A SODIAN SULFATIAN FLUORAPATITE FROM AN EPITHERMAL … · A SODIAN SULFATIAN FLUORAPATITE FROM AN...

9
Canadian Mineralogist Vol. 25, pp. 673-681 (1987) A SODIAN SULFATIAN FLUORAPATITE FROM AN EPITHERMAL CALCITE_OUARTZ VEIN OF THE KUSHIKINO MINE, KAGOSHIMA PREFECTURE, JAPAN YOSHIHIDE SHIGA ANDYUKITOSHI URASHIMA Department of Geology, College of Liberal Arts, Kagoshima Universby, Kagoshima 890, lapan ABSTRACT A sodian-sulfatianfluorapatite, a new variety of apatite, wasfound in sulfideconcentrates of gold-silver-tellurium oresfrom the Shinpi No. I epithermal-type calcite-quartz vein of the Kushikino mine, Kagoshima Prefecture, Japan. This paperis the first detailed report on the occurrence of sulfateand sulfatianapatitefrom this type of ore deposit. The mineral is closelyassociated with quartz, interstrati fied chlorite-smectite,and ore minerals. The chemical com- position of the mineral was determined by electron microprobe: CaO 51.51-54.30, Na2O 0.13-2.26,K2O 0.00-0.02, MgO [email protected], IvInO 0.03-0.10, FeO0.01-0.10, p2o5 35.09-40.82, SO3 0.44-7.39,SiO2 0.05-0.66,Cl 0.00-0.01, F 3.03-3.62 wt.Vo. The (Na+Si): S atomic ratio is close to one. The charge increase involved by the substitu- tion of (So)2- for @O/3- is considered to be electrostat! cally compensated for by the concomitant substitutions of Na+ for Ca2+ and, although minor, of (SiOr+ for (POJ3-. The general formula, disregarding traceto minor constituents, is expressed as follows: Ca5_rNar(P3-"S;) Ol2 (FpHl- ,), where .r ranges from 0.02 to 0.41, and y, frori (),so tob.96. The naturally occurringsulfate ahd sulfatian apatites should be divided into two series, apatite- ellestadite and apatite-cesanite, on the basisof mode of substitution.These mineralsform under highl(O), and are rather independent of temperature,pH, l(S), and halogen species in solution. The Kushikino apatite, an inter- mediate member of the second series, seems to have formed from a F-rich oxidizing solution at 200 to 250oC. Keywords: apatite, new variety, sulfate, sodium, chemis- try, oxidizing solution, Kushikino mine, Japan. SOMMAIRE On a d6couvert une nouvelle vari€t6 d'apatite,une fluor- apatite sodique et sulfatde,dansdesconcentr6s de sulfu- res desmineraisAu-Ag-Te du filon de calcite + quartz Shinpinum6ro l, de ty?e 6pithermal, i la mine Kushikino, pr6fecturede Kagoshima,au Japon. C'est la premidre indi- cation d'une telle apatite dans ce genrede gisement. Elle montre une association €troite avec quartz, chlorite-smectite interstratifi6e, et lesmin€rauxdu minerai, Sacomposition a 6t€ d6termin€e d la microsonde 6lectronique: CaO 51.51-54.30,Na2O 0.13-2.26, K2O 0.00-0.02, MgO 0.00-0.02, MnO 0.03-0.10, FeO 0.01-0.10, P2O5 35.09-&.82, SO3 0.40-7.39, SiO2 0.05-0.6, Cl 0.00-0.01, F 3.03-3 .62t/o (en poids) . Le rapport atomique(Na + Si) : S serapproche de 1. L'augmentation des charges occasion- n6epar le remplacement du (PO)3- par le (SOf2- semble 673 comoens6e Dar unesubstitution concomitante de Na pour Ca2*et,quoique moins importante, de(SiO/a pour (POJ3-. La formule g6n€rale, qui omet les composants A l'6tat de traces, serait Ca5-rNardP3-rS)Ot2QOH1-r), dans laquelle x varie de0.02 to 0.41, ety varie de0.80 to 0.96. Nous proposons I'existence dedeux s6ries d'apatite natu- relle riche ensulfate, apatite-ellestadite et apatite-cesanite' selon le mode de substitution. Ces deux vari6t6s seraient stables d des conditions de fugacit6 d'oxygbne 6levde' et serarent plutot ind6pendantes detemperature, pH' /(S) et espbces dehalogdnes ensolution. L'apatite de Kushikino' membre interm6diaire dela deuxibme s6rie, seserait for- m6e d partir d'une solution fluor€e oxydante entre 200 et 2500c. (Traduit par la R6daction) Mots-clds: apatite, nouvelle vari6t6, sulfate, sodium' chi- misme, solution oxydante, mine Kushikino, Japon. INTRODUCTION Although the ideal formula of apatite may be represented simply as Ca5(PO)3@,O}D, the substi- tution relations in the structure are highly complex' ashavebeen investigated for nearthree-quarters of a century by many previousinvestigators (e.9., Eakle & Rogers 1914, McConnell 1937, 1938, Gulbrand- sen1966, Rouse & Dunu 1982, Tazzoli1983). Four species of sulfate and sulfatian apatite are known to occur in nature; these are ellestadite, hydroxylelles- tadite, "wilkeite" (now discredited by the IMA), and cesanite, in whose structures (SOJ2- substitutes for (POa)3-. Ellestadite, a sulfate silicate apatite (OH > Cl > F in atomic percent)'occurs in a contact zonebetween crystalline limestone and granodiorite in Crestmore,California (McConnell 1937,Rouse & Dunn 1982). Hydroxylellestadite, an OH analo- gue of ellestadite, was reported from a skarn zone of the Chichibu pyrometasomatic iron ore deposit, Saitama Prefecture, Japan (Harada et al. l97l). "Wilkeite", a sulfate- and silicate-bearing fluorapa- tite, occurs in Crestmore @akle & Rogers l9l4' McConnell 1937, Rouse & Dunn 1982). "Wilkeite" havingCl>OH>F (in atomicpercent) wasrepor- ted from the Chichibu mine (Harada et al. l97l), and "wilkeite" having OH >>F + Cl (in atomicper- cent) occursin a calcitevein in skarn in crystalline limestone, Hiroshima Prefecture, Japan(Kusachi el al. 1982). Cesanite, a sodium sulfate hydroxylapa-

