/seminar_news/1562_26e8ce93.pdfStudy of Majorana Fermionic Dark Matter Gwo-Guang Wong (CYCU) @NTU May 9, 2016 based on ArXiv1512.01991[hep-ph]

Contour Plots of DM Mass and Gaugino Fraction[Jungman, et al., Phys. Rep. 267 (1996) 195]

21

Page 22: A Study of Majorana Dark Matterphys.cts.nthu.edu.tw/files/seminar_news/1562_26e8ce93.pdfStudy of Majorana Fermionic Dark Matter Gwo-Guang Wong (CYCU) @NTU May 9, 2016 based on ArXiv1512.01991[hep-ph]

Lagragian for Single Charged WIMP Masses with I=Y=1/2

] '~ :Ex [

~)(~

~)(~

)(

)(

002

002

0022

where..0

0

2

1

) , , ,( & ) ' ,' ,' ,'( basis With the

2/1

1

2/1

2

1

*

*

5

9

4

7

25

108

61

0

9

0

7

1

5

2/1

1

0

10

0

8

1

5

2/1

2

kRikLik

i

i

i

kRikLik

i

i

i

jiji

jiji

T

m

TT

PVPU

PUPV

U

V

vg

vg

vg

vgvgvg

XcHX

XL

22

Page 23: A Study of Majorana Dark Matterphys.cts.nthu.edu.tw/files/seminar_news/1562_26e8ce93.pdfStudy of Majorana Fermionic Dark Matter Gwo-Guang Wong (CYCU) @NTU May 9, 2016 based on ArXiv1512.01991[hep-ph]

Lagrangian for H-boson interaction with neutral WIMPs

00000

00000

000022

000022

022

00

022

00

and

)( with where

~)(~

10

9

56

34

9

53

10

64

**

000000

g

g

gg

gg

ggg

ggg

f

OONfNO

POPOHL

kl

L

ij

R

ijljklik

L

ij

jR

R

ijL

L

ijiH

HHH

HH

ji

Page 24: A Study of Majorana Dark Matterphys.cts.nthu.edu.tw/files/seminar_news/1562_26e8ce93.pdfStudy of Majorana Fermionic Dark Matter Gwo-Guang Wong (CYCU) @NTU May 9, 2016 based on ArXiv1512.01991[hep-ph]

Lagrangian for Z-boson interaction with neutral WIMPs

~~

cos2

)for isospin of comp. third theis(

and where

~)(~

cos2

0

1

50

111

*

6

1

00

01

01

00

ZOg

L

q

OONNqO

POPOZg

L

Z

ZZZ

ZZ

ji

L

WZ

kk

L

ij

R

ij

k

kjikk

L

ij

jR

R

ijL

L

iji

WZ

• The Lagrangian for WIMPs interacting with SM gauge bosons in 4-component notation can be derived from the gauge invariance terms in 2-component notation: ji

iji

aa

ij BygWgT )'(

Page 25: A Study of Majorana Dark Matterphys.cts.nthu.edu.tw/files/seminar_news/1562_26e8ce93.pdfStudy of Majorana Fermionic Dark Matter Gwo-Guang Wong (CYCU) @NTU May 9, 2016 based on ArXiv1512.01991[hep-ph]

Lagrangian for W-boson interaction with neutral & single charged WIMPs

,

2000

0000

0020

0000

0000

0001

,

2000

0000

0020

0000

0001

0000

and

)(mod

and

)(mod

)1,-1,-1,-1 ()1()(mod and )( ,)( where

]~)(~ [~)(~[ 2

00

0*

6

1

4

,1

0

6

1

4

,1

0*

6

1

4

,1

0

6

1

4

,1

1)2,2mod(

000

kl

T

kl

T

lj

T

klik

k l

R

ij

ljklik

k l

Lw

ij

T

ljklik

k l

R

ij

lj

T

klik

k l

L

ij

IR

ij

R

ij

L

ij

L

ij

jR

R

ijL

L

ij

μ

ijR

R

ijL

L

ij

μ

iW

TT

NTUO

NTViO

UTNO

VTNjO

jOOOO

POPOγWPOPOγWg

L

WW

W

jWWWW

WWWW

Page 26: A Study of Majorana Dark Matterphys.cts.nthu.edu.tw/files/seminar_news/1562_26e8ce93.pdfStudy of Majorana Fermionic Dark Matter Gwo-Guang Wong (CYCU) @NTU May 9, 2016 based on ArXiv1512.01991[hep-ph]

