A Spectral Method for 3D Shape Reconstruction and...

36
A Spectral Method for 3D Shape Reconstruction and Denoising Alfred Hero and Jia Li University of Michigan Ann Arbor, MI 48109 http://www.eecs.umich.edu/~hero/

Transcript of A Spectral Method for 3D Shape Reconstruction and...

  • A Spectral Method for 3D Shape Reconstruction and Denoising

    Alfred Hero and Jia Li

    University of MichiganAnn Arbor, MI 48109

    http://www.eecs.umich.edu/~hero/

  • 2

    Outline

    • Polar shape modeling• KLE representations for polar shape • Spectral methods for registration/reconstruction• Spectral methods for active contours

  • A. Hero and J. Li, SIAM Boston Mar. 2002

    3

    Motivation

    • Why shape modeling?– Object recognition– Shape recovery– Medical image analysis

    • Medical training• Clinical application

  • A. Hero and J. Li, SIAM Boston Sept 2002

    4

    3D Polar Surfaces• 3D surface

    • Star-shaped (polar) surface

    X

    2321

    ,),(

    )];,(),,(),,([),(

    Rvuvuxvuxvuxvu

    ⊂ΩΩ∈

    =X

    ),( φθr

  • A. Hero and J. Li, SIAM Boston Sept 2002

    5

    Spherical Coordinate Systemazimuthelevation

    φθ

    ),( φθr

  • A. Hero and J. Li, MIA Paris Sept. 2002

    6

    3D Fourier Descriptors

    • Orthonormal basis • Complete basis • Ordered in increasing spatial frequency• Common expansion in azimuth (longitude)

    φθφθ imm

    m eff )(),( ∑∞

    −∞=

    =

  • A. Hero and J. Li, MIA Paris Sept. 2002

    7

    Spherical Harmonics

    • Angular solutions of Laplace equation on sphere• Karhunen-Loeve basis for isotropic random field• Requires computation of Legendre polynomials• Applied to shape approximation (Haigron&etal:98,

    Danielsson&etal:ICPR98, Matheny&etal:PAMI95)• Implementation: SVD or FFT algorithm

    φθπ

    φθ immlmm

    l ePmlmllY )cos(

    )!()!(

    412)1(),(

    +−+−=

    )(, θlmf

  • A. Hero and J. Li, MIA Paris Sept. 2002

    8

    First 10 Spherical Harmonics

  • A. Hero and J. Li, MIA Paris Sept. 2002

    9

    Computing Spherical Harmonic Coefficients• GaussElim/SVD method via optimized sampling

    (Erturk&Dennis:ElectLett97, Matheny:PAMI95)(K+1) unknown coefficients C

    • Spherical FFT(Driscoll&etal:AdvAppMath94,Healy&etal:ICASSP96)– orthogonal discrete approximation to SH – lower complexity than SVD method– requires equi-spaced samples in azimuth/elevation

    ),(),(),(0

    φθφθφθ mlml

    K

    l

    l

    lm

    ml

    ml VBUAR ∑ ∑

    = −=

    +=

    XCRVBUAR =⇒+=

    2

  • A. Hero and J. Li, MIA Paris Sept. 2002

    10

    SH Numerical Comparisons

    1)7

    ()9

    ()10

    ( 222 =++ zyx 1444 =++ zyx 1)9

    ()10

    ( 666 =++ zyx

    3D Shapes used in the simulation

    Liver Surface

  • A. Hero and J. Li, MIA Paris Sept. 2002

    11

    Shape modeling error vs. the highest order of spherical Harmonics for the four different shapes.

  • A. Hero and J. Li, MIA Paris Sept. 2002

    12

    Double Fourier Series• DFS are easier to manipulate than SH • DFS over the sphere is more difficult than over R • Boundary conditions for at spherical poles

    • Standard 2D trigonometric series not admissible!• Are there interesting admissible bases besides SH?

    =

    ≠=

    =

    mmfinite

    fdd

    mmfinite

    f

    m

    m

    even,0odd,

    )(

    0,00,

    )(

    θθ

    θ

    )(θmf

    2

  • A. Hero and J. Li, MIA Paris Sept. 2002

    13

    Admissible DFS Expansion

    .0even ,sinsin)(

    , odd,sin)(

    0,cos)(

    1,

    1,

    1

    00,

    ≠=

    =

    ==

    =

    =

    =

    mnff

    mnff

    mnff

    J

    nmnm

    J

    nmnm

    J

    nnm

    θθθ

    θθ

    θθ

    (Ref: Cheong:JournCompPhysics00)