Transcript of A SODIAN SULFATIAN FLUORAPATITE FROM AN EPITHERMAL … · A SODIAN SULFATIAN FLUORAPATITE FROM AN...

Page 1: A SODIAN SULFATIAN FLUORAPATITE FROM AN EPITHERMAL … · A SODIAN SULFATIAN FLUORAPATITE FROM AN EPITHERMAL CALCITE_OUARTZ VEIN OF THE KUSHIKINO MINE, KAGOSHIMA PREFECTURE, JAPAN

Canadian MineralogistVol. 25, pp. 673-681 (1987)

A SODIAN SULFATIAN FLUORAPATITE FROM AN EPITHERMAL CALCITE_OUARTZ VEINOF THE KUSHIKINO MINE, KAGOSHIMA PREFECTURE, JAPAN

YOSHIHIDE SHIGA AND YUKITOSHI URASHIMADepartment of Geology, College of Liberal Arts, Kagoshima Universby, Kagoshima 890, lapan

ABSTRACT

A sodian-sulfatian fluorapatite, a new variety of apatite,was found in sulfide concentrates of gold-silver-telluriumores from the Shinpi No. I epithermal-type calcite-quartzvein of the Kushikino mine, Kagoshima Prefecture, Japan.This paper is the first detailed report on the occurrence ofsulfate and sulfatian apatite from this type of ore deposit.The mineral is closely associated with quartz, interstratified chlorite-smectite, and ore minerals. The chemical com-position of the mineral was determined by electronmicroprobe: CaO 51.51-54.30, Na2O 0.13-2.26, K2O0.00-0.02, MgO [email protected], IvInO 0.03-0.10, FeO 0.01-0.10,p2o5 35.09-40.82, SO3 0.44-7.39, SiO2 0.05-0.66, Cl0.00-0.01, F 3.03-3.62 wt.Vo. The (Na+Si): S atomic ratiois close to one. The charge increase involved by the substitu-tion of (So)2- for @O/3- is considered to be electrostat!cally compensated for by the concomitant substitutions ofNa+ for Ca2+ and, although minor, of (SiOr+ for(POJ3-. The general formula, disregarding trace to minorconstituents, is expressed as follows: Ca5_rNar(P3-"S;)Ol2 (FpHl- ,), where .r ranges from 0.02 to 0.41, andy, frori (),so tob.96. The naturally occurring sulfate ahdsulfatian apatites should be divided into two series, apatite-ellestadite and apatite-cesanite, on the basis of mode ofsubstitution. These minerals form under highl(O), andare rather independent of temperature, pH, l(S), andhalogen species in solution. The Kushikino apatite, an inter-mediate member of the second series, seems to have formedfrom a F-rich oxidizing solution at 200 to 250oC.