DM sector of MSSM as a special case of the model with I=1/2, Y=1/2

Consider three typical cases:

(A) MSSM-like case: 1~3, 5 4 neutral &2 single charged particles

(SUSY-like I): With GUT relation and tan=2 (1, 3 are 2 free),(SUSY-like II): With GUT relation and tan=20 (1, 3 are 2 free),(SUSY-like III): Without GUT relation and tan=2 (1~3 are 3 free), (SUSY-like IV): Without GUT and tan relations (1~3, g3~6 are 7 free),

(B) Reduced case: Minimal number of multiplets 1~3

(1, 2, g3, g4 are 4 free)3 neutral &1 single charged particles

(C) Extended case: Maximal number of multiplets 1~3, 5, 7-10

(1~5, g3~10 are 13 free parameters). )6 neutral & 4 single charged particles26

Page 27: A Study of Majorana Dark Matterphys.cts.nthu.edu.tw/files/seminar_news/1562_26e8ce93.pdfStudy of Majorana Fermionic Dark Matter Gwo-Guang Wong (CYCU) @NTU May 9, 2016 based on ArXiv1512.01991[hep-ph]

Random Sampling

For each case, we survey

DM mass m (1,2500) GeV,

and generate 10,000 samples by random sampling, if these parameters are not set to zeros

mass parameters: i (0,8000) GeV ,Yukawa coupling: gi (0,1).

27

Page 28: A Study of Majorana Dark Matterphys.cts.nthu.edu.tw/files/seminar_news/1562_26e8ce93.pdfStudy of Majorana Fermionic Dark Matter Gwo-Guang Wong (CYCU) @NTU May 9, 2016 based on ArXiv1512.01991[hep-ph]

Calculation

• For each sample, we numerically solve

(1) the WIMP masses and couplings coupled to W, Z & H bosons,

(2) the freeze-out temperature parameter Xf ,

(3) the velocity averaged <σv> in freeze-out stage & present stage,

(4) the relic density Ωh2 ,

(5) the normalized SI cross section of DM- 129,131Xe scattering: NSI ,

(6) the normalized SD corss section of DM-129,131Xe scattering: SDn, SD

p.

ii

mm

,0

Page 29: A Study of Majorana Dark Matterphys.cts.nthu.edu.tw/files/seminar_news/1562_26e8ce93.pdfStudy of Majorana Fermionic Dark Matter Gwo-Guang Wong (CYCU) @NTU May 9, 2016 based on ArXiv1512.01991[hep-ph]

Ten Constraints:Relic Density:

CDMh2=0.11980.0026 from PDG.

Direct Search:

LUX gives a curve for the upper limit of SI .

[LUX Collaboration, PRL 113 (2014) 091303]

XENON100 gives two curves for the upper limits of SDn, SD

p.

[XENON100 Collaboration, PRL 111 (2013) 021301]

Indirect Search:

Fermi-LAT gives six constraints on

[Fermi-LAT Collaboration, PRL 115, 231301 (2015)]

veeuubbWW ),, , ,,(

29

Page 30: A Study of Majorana Dark Matterphys.cts.nthu.edu.tw/files/seminar_news/1562_26e8ce93.pdfStudy of Majorana Fermionic Dark Matter Gwo-Guang Wong (CYCU) @NTU May 9, 2016 based on ArXiv1512.01991[hep-ph]

Fermi-LAT result in indirect search [arXiv:1503.02641 ]

• The dwarf Spheroidal satellite galaxies (dSphs) of the MilkyWay are some of the most dark matter dominated objects known.

• The six years of Fermi-LAT gamma-ray data are analyzed from 15 (dSphs) and put the upper limits on the DM annihilation cross section for several decay channels with dark matter masses between 10 GeV and 10 TeV.