    Fourier coefficients can be computed using fast sin and cos transform

  • 14

    SH vs DFS: Comparison

    SH

    DFS

    1 coeff 25 coeff 81 coeff

    Metasphere surface

  • A. Hero and J. Li, MIA Paris Sept. 2002

    15

    Statistical Polar Shape Modeling

    • Common procedure– Extract shape features or parameters

    • Landmarks (Cootes CVIU95 &Frangi proc.Ipmi01)• SH coefficients (Staib PAMI96)• Distance map (Leventon proc. CVPR 00)

    – Compute mean and covariance of shape parameters.– Principle component analysis– Incorporate into other image processing algorithms

    • Random field model

  • A. Hero and J. Li, SIAM Boston Sept. 2002

    16

    Decomposition of Isotropic Random Fields Over Unit Sphere Using SH

    • Isotropic polar field satisfies{ } )cos()(),(),( 22*11 γψγφθφθ == RXXE

  • A. Hero and J. Li, MIA Paris Sept. 2002

    17

    Karhunen-Loeve Expansion

    ),(),(),(0

    φθφθ ∑ ∑∞

    = −=

    =l

    l

    lm

    mlYmlAX

    Ω= ∫ dYXmlA Sm

    l ),(),(),( 2* φθφθ

    { } 0),( =mlAE{ } '' ,,''* ),(),( mmlllmlAmlAE δδλ=

    ∫−=1

    1d)()(2 ttPt ll ψπλ

    SH are eigenfunctions of isotropic r.f. on sphere (Yadrenko:76)

  • A. Hero and J. Li, MIA Paris Sept. 2002

    18

    Advantages of SH/DFS for Polar Shape Modeling

    • A true frequency domain method over the unit sphere• Low order basis smooth-fit segmented boundary • Multiresolution structure can be used to iteratively

    recover higher frequencies• Fast FFT methods can be implemented at each

    resolution via Driscoll&Healy or Cheong algorithm• Orthogonal representation of isotropic random field

    model

  • A. Hero and J. Li, MIA Paris Sept. 2002

    19

    Registration/Reconstruction• Rotation• Euler angles • SH representations:

    )3(SOg ∈),,( γβα

    )exp()()exp(),,(

    ),,(~

    ),(~),(~

    ),(),(

    '

    0

    0

    ''

    '

    '

    '

    γβαγβα

    γβα

    φθφθ

    φθφθ

    imdimD

    cDc

    YcR

    YcR

    lmm

    lmm

    l

    lm

    ml

    lmm

    ml

    K

    l

    l

    lm

    ml

    ml

    K

    l

    l

    lm

    ml

    ml

    −⋅⋅−=

    =

    =

    =

    ∑ ∑

    ∑ ∑

    −=

    = −=

    = −=

    (rotated reference)

    (reference)

  • 20

    Joint Registration of 3D Rotation and Spherical Harmonic Coefficients

    • Gaussian model

    • Marginal coefficient likelihood functions

    • ML estimator:

    ml

    nl

    l

    ln

    lmn

    ml

    ml

    ml

    ml

    aDc

    ac

    ηγβα

    η

    ~),,(~ +=

    +=

    ∑−=

    ( )

    −−=

    −−=

    ∑−=

    22~

    22

    ~2/)),,(~(exp

    2/)(exp

    lnl

    l

    ln

    lmn

    mlc

    lml

    mlc

    aDcL

    acL

    ml

    ml

    σγβα

    σ

    { } ∑ ∑∑

    = −=

    −=

    −+−=

    K

    l

    l

    lm l

    nl

    l

    ln

    lmn

    ml

    l

    ml

    ml

    a

    ml

    aDcaca

    ml

    12

    2

    2

    2

    }{,,,

    )~

    )),,(~()((}ˆ{,ˆ,ˆ,ˆ argmin σ

    γβα

    σγβα

    γβα

  • A. Hero and J. Li, MIA Paris Sept. 2002

    21

    Bias Variance and CR bound

    The performance of the maximum likelihood estimator which jointly estimates the Euler angles and the shape parameters.

  • A. Hero and J. Li, MIA Paris Sept. 2002

    22

    Bias and variance of radial reconstruction for Lowpass(red) vs Weiner(blue) filtering

  • A. Hero and J. Li, MIA Paris Sept. 2002

    23

    Application to Active Contour Surface Reconstruction

    Ω∇+−= ∫ dfgffE S f ))(()(22

    o),( φθf

    ),( oog φθ

    α : non-negative roughness parameter

  • Sept. 200224

    Polar Euler-Lagrange Equation

    0)1)((2 =∂

    ∂−−−∇

    fg

    gff ffα

    2

    2

    22

    sin1)sin(

    sin1

    φθθθ

    θθ ∂∂+

    ∂∂

    ∂∂=∇

    Minimizer f of E(f) must satisfy PDE over 2S

    Front propagation consists of two steps:

    At iteration n1.Update f: (solve Helmholtz)

    2.Update g: (determine external force)1+

    →nn ff

    ggn

    n

    n fn

    ffnnn gf

    ggfff −

    ∂∂

    −−=−∇ ++ )(112α

  • 25

    Methods of Solving Helmholtz

    • Grid size• Computational complexity

    – FEM/FDM Method– New Spectral Method

    )(~)( 36 NONO)log( 2 NNO

    NN ×

    •Iterative FEM and FDM•Advantage: non-uniform sampling can be accommodated•Disadvantage: very high computational complexity

    •Non-iterative spectral methods•Spherical harmonic expansions•Double Fourier series

    Comparison:

    0)(2 =−−∇ gff µ

  • A. Hero and J. Li, MIA ParisSept. 2002

    26

    Spectral Solution to Helmholtz

    [ ])()()(sin

    ))(sin(sin

    12

    2

    θθµθθ

    θθ

    θθθ mmmm

    gffmfdd

    dd −=−

    1. Substitute Fourier descriptor into Helmholtz equation

    )cos()( , /2+= ∑∞

    −∞=

    πθθ nnffn

    nmm

    2. Substitute Cheong’s expansion of )(θmf

    φθφθ imm

    m eff )(),( ∑∞

    −∞=

    =

    )(θmf

    Fourier Descriptor

    Cheong’s trig series

  • A. Hero and J. Li, MIA Paris Sept. 2002

    27

    Helmholtz Recursions

    oddor ,0 )41

    21

    41(

    4)2)(1(

    22

    4)2)(1(

    ,2,,2

    ,2,

    22

    ,2

    =+−=

    ++++++−+−−

    +−

    +−

    mggg

    fnnfmnfnn

    mnmnmn

    mnmnmn

    µ

    µµµ

    0 andeven )41

    21

    41(

    4)1(

    22

    4)1(

    ,2,,2

    ,2,

    22

    ,2

    ≠+−=

    +++++−+−

    +−

    +−

    mggg

    fnnfmnfnn

    mnmnmn

    mnmnmn

    µ

    µµµ

  • A. Hero and J. Li, MIA ParisSept. 2002

    28

    1. 2. Obtain by solving matrix equations3.

    −−−

    −−−

    =

    −−

    −−−

    mJ

    mJ

    m

    m

    mJ

    mJ

    m

    m

    mJJ

    JmJJ

    m

    m

    gg

    gg

    ff

    ff

    bacba

    cbacb

    ,1

    ,3

    ,3

    ,1

    ,1

    ,3

    ,3

    ,1

    ,11

    3,33

    3,33

    1,1

    21121

    12112

    MOOOMOOO

    gf AB =

    mngg ,),( →φθ

    mnf ,),(, φθff mn →

    After truncation obtain tridiagonal linear system

  • A. Hero and J. Li, MIA Paris Sept. 2002

    29

    Experiment 1: Ellipsoidal Surface Reconstruction Different Regularization Parameter

    Original segmentation 410=µ

    310=µ 210=µ

  • A. Hero and J. Li, MIA Paris Sept. 2002

    30

    Data Regularization Parameter

    Different shapes Different noise levels

  • A. Hero and J. Li, MIA Paris Sept. 2002

    31

    Experiment 2: CT Thoracic Slices

  • A. Hero and J. Li, MIA Paris Sept. 2002

    32

    Edge-maps

  • A. Hero and J. Li, MIA Paris Sept. 2002

    33

    Active Contour Implementation

    • Liver center estimated via ellipsoid fitting• Local edge detection gives coarse segmentation• 32 x 32 angular grid used for radial descriptor• Elliptic evolving contour computed via spectral

    method• Convergent to within a pixel after 5 iterations• 3 values of investigated:

    64 ,, −−−3 10=10=10= ααα

    α

  • A. Hero and J. Li, SIAM Boston 34

    Segmentation After 5 Iterations

    −310=α 4−10=α 6−10=α

  • A. Hero and J. Li, MIA ParisSept. 2002

    35

    No regularization 410−=α

    Reconstruction of liver surface from 2D CT slices

  • A. Hero and J. Li, MIA Paris Sept. 2002

    36

    Conclusions• SH lead to optimal shape filtering and ML

    registration of polar 3D objects having isotropic random field models

    • DFS/SH lead to spectral method for HelmholtzPDE introduced for 3D active balloons

    • Application of recent advances in computational fluid dynamics to shape recovery problem

    • Accelerated performance of parametric active contour on real and synthetic 3D images

    Untitled