Keywords: apatite, new variety, sulfate, sodium, chemis-try, oxidizing solution, Kushikino mine, Japan.

SOMMAIRE

On a d6couvert une nouvelle vari€t6 d'apatite, une fluor-apatite sodique et sulfatde, dans des concentr6s de sulfu-res des minerais Au-Ag-Te du filon de calcite + quartzShinpi num6ro l, de ty?e 6pithermal, i la mine Kushikino,pr6fecture de Kagoshima, au Japon. C'est la premidre indi-cation d'une telle apatite dans ce genre de gisement. Ellemontre une association €troite avec quartz, chlorite-smectiteinterstratifi6e, et les min€raux du minerai, Sa compositiona 6t€ d6termin€e d la microsonde 6lectronique: CaO51.51-54.30, Na2O 0.13-2.26, K2O 0.00-0.02, MgO0.00-0.02, MnO 0.03-0.10, FeO 0.01-0.10, P2O535.09-&.82, SO3 0.40-7.39, SiO2 0.05-0.6, Cl 0.00-0.01,F 3 .03-3 .62t/o (en poids) . Le rapport atomique (Na + Si) :S se rapproche de 1. L'augmentation des charges occasion-n6e par le remplacement du (PO)3- par le (SOf2- semble

673

comoens6e Dar une substitution concomitante de Napour Ca2* et, quoique moins importante, de (SiO/a pour(POJ3-. La formule g6n€rale, qui omet les composants Al'6tat de traces, serait Ca5-rNardP3-rS)Ot2QOH1-r), danslaquelle x varie de 0.02 to 0.41, et y varie de 0.80 to 0.96.Nous proposons I'existence de deux s6ries d'apatite natu-relle riche en sulfate, apatite-ellestadite et apatite-cesanite'selon le mode de substitution. Ces deux vari6t6s seraientstables d des conditions de fugacit6 d'oxygbne 6levde' etserarent plutot ind6pendantes de temperature, pH' /(S) etespbces de halogdnes en solution. L'apatite de Kushikino'membre interm6diaire de la deuxibme s6rie, se serait for-m6e d partir d'une solution fluor€e oxydante entre 200 et2500c.

(Traduit par la R6daction)

Mots-clds: apatite, nouvelle vari6t6, sulfate, sodium' chi-misme, solution oxydante, mine Kushikino, Japon.

INTRODUCTION

Although the ideal formula of apatite may berepresented simply as Ca5(PO)3@,O}D, the substi-tution relations in the structure are highly complex'as have been investigated for near three-quarters ofa century by many previous investigators (e.9., Eakle& Rogers 1914, McConnell 1937, 1938, Gulbrand-sen 1966, Rouse & Dunu 1982, Tazzoli 1983). Fourspecies of sulfate and sulfatian apatite are known tooccur in nature; these are ellestadite, hydroxylelles-tadite, "wilkeite" (now discredited by the IMA), andcesanite, in whose structures (SOJ2- substitutes for(POa)3-. Ellestadite, a sulfate silicate apatite(OH > Cl > F in atomic percent)' occurs in a contactzone between crystalline limestone and granodioritein Crestmore, California (McConnell 1937, Rouse& Dunn 1982). Hydroxylellestadite, an OH analo-gue of ellestadite, was reported from a skarn zoneof the Chichibu pyrometasomatic iron ore deposit,Saitama Prefecture, Japan (Harada et al. l97l)."Wilkeite", a sulfate- and silicate-bearing fluorapa-tite, occurs in Crestmore @akle & Rogers l9l4'McConnell 1937, Rouse & Dunn 1982). "Wilkeite"having Cl>OH>F (in atomic percent) was repor-ted from the Chichibu mine (Harada et al. l97l),and "wilkeite" having OH >>F + Cl (in atomic per-cent) occurs in a calcite vein in skarn in crystallinelimestone, Hiroshima Prefecture, Japan (Kusachi elal. 1982). Cesanite, a sodium sulfate hydroxylapa-