Page 31: A Study of Majorana Dark Matterphys.cts.nthu.edu.tw/files/seminar_news/1562_26e8ce93.pdfStudy of Majorana Fermionic Dark Matter Gwo-Guang Wong (CYCU) @NTU May 9, 2016 based on ArXiv1512.01991[hep-ph]

Indirect Search• Two quantities are crucial for both direct and indirect DM search:

[Jungman’s Physics Reports (1996)]

• Also,

[C. Kochanek, astro-ph/9505068]

• Location of 15 dSphs analyzed in Ferme-LAT:

12

0

0

-1

0

s km 270vv despersion velocity DM

kpc. 5.8 & cm GeV 3.0)(density DM local rr

kpc. 100 & s km230)(v

kpc. 5.8 & s km220)(v

1

rot

0

1

0rot

r r

r r

1-

max

mins km 300v

kpc 233II) Leo(

kpc 231) Segue(

r

r

Page 32: A Study of Majorana Dark Matterphys.cts.nthu.edu.tw/files/seminar_news/1562_26e8ce93.pdfStudy of Majorana Fermionic Dark Matter Gwo-Guang Wong (CYCU) @NTU May 9, 2016 based on ArXiv1512.01991[hep-ph]

Feynman Diagrams for DM Annihilation Processes

32

2 & v h

Page 33: A Study of Majorana Dark Matterphys.cts.nthu.edu.tw/files/seminar_news/1562_26e8ce93.pdfStudy of Majorana Fermionic Dark Matter Gwo-Guang Wong (CYCU) @NTU May 9, 2016 based on ArXiv1512.01991[hep-ph]

Three exceptions in the calculation of relic abundance[K. Griest & D. Seckle, PRD 43, 3192 (1991) ]

•Coannihilationcoannihilation becomes significantly important if the mass splitting mTfbetween the DM particle and the other WIMP.

•Forbidden channel annihilation

Kinematically Forbidden: is wrong at the freeze-out temperature.

•Annihilation near poles

is poor near the pole.

ba mmm 1

2

)v(vbaall)v( 42NR

ann O

Page 34: A Study of Majorana Dark Matterphys.cts.nthu.edu.tw/files/seminar_news/1562_26e8ce93.pdfStudy of Majorana Fermionic Dark Matter Gwo-Guang Wong (CYCU) @NTU May 9, 2016 based on ArXiv1512.01991[hep-ph]

Relic Density Calculation from annihilation

))()v1

11((2 ])2/v(erf[1 vB)v)A(( v

v )( where

)()(

GeV1004.1

)/(2

v

8

45)2(ln

))()v1

11((2 B)v)A(( vv

2v

2

2

2

0

ann

,

2

NRann

*PL

1-92

2/1

*

3

NRannPL

2

2

24/v

ann

0

2

,

2/3

NRann

2

BAf

BA

x

f

f

CDM

ff

f

BA

x

BA

mmmxd

dxx

xJ

xJmgMh

xxmg

Mmgccx

mmmedx

f

Page 35: A Study of Majorana Dark Matterphys.cts.nthu.edu.tw/files/seminar_news/1562_26e8ce93.pdfStudy of Majorana Fermionic Dark Matter Gwo-Guang Wong (CYCU) @NTU May 9, 2016 based on ArXiv1512.01991[hep-ph]

Feynman Diagrams for DM Coannihilation Processes

35

Coannihilation [J. Edsjo & P. Gondolo, PRD 56, 1879 (1997)]

Page 36: A Study of Majorana Dark Matterphys.cts.nthu.edu.tw/files/seminar_news/1562_26e8ce93.pdfStudy of Majorana Fermionic Dark Matter Gwo-Guang Wong (CYCU) @NTU May 9, 2016 based on ArXiv1512.01991[hep-ph]