Page 2: A SODIAN SULFATIAN FLUORAPATITE FROM AN EPITHERMAL … · A SODIAN SULFATIAN FLUORAPATITE FROM AN EPITHERMAL CALCITE_OUARTZ VEIN OF THE KUSHIKINO MINE, KAGOSHIMA PREFECTURE, JAPAN

674 THE CANADIAN MINERALOGIST

tite, occurs in the Cesano geothermal field, Italy(Cavarreta et al. l98l).

During the course of a mineralogical study ofgold-silver ores from epithermal-type calcite-quartzveins of the Kushikino mine, Kagoshima Prefecture,Japan, the present authors found sodian-sulfatianfluorapatite, a new variety of apatite (Shiga et al.1985). This is the first detailed report on the occur-rence of sulfate and sulfatian apatite from this typeof ore deposit. In this paper, the modes of occur-rence and chemical compositions of the Kushikinoapatite are described, and the nomenclature of thesulfate and sulfatian apatites and the physicochemi-cal conditions of formation of the minerals are dis-cussed.

Moos or OccunRgNcr AND MTNERALASSoCIATIONS

The Kushikino gold-silver mining area lies in thenorthern part of Kushikino city (Fig. l). Regionalexploration for gold and silver deposits has been car-ried out around the mining area by the Metal Min-ing Agency of Japan since 1978. The Kushikinogold-silver ore deposits are representative ofepithermal-type calcite-quartz veins developed inandesite of Miocene age. K-Ar ages measured onadularia from the veins are 4.0+0.3 Ma (MITI1979). The ore mineralogy and mineralization of thedeposits have been studied by many investigators(e.g., Fukuyama 1954, Mukaiyama & Izawa 1964,

.".-.-',Aa.-,\ . .

KogoshimoFrefecture

Kushikino mine

3 1 0

1 3 0 0

Ftc. l. Map showing location of the KushikinoJapan.

1 3 1 0

mrne in Kagoshima Prefecture,

Page 3: A SODIAN SULFATIAN FLUORAPATITE FROM AN EPITHERMAL … · A SODIAN SULFATIAN FLUORAPATITE FROM AN EPITHERMAL CALCITE_OUARTZ VEIN OF THE KUSHIKINO MINE, KAGOSHIMA PREFECTURE, JAPAN

SODIAN SULFATIAN FLUORAPATITE FROM AN EPITHERMAL VEIN. JAPAN

*i!

675

rilT:qa:ii

+:e*:

Miyahisa et al. 1977, Takeuchi 1978, Motomura e/al. 1981, Izawa & Hashizume 1982, Izawa & Ura-shima 1983). From these studies, the ores may bedivided into two types based upon their mineralogi-cal features: l) gold-silver-antimony, and 2) gold-silver-tellurium ores. The first occur extensively inthe principal veins ofthe mine and are characterizedby the occurrence of polybasite, pearceite, pyrar-gyrite, stephanite, and other Au-Ag-Sb minerals(Mukaiyama & Izawa 1964, Miyahisa et al. 1977,Motomura et al. l9Sl,Izawa& Hashizume 1982),whereas the second occur regionally in smaller veinsthat contain hessite, altaite, calaverite, petzite, andother Au-Ag-Te minerals (Fukuyama 1954,Takeuchi 1978, Shiga & Urashima 1983).

Apatite occurs in the sulfide concentrates of thegold-silver-tellurium ores only from the 6th level ofthe Shinpi No. I vein, in spite of extensive examina-tion of both types of orc. The vein, with a thick-

{e}

{$}

ness of 2 or 3 metres, lies on the hanging-wall sideof the Kushikino No. I champion vein, and is com-posed mainly of quartz, calcite, adularia and inter-stratified chlorite-smectite, as determined by X-raypowder-diffraction studies on untreated material.Two kinds of ores, of different texture and miner-alogy, occur in the vein. One is a so-called "blackband" ore (Fig. 2), in which sphalerite-galena-chalcopyrite intergrowths occur with minor to traceamounts of pyrite, tetrahedrite and tellurium-bearingminerals as black bands and films (less than I cmin thickness) running parallel to the boundariesbetween the vein and wall rock. The other is ore (Fig.3) in which minerals such as sphalerite, chalcopyrite,clausthalite-galena solid solution, pyrite, and minorto trace amounts of tellurium-bearing minerals andelectrum are disseminated in clay-rich parts com-posed chiefly of quartz and interstratified chlorite-smectite. Apatite occurs abundantly as euhedral tosubhedral crystals in close association with both

8rm' i s # q s $ S s !

e-qss*ffi-{-"-s'#ft'q*gss.*'"sd

Fto. 2. Photograph of black-band ore from the Shinpi No. I vein of the Kushikinomine, Legend: I quartz zone with minor adularia partly altered to sericite, 2 oreminerals - apatite - quartz black-band zone, 3 quartz - interstratified chlorite- smectite(white) - ore minerals - apatite zone, 4 quartz(grey) - adularia(white)vein, 5 quartz - interstratified chlorite - smectite(white) - ore minerals - apatitezone, 6 post-ore quartz vein. Specimen Ku15.

Page 4: A SODIAN SULFATIAN FLUORAPATITE FROM AN EPITHERMAL … · A SODIAN SULFATIAN FLUORAPATITE FROM AN EPITHERMAL CALCITE_OUARTZ VEIN OF THE KUSHIKINO MINE, KAGOSHIMA PREFECTURE, JAPAN

676 THE CANADIAN MINERALOGIST

, S * m i

Ftc. 3. Photograph of quartz-clay ore from the Shinpi No.I vein of the Kushikino mine. Legend: cs interstrati-fied chlorite-smectite, om ore minerals, qz quartz,Specimen Ku04.

kinds of ores (Figs. 4, 5). In the black-band ores,fine- to medium-grained apatite crystals accumulatealong the boundary between the quartz (-adularia-sericite) zone and the black-band zone (Fig. 4-l),where the crystals are rarely in contact with adulariaand sericite. The crystals are concentrated also withinthe black-band zone @ig. 4-2).ln other parts of theores, the mineral often occurs as thin filmyaggregates parallel to the black bands, with orwithout accompanying ore minerals. On the otherhand, in the quartz-clay ores, rather coarse grainsof apatite, 200 x 200 x 400 pm, intimately associatedwith interstratified chlorite-smectite and oreminerals, are dispersed in a quartz matrix (Fig. 5).Homogenization temperatures measured on fluidinclusions in quartz and calcite associated with apa-tite range from approximately 2ffi to 250oC(unpubl. data).

Megascopically, aggregates of apatite are whiterin color and more turbid than quartz. In thin sec-tion, the apatite grains are short tabular prisms. Theindex of refraction rz measured by the immersionmethod is 1.620Q), and the bircfringence is very low.The X-ray powder-diffraction pattern, ind^exed ona hexagonal cell , glves a 9.375Q), c 6.884(2) A (Shigaet al. 1985).

:j . si . I

Page 5: A SODIAN SULFATIAN FLUORAPATITE FROM AN EPITHERMAL … · A SODIAN SULFATIAN FLUORAPATITE FROM AN EPITHERMAL CALCITE_OUARTZ VEIN OF THE KUSHIKINO MINE, KAGOSHIMA PREFECTURE, JAPAN

CHEMTCAL Cotvtposrrrot.t oF THE Apanrrs

Chemical analyses of the Kushikino apatite wereperformed with an ARl-Shimadzu X-raymicroanalyzer, model EMX-SM. Line-scan analyseson more than ten single crystals from different modesof occurrence revealed that most of them aremarkedly heterogeneous in distribution of consti-tuents (Fig. 6), similar to apatite from other locali-ties (e.9., Nedachi & Ueno 1981, Tsusue et a/. l98l).