Lagrangian for Z-boson interaction with single charged WIMPs

)4,3,2,1,(

sin2

1sinˆ

sin2

1sinˆ

where

~~~)(~

cos

2

2

*

21

*

1

23*

2*

22

*

11

23

/

ji

UUUUUTUO

VVVVVTVO

eAPOPOZg

L

WijjijiijW

T

kjkkik

R

ij

WijjijiijWkjkkik

L

ij

iiiR

R

ijL

L

iji

WZ

Z

Z

ZZ

ji

Page 37: A Study of Majorana Dark Matterphys.cts.nthu.edu.tw/files/seminar_news/1562_26e8ce93.pdfStudy of Majorana Fermionic Dark Matter Gwo-Guang Wong (CYCU) @NTU May 9, 2016 based on ArXiv1512.01991[hep-ph]

Lagrangian for H-boson interaction with single charged WIMPs

0002

0002

00022

0

&

0002

0002

00022

0

where

..~)(~

..~)(~

10

8

6

975

9

7

5

1086

0

*0

g

g

g

ggg

h

g

g

g

ggg

h

cHPOPOH

cHPUhVPVhUHL

R

ij

L

ij

kR

R

mkL

L

mkm

kR

T

jk

R

ijmiLjk

L

ijmimH

HH

ji

Page 38: A Study of Majorana Dark Matterphys.cts.nthu.edu.tw/files/seminar_news/1562_26e8ce93.pdfStudy of Majorana Fermionic Dark Matter Gwo-Guang Wong (CYCU) @NTU May 9, 2016 based on ArXiv1512.01991[hep-ph]

Recent experimental results in Direct Search

LUX(Xe):[PRL 112, 091303 (2014)] [XENON100(Xe}:PRL 111, 021301 (2013)]

]) ( [ 0Set

neutron by dominantedspin nuclear model group Odd

neutrons ofnumber odd with nucleus Xein

2

129,131

54

nnppp

pn

SaSaa

SS

0. assumingby p/n single awith

section crossreport alistsexperiment target,

materialdifferent from results compare To

/ pna

Page 39: A Study of Majorana Dark Matterphys.cts.nthu.edu.tw/files/seminar_news/1562_26e8ce93.pdfStudy of Majorana Fermionic Dark Matter Gwo-Guang Wong (CYCU) @NTU May 9, 2016 based on ArXiv1512.01991[hep-ph]

Recent experimental results in Direct Search

[SIMPLE(C2ClF5):PRD 89, 072013 (2014][PICO-2L(C3F8 ):PRL 114, 231302 (2015)] [PICO-60(CF3I):PRD 93, 052014 (2016)]

[XENON100(Xe):PRL 111, 021301 (2013)]

protonby dominatedspin nuclear assumingby 0Set na

Page 40: A Study of Majorana Dark Matterphys.cts.nthu.edu.tw/files/seminar_news/1562_26e8ce93.pdfStudy of Majorana Fermionic Dark Matter Gwo-Guang Wong (CYCU) @NTU May 9, 2016 based on ArXiv1512.01991[hep-ph]

Effective Lagrangian for Direct Search

q

W

q

LVV

L

W

q

q

LAA

L

W

q

L

HW

q

q

L

HW

q

q

q

Aq

q

Ah

q

Vq

q

Vh

q

h

q

h

hhVhAheff

QTggOM

gib

TggOM

gd

OmM

gma

OmM

gmia

qqdjdjqqbjbjqqasqqas

ssjjL

Z

Z

H

H

2

311

2

311

2

112

'

112

5

0

1

50

1

0

1

0

1

0

1

50

1

0

1

50

1

sin2

1 & )

2( 2

2

1 & )

2(

2

1

)Im(2

)Re(2

and

, , ,'' ,

where

'~~~~~~~~

Page 41: A Study of Majorana Dark Matterphys.cts.nthu.edu.tw/files/seminar_news/1562_26e8ce93.pdfStudy of Majorana Fermionic Dark Matter Gwo-Guang Wong (CYCU) @NTU May 9, 2016 based on ArXiv1512.01991[hep-ph]

Scattering Amplitude for Direct Search

.0)0( ,0

,4)0( ),(4)0(

),(||)','(),(||)','(12

1

),(||)','(),(||)','(12

1

define ,,,,,For

)ly respective particles Majorana& Diracfor 2,1(

),(||)','(),()','(

),(|'|)','(),()','(

),(||)','(),()','(

),(),,(||)','(),','(

,,

222,

',

',

5

5

q

mqgmppq

spNOspNspNOspNJ

W

spOspspOspJ

PSVAYX

spNjjspNspuspui

spNsspNspuspui

spNsspNspuspui

spNspiLspNspiM

ppSPAPAS

SSAA

ss

hXhX

N

XY

ss

YX

XY

hVhA

h

h

fi