Instrumental conditions for microprobe analyseswere: 15 kV excitation voltage, 2x l0-8 A samplecurrent on a natural apatite standard, 5 pm beamdiameter, 20 s count times on samples and standards.The following materials were utilized as standards:apatite for Ca, P, F and Cl, anhydrite for S, albitefor Na, biotite for Si, Fe, Mg and K, pyrosmalitefor Mn. Data were reduced using the Bence & Albeemethod (1968). The results thus obtained are as fol-Iows: CaO 51.51-54.30, NarO 0.13-2.26, K2O0.00-0.02, MgO 0.00-0.02, MnO 0.03-0.10, FeO0.01-0.10, Pp5 35.09-40.82, so3 0.40-7.39, sio20.05-0.66, CI0.00-0.01, F 3.03-3.62 wt.9o (Tablel). Structural formulae calculated from the analyti-cal data are presented in Table 2.

In sulfur-bearing apatite, the S, Na and Si con-tents axe of particular importance, as discussed later.The S and Na contents of this apatite show appar-ent negative correlations with the P and Ca contents,respectively (see the line-scan profiles, Fig. 6). TheSiOr content, although generally low (less than 0.7wt.9o), does not show any distinct correlation withother constituents. The material is also characterizedby a high but variable F-content and by a low Cl-content. No relationship between the F and Cl con-tents is apparent.

677

, 39^fn ,

direction ot scdn

Ftc. 6. Line-scan profiles, showing the variation in inten-sities of characteristic Ka X-rays along the line drawnon the photomicrograph. Symbols: ap apatite, qzqluaftz.

SODIAN SULFATIAN FLUORAPATITE FROM AN EPITHERMAL VEIN, JAPAN

TABLE 'I.

CHEMICAL COMPOSITION OF APATITE FROM'rl]E SHINPI NO.] VE]N OF lHE KUSHIKINO MINE

Cq (tokcps)

K u ( l )

5 1 . 9 1t o o

0.00

0 . 0 2

0.06

0.05

38.39

n 1 ?

0 . 0 1

3 . 1 6

0.28

52.54' I

.51

0.02

0 . 0 1

0 . 0 3

0.06

39.04q l o

0.33

0 . 0 1

0.33

52.66

0.98

0.00

0 . 0 1

0 . l 0

0 .04

40.27

2.89

0.37

0.00

3 . 1 7

o.25

2.23

0.00

0 . 0 1

0.04

0 . 0 1

35.42

o . o d

0 . l 6

0 . 0 0

3.39

0.20

Ku(z) Ku(3) Ku(4) (u(5) (u(6) Ku(7) Ku(8) Ku(9)

53.03 54 .02 52 .40 55 .18 51 .51' I

.61 0 .33 2 .22 0 .15 2 .220.00 0 .00 0 .00 0 .00 0 .000.01 0 .01 0 .02 0 .00 0 .020 . t 0 0 . 0 5 0 . 0 7 0 . 0 3 0 . 0 40. I 0 0 .08 0 .08 0 .08 0 .0 1

37 .66 40.70 36.64 40.14 35,80s .39 1 .03 6 .56 0 .4 t 6 .360,?4 0 .66 0 .09 0 .05 0 .200.01 0 .00 0 .01 0 .00 0 .003.22 3 .35 3 .29 3 .62 3 .580 . 2 7 0 . 1 7 0 . 2 5 0 . 0 7 0 . 0 9

K u ( 1 0 ) K u ( l l ) K u ( 1 2 ) ( u ( 1 3 ) K u ( l a )

52 .79 54 .30 51 .70 52 .72 54 .301 . 6 2 0 . 3 3 2 . 2 6 2 . 1 3 0 . 1 30.00 0 .00 0 .00 0 .00 0 .000 . o 2 0 . 0 0 0 , 0 1 0 . 0 1 0 , 0 00.10 0 .05 0 .05 0 ,07 0 .030. I 0 0 .09 0 .08 0 .08 0 .08

37.19 40 .43 35 .09 37 .17 40 .825.37 1 .04 7 .39 5 .97 0 .400 . 2 3 0 . 6 6 0 . 1 9 0 . 1 4 0 . 0 5

0.01 0 .00 0 ,00 0 .0 r 0 .003.03 3 . l l 3 .26 3 .46 3 .33

0.36 0-29 0 .25 0 . l8 0 . I 7

Ca0

Na20

v0llS0

Mn0

Feo*

P^0-

soasi02clF

H2o**

Sm'less

0=F,ClTotal

'102 .33 102.12 100.74 100. t9 101.64 100.40 101.63 99 .73 99 .83 r00 .82 r00 .30 100.28 101.94 99 .31

1 . 3 3 ' 1 . 2 9 1 . 3 3 1 . 4 3 1 . 3 6 t . 4 t 1 . 3 9 1 . 5 2 1 . 5 1 1 . 2 8 l . 3 l 1 . 3 7 1 , 4 6 1 . 4 0101.00 100.83 99 .41 98 .76 100.28 98 .99 100.24 98 .21 98 .32 99 .54 98 .99 98 .91 100.48 97 .91

Detemined by electrcn micrcprcbe (ln wt. percent). * Total Fe as Feo. * Calculated on the basis of C]+F+OH=].000 in the structuralTom I a.

Page 6: A SODIAN SULFATIAN FLUORAPATITE FROM AN EPITHERMAL … · A SODIAN SULFATIAN FLUORAPATITE FROM AN EPITHERMAL CALCITE_OUARTZ VEIN OF THE KUSHIKINO MINE, KAGOSHIMA PREFECTURE, JAPAN

678 THE CANADIAN MINERALOCIST

TABLE 2. STRUCTURAL FORMULAE OF APATITE OBTAINED FROM THE CHEMICAT COMPOSITIONS GIVEN IN TABLE 'I

Ku( l ) Ku(2) Ku(3) Ku(4)4.665 4.744 4.826 4.6360.324 0.247 0.163 0.3590.000 0.002 0.000 0.0000.003 0.001 0.001 0.0010.004 0.002 0.007 0.0030.004 0.004 0.003 0.001

Ku (5 ) Ku (6 ) Ku (7 ) Ku (8 )4.725 4.936 4.632 4.9680.260 0.054 0.355 0.0240.000 0.000 0.000 0.0000.001 0.001 0.002 0.0000.007 0.003 0.005 0.0020.007 0.006 0.006 0.006

Ku (e ) Ku (10 ) Ku ( l 1 )4.633 4.722 4.9370.360 0.262 0.0540.000 0.000 0.0000.003 0.002 0.0000.003 0.007 0.0030.001 0.007 0.006

Ku( 1 2)4.625

0.0000.0020.0030.005

Ku(13) Ku(14)4.648 4.9690.340 0,0220.000 0.0000.001 0.0000.005 0.0030.006 0.006

NaKMgMnFe

P

si

clF0H*

5.0002.7260.3540 .01 1

5.000 5.000 5.0002.785 2.916 2.4930 .292 0 .165 0 .3710 .028 0 .031 0 .013

5,000 5.000 5.000 5.0002.652 2.938 2.559 2.8560.299 0.059 0.361 0.0230.020 0.056 0.007 0.004

5.000 5.000 5.000 5.000 5.000 5.0002.545 2.629 2.904 2.480 2.590 2.9520.356 0.299 0.059 0,411 0.328 0.0230 .0 t7 0 .019 0 .056 0 .016 0 .01 t 0 . 005

3.09f 3. t05 3.112 2,8770.001 0.001 0.000 0.0000.839 0.812 0.857 0.8910 .160 0 .187 0 .143 0 .109'I .000 I .000 | .000 I .000

2.971 3.053 2.927 2.8830.001 0.000 0.00t 0.0000.847 0.904 0.858 0.9520.152 0.096 0.141 0.038

1 .000 I .000 I .000 L000

2.918 2.947 3.0190.00i 0.001 0.0000,949 0.800 0.8340 .050 0 .1 99 0 .1 66

1 .000 I . 000 1 .000

2.907 2.929 2.9800.000 0.001 0.0010.862 0.901 0.9000,138 0.098 0.099'1.000 1.000 1.000

* Calculated on the basls of C1+F+0H=1.000.

DISCUSSION

Chemistry of the sulfate ond sufution opatite

Ellestadite is an end member of the substitutionof (SOt2- and (SiO4)4- for (POJ3- (McConnell1937), and hydroxylellestadite is an OH analogue ofellestadite (Harada et al. l97l), Cesanite, a sodiumsulfate hydrorylapatite, is an end member of the sub-stitution of (SOa)2- for (PO)3-, in whose structurethe charge increase is made up by the substitutionof Na+ for Ca2* (Cavarretta et al. lgSl,Tazzolir983).