Page 42: A Study of Majorana Dark Matterphys.cts.nthu.edu.tw/files/seminar_news/1562_26e8ce93.pdfStudy of Majorana Fermionic Dark Matter Gwo-Guang Wong (CYCU) @NTU May 9, 2016 based on ArXiv1512.01991[hep-ph]

N

znp

np

tbcqq

q

sduq

np

Tq

sduqq

np

Tq

qnsp

snspqsN

N

nnpp

Fn

n

qp

p

qqAN

udduVN

sNVNNNANN

SSSSVVAAAAAA

fi

J

S

m

af

m

faf

fZAZfaf

J

SaSaGdQ

bbZAbbQ

fQv

vJJQ

v

vmm

WWWqM

,,

,

,,,,

),(

,,

),(

,

22

2

22

2

2222

,,2

127

2

and

])([

2

)2()()2Z(

where

1)1(

13

4416

|)0(|

Amplitude for DM scattering off Xe-nuclus

0.009 0.272 2/3

0.010 0.329 2/1

nucleus

(2012)] 103511 86, PRD al.,et Menendez, J.[

15.0 ,78.0 ,48.0

15.0 ,48.0 ,78.0

:nucleon ain component spin quark

,118.0 ,036.0 ,026.0

,118.0 ,014.0 ,020.0

:parameternucleon

(2000)] 304 48, PLB al.,et Ellis, R. [J.

131

129

e

e

pn

n

s

n

d

n

u

p

s

p

d

p

u

n

Tn

n

Td

n

Tu

p

Tn

p

Td

p

Tu

X

X

SSJ

fff

fff

Page 43: A Study of Majorana Dark Matterphys.cts.nthu.edu.tw/files/seminar_news/1562_26e8ce93.pdfStudy of Majorana Fermionic Dark Matter Gwo-Guang Wong (CYCU) @NTU May 9, 2016 based on ArXiv1512.01991[hep-ph]

DM-Xe nucleus Scattering Cross Section

(2012)] 103511 86, PRD al.,et Menendez J.by given EFT chiral [from

2/ & )( form theare Xefor factors structure The

. and )()()(|)|( where)0||(

|)|(|)(|

] 603, (1987) 195 PLB al.,et Ahlen [S.P.

],GeV)/0.91([0.3 cm10 & )/(5.1 & )2/exp(|)(|

where

|)(|||4

|)(|||4

|)(| ||

)0(||

||16||

)0(||

9

0n

22

,

129,131

1,011

2

1011000

2

0

2

D

1/313

0

2

0000

2

I

22

4

022

02

I

2

4

022

I

0

2

2

22

4

0

2

22

2

2

22

4

0

0

2222

22

22

qbuuceuS

aaaqSaqSaaqSaqSqS

qSqF

mRRmQQqqF

qFqdv

qFqdv

qFqd

qdqd

Mmmqd

qdqd

n

nij

u

ij

npS

NNS

SD

vAA

S

vS

A

v

N

v

i

Page 44: A Study of Majorana Dark Matterphys.cts.nthu.edu.tw/files/seminar_news/1562_26e8ce93.pdfStudy of Majorana Fermionic Dark Matter Gwo-Guang Wong (CYCU) @NTU May 9, 2016 based on ArXiv1512.01991[hep-ph]

DM-nucleon Scattering Cross Section• To compare results from different target materials, it is reported with

the scaled cross section of DM-nucleon scattering:

experiment Xenon100in used 21.8%Xe)( & 26.2%Xe)(

:abundance Isotop

3

14)(

)(

131

2

129

1

1

2

,

2

,

2

,

1

2

2

2

j Anp

AnpA

j

i

Ai

SD

np

j p

A

jj

i

Ai

Z

N

j

jj

i

j

i

J

JS

A

Page 45: A Study of Majorana Dark Matterphys.cts.nthu.edu.tw/files/seminar_news/1562_26e8ce93.pdfStudy of Majorana Fermionic Dark Matter Gwo-Guang Wong (CYCU) @NTU May 9, 2016 based on ArXiv1512.01991[hep-ph]

Distributions of Dark Matter ParticlesFraction(%)Main ingredient

>60%

SUSY-like I

GUT & tan=2

SUSY-like II

GUT & tan=20

SUSY-like III

GUT & tan=20

MSSM-like (IV)

GUT & tanReduced Extended

Higgsino-like28.5% 27.7% 32.8% 31.3% 49.7% 28.6%

Bino-like71.1% 72.0% 33.4% 33.5% 49.5% 33.9%

Wino-like0 0 33.3% 34.0% 0 31.0%

Non MSSM-like0 0 0 0 0 5.3%

MixedMain ingredient

<=60%0.4% 0.3% 0.5% 1.2% 0.8% 1.2%

We call a H,B,W,X-like particle if main ingredient (>60%) is in 1,2 , 3, 5, 9,10 respectively.

Page 46: A Study of Majorana Dark Matterphys.cts.nthu.edu.tw/files/seminar_news/1562_26e8ce93.pdfStudy of Majorana Fermionic Dark Matter Gwo-Guang Wong (CYCU) @NTU May 9, 2016 based on ArXiv1512.01991[hep-ph]

Particle Attribute: Red:Higgsino-like, Blue:Bino-like, Green:Wino-like, Magenta:non SUSY-like.

SUSY-like I: GUT & tan =2

B~

B~

vbb )(

vWW )( SI

SD

n v)(

2h

H~ H

~____H~

____ B~

__

__

H~____B

~B~ B

~H~

H~ ____

74% (ruled out) 23% survived

46

__

__

20% survived

__

25.7% survived 25.7% survived 25% survived

Page 47: A Study of Majorana Dark Matterphys.cts.nthu.edu.tw/files/seminar_news/1562_26e8ce93.pdfStudy of Majorana Fermionic Dark Matter Gwo-Guang Wong (CYCU) @NTU May 9, 2016 based on ArXiv1512.01991[hep-ph]

Particle Attribute: Red:Higgsino-like, Blue:Bino-like, Green:Wino-like, Magenta:non SUSY-like.

SUSY-like I: GUT & tan =2 (Allowed DM candidates)

vbb )(

vWW )( SI

SD

n v)(

2h

__

Without considering the outliers, m(H-like)≥456, m(B-like)≥1411 GeV.

61% 26%

Page 48: A Study of Majorana Dark Matterphys.cts.nthu.edu.tw/files/seminar_news/1562_26e8ce93.pdfStudy of Majorana Fermionic Dark Matter Gwo-Guang Wong (CYCU) @NTU May 9, 2016 based on ArXiv1512.01991[hep-ph]

Particle Attribute: Red:Higgsino-like, Blue:Bino-like, Green:Wino-like, Magenta:non SUSY-like.

SUSY-like II: GUT & tan =20

vbb )(

vWW )( SI

SD

n v)(

2h

83% 14%

48

Page 49: A Study of Majorana Dark Matterphys.cts.nthu.edu.tw/files/seminar_news/1562_26e8ce93.pdfStudy of Majorana Fermionic Dark Matter Gwo-Guang Wong (CYCU) @NTU May 9, 2016 based on ArXiv1512.01991[hep-ph]

Particle Attribute: Red:Higgsino-like, Blue:Bino-like, Green:Wino-like, Magenta:non SUSY-like.

SUSY-like II: GUT & tan =20 (Allowed DM candidates)

vbb )(

vWW )( SI

SD

n v)(

2h

83% 14%

49

Without considering the outliers, m(H-like)≥457 and m(B-like)≥1257 GeV.

Page 50: A Study of Majorana Dark Matterphys.cts.nthu.edu.tw/files/seminar_news/1562_26e8ce93.pdfStudy of Majorana Fermionic Dark Matter Gwo-Guang Wong (CYCU) @NTU May 9, 2016 based on ArXiv1512.01991[hep-ph]

vbb )(

vWW )( SI

SD

n v)(

2h __

____

Particle Attribute: Red:Higgsino-like, Blue:Bino-like, Green:Wino-like, Magenta:non SUSY-like.

SUSY-like III: GUT & tan =2

62%

50

Page 51: A Study of Majorana Dark Matterphys.cts.nthu.edu.tw/files/seminar_news/1562_26e8ce93.pdfStudy of Majorana Fermionic Dark Matter Gwo-Guang Wong (CYCU) @NTU May 9, 2016 based on ArXiv1512.01991[hep-ph]

vbb )(

vWW )( SI

SD

n v)(

2h __

____

Particle Attribute: Red:Higgsino-like, Blue:Bino-like, Green:Wino-like, Magenta:non SUSY-like.

SUSY-like III: GUT & tan =2 (Allowed DM candidates)

62%

28% survived

Apart from the outliers, m(H-like)≥457, m(B-like)≥341 & m(W-like)≥1120 GeV.

Page 52: A Study of Majorana Dark Matterphys.cts.nthu.edu.tw/files/seminar_news/1562_26e8ce93.pdfStudy of Majorana Fermionic Dark Matter Gwo-Guang Wong (CYCU) @NTU May 9, 2016 based on ArXiv1512.01991[hep-ph]

Particle Attribute: Red:Higgsino-like, Blue:Bino-like, Green:Wino-like, Magenta:non SUSY-like.

SUSY-like IV: GUT & tan

vbb )(

vWW )( SI

SD

n v)(

2h __

53%33%

52

Page 53: A Study of Majorana Dark Matterphys.cts.nthu.edu.tw/files/seminar_news/1562_26e8ce93.pdfStudy of Majorana Fermionic Dark Matter Gwo-Guang Wong (CYCU) @NTU May 9, 2016 based on ArXiv1512.01991[hep-ph]

Particle Attribute: Red:Higgsino-like, Blue:Bino-like, Green:Wino-like, Magenta:non SUSY-like.

SUSY-like IV: GUT & tan (Allowed DM candidates)

vbb )(

vWW )( SI

SD

n v)(

2h __

53%33%

53

Apart from the outliers, m(H-like)≥454, m(B-like)≥288 & m(W-like)≥1090 GeV.

Page 54: A Study of Majorana Dark Matterphys.cts.nthu.edu.tw/files/seminar_news/1562_26e8ce93.pdfStudy of Majorana Fermionic Dark Matter Gwo-Guang Wong (CYCU) @NTU May 9, 2016 based on ArXiv1512.01991[hep-ph]

Particle Attribute: Red:Higgsino-like, Blue:Bino-like, Green:Wino-like, Magenta:non SUSY-like.

Reduced

vbb )(

vWW )( SI

SD

n v)(

2h

61% 26%

54

Page 55: A Study of Majorana Dark Matterphys.cts.nthu.edu.tw/files/seminar_news/1562_26e8ce93.pdfStudy of Majorana Fermionic Dark Matter Gwo-Guang Wong (CYCU) @NTU May 9, 2016 based on ArXiv1512.01991[hep-ph]

Particle Attribute: Red:Higgsino-like, Blue:Bino-like, Green:Wino-like, Magenta:non SUSY-like.

Reduced (Allowed DM candidates)

vbb )(

vWW )( SI

SD

n v)(

2h

__

Without considering the outliers, m(H-like)≥454, m(B-like)≥317 GeV.

61% 26%

55

Page 56: A Study of Majorana Dark Matterphys.cts.nthu.edu.tw/files/seminar_news/1562_26e8ce93.pdfStudy of Majorana Fermionic Dark Matter Gwo-Guang Wong (CYCU) @NTU May 9, 2016 based on ArXiv1512.01991[hep-ph]

Particle Attribute: Red:Higgsino-like, Blue:Bino-like, Green:Wino-like, Magenta:non SUSY-like.

Extended

vWW )( SI

SD

n

2h

__

43%

56

vbb )( v)(

Page 57: A Study of Majorana Dark Matterphys.cts.nthu.edu.tw/files/seminar_news/1562_26e8ce93.pdfStudy of Majorana Fermionic Dark Matter Gwo-Guang Wong (CYCU) @NTU May 9, 2016 based on ArXiv1512.01991[hep-ph]

Particle Attribute: Red:Higgsino-like, Blue:Bino-like, Green:Wino-like, Magenta:non SUSY-like.

Extended (Allowed DM candidates)

vWW )( SI

SD

n

2h

43%

57

vbb )( v)(

Apart from the outliers, m(H-like)≥456, m(B-like)≥1141, m(W-like)≥1107 & m(X)≥738 GeV.

Page 58: A Study of Majorana Dark Matterphys.cts.nthu.edu.tw/files/seminar_news/1562_26e8ce93.pdfStudy of Majorana Fermionic Dark Matter Gwo-Guang Wong (CYCU) @NTU May 9, 2016 based on ArXiv1512.01991[hep-ph]

%Case A

SUSY-like I SUSY-like II SUSY-like III SUSY-like IV Case B

ReducedCase C

Extended

H-like (28.51, 17.98) (27.59, 13.54) (32.76, 14.72) (31.26, 14.52)63.06 49.07 44.93 46.45

(49.73, 23.70)47.65

(28.62, 12.81)44.76

B-like (71.07, 0.22) (72.07, 0.18) (33.38, 0.30) (33.53, 7.89)0.31 0.25 0.90 23.52

(49.43, 11.29)22.84

(33.94, 7.43)21.89

W-like X X (33.31, 15.03) (33.97, 13.19)X X 45.12 38.83

XX

(30.93, 9.56)30.91

X-like X X X XX X X X

XX

( 5.25, 3.24)61.71

TABLE V: Particle attribute distribution of the allowed DM candidates. The values in the first row “H-like” and the first column “SUSY-like I” of the table mean that 28.52% of the samples in SUSY-like I case are H-like and only 17.89% of the samples are the allowed H-like particles, or equivalently, among the H-like particles, 63.04%(=17.98/28.52) of them are allowed.

Page 59: A Study of Majorana Dark Matterphys.cts.nthu.edu.tw/files/seminar_news/1562_26e8ce93.pdfStudy of Majorana Fermionic Dark Matter Gwo-Guang Wong (CYCU) @NTU May 9, 2016 based on ArXiv1512.01991[hep-ph]

%Case A

SUSY-like I SUSY-like II SUSY-like III SUSY-like IV Case B

ReducedCase C

Extended

H-like 456 457 457 454(456, 940) (457, 937) (457, 947) (454,947)

454(454, 949)

450(450,927)

B-like 1411 1257 341 288X X X X

317X

299X

W-like X X 1120 1090X X (1120, 2500) (1090,2374)

XX

1107(1107,2080)

X-like X X X XX X X X

XX

738(738,1563)

TABLE IV: Allowed mass ranges according to particle attribute to detect DM in the near future. The upper values denote the lower mass bounds (in unit of GeV) to detect DM in the direct search of SI DM-nucleus scattering experiments and the lower intervals denote the mass interval suitable to detect DM in the indirect search of DM annihilation process via W+W- channel between the present limit and the projected limit which is taken to be one order of magnitude lower than the present one.

Page 60: A Study of Majorana Dark Matterphys.cts.nthu.edu.tw/files/seminar_news/1562_26e8ce93.pdfStudy of Majorana Fermionic Dark Matter Gwo-Guang Wong (CYCU) @NTU May 9, 2016 based on ArXiv1512.01991[hep-ph]

Summary on the DM particle attributes• The B-like DM particles can be detected only through the SI DM-nucleus

scattering experiments. • The lower mass bound of H-like particles is about 450 GeV, independent of GUT

or MSSM relations for all cases.• For cases of SUSY-like I to III with GUT or MSSM relations, less than 0.1% of the

sample are allowed B-like particles. Cases with GUT relation, m(B-like) > 1 TeVand cases without GUT relation, the lower mass bound of B-like particles can lower down to 288 GeV.

• W-like particles are heavy with m(W-like) > 1 TeV. m(non SUSY-like X) > 738 GeV.

• Greater than 95% of the allowed H-, W-like and non SUSY-like X particles are highly pure with composition fraction ≥ 90% for all cases. It is also true for B-like particles in the cases without GUT & MSSM relations.

60

Page 61: A Study of Majorana Dark Matterphys.cts.nthu.edu.tw/files/seminar_news/1562_26e8ce93.pdfStudy of Majorana Fermionic Dark Matter Gwo-Guang Wong (CYCU) @NTU May 9, 2016 based on ArXiv1512.01991[hep-ph]

Conclusion• We constructed a generic Majorana fermionic DM model.• The DM sector of MSSM is a special case of the model with I=Y=1/2.• We study the constraints from the observation of DM relic density,

the direct search experiments of LUX and XENON100, and the indirect search experiment of Fermi-LAT Collaborations.

• From the constraints, we find all allowed range of mass parameters, Yukawa couplings and coupling strengths.

• We show the lower mass bound to detect DM from SI DM-nucleus scattering experiments and mass interval suitable to detect DM from DM annihilation to W+W- experiments respectively.

61

i

Page 62: A Study of Majorana Dark Matterphys.cts.nthu.edu.tw/files/seminar_news/1562_26e8ce93.pdfStudy of Majorana Fermionic Dark Matter Gwo-Guang Wong (CYCU) @NTU May 9, 2016 based on ArXiv1512.01991[hep-ph]

Next Goal:

•Calculation on Coannihilation

•Calculation on Electroweak Bremsstrahlung in Dark Matter Annihilation

•Calculation on Sommerfeld enhancement effect

• Simulation on the DM production at colliders

• Simulation on the end products of DM annihilation processes for indirect search.