The chemical compositions of the Kushikino apa-tite (Table 2) indicate that (SOr2- substitutes for(PO+)3- and that electrostatic neutrality is balancedchiefly by the substitution of Na+ for Ca2+, simi-lar to that for cesanite. The general formula of thematerial, disregarding trace and minor constituents,

is: Car-rNar(P3_xSr)Ol2(FyOH,_r), where x rangesfrom 0.02 to 0.41, and y ianged from 0.80 ro 0.96.

Cavarretta et ol. (1981) regarded cesanite as "theend member of the apatite-ellestadite series". Afterthat,Tazzoli (1983) also considered this mineral tobe "one member of the apatite-ellestadite series".Since the charge increase resulting from the substi-tution of (SOJ2- for (PO)! in the sulfate and sul-fatian apatites is compensated by two clearly differ-ent schemes of substitution, (SiOr4- for @O)! andNa+ for C*+ , it seems more appropriate to dividethem into two series: l) apatite-ellestaditeCarPrOtr@,OH,Cl) - Ca5S1.5Si1.5O,2@,OH,CI) and2) apatite - cesanite Ca5P3O12(F,OH,CI) -Ca2Na3S3Ol2G,OH,Cl) series, not consideringanions. The general formula of the first series isexpressed as follows : Cas(Pr_rrsFt )3O I2(F,OH, Cl),where x ranges from 0 (apatite) to 0.5 (ellestadite).A similar formula was proposed by Harada et al,

TABLE 3. REVIEII OF CHEMICAL COI4POSITION OF NATIJRAL APAIITE (IN I{I. PERCENI)

l. igneous mckshonkini tesyen l teSkaergaard intruslonircn deposit

2. carbonatitecarbonatite

3. retamrphosed rcckmarble

pyrcretasomtic oredeposit

explosive breccia

eplthemal vein5. sedlrentata mck

phosphoritephosphate rcck

Local lty Na20 S0:

Shonkln Sag, Montana 0.15-0.35 0.15-0.30Shonkln Sag, l lontana 0.14-0.34 0.15-0.22Skaergaard, creenland 0.03-0.12 0.02-0.07Avnlk, Turkey 0,00-0.21 0.10-0.22

0.45-0 .65 0 , t2 -0 .34 2 .1 -2 .70 . 5 6 - 0 . 8 1 0 . l l - 0 . 2 3 3 . i - 3 . 30 ,29-0 ,73 0 .08-0 .85 1 .92-3 .370.13-0 .42 0 .00-0 .10 0 .00-4 .22

0.15 <0.002 4 .0

- 2 . 3 t 1 . 0 5

I 7 .31 1 .64 0 .573 . 8 - 1 6 . 8 0 . 4 - 1 . 7 0 . 3 - 2 . 81 3 . 1 6 - 1 4 . 1 8 0 . 0 8 r < 0 . 1 r

Reference

Nash 1972Nash 1972Nash 1976Helvaci 19B4

Gulbfandsen et aL. 1966

Cooray 1970

Mcconnell 1937Rouse & Dunn 1982Kusachl et az. 1982

Harada et aL. 1971

Harada et al. 1971

Handa et aL. 1971

si02

4. hydmtheml ore deposltand hydrcthemal ly altered rcck

skamedl l res tone Cres tmre ,Ca l i fom. laCrestnore, Cal ifomla

ontario, Canada

north-central Ceylon

ToJyo, Hircshima Pre-fecture, Japan

Uzunosafa, Chichlb!nine, 'lapan

Takiue, Chlchlbumlne, 'lapan

ooshinkubo, Chlchibunlne, ,Japan

Cesano geothemlfield, Italy

Kushikino mine, Japan

l.'lontana, Idaho erc.var ious loca l l t ies

0 . 1 8 < 0 . 0 3

- 20.69- 4 .2 -21 .20 .20-0 .35 16 .58- l 7 .21

0,ll trace

0.06 13.47

0.34 21 .56

2 .U t . o8' f 1 .99 ' t .M 0 .43' f7 .30

0 .91 0 .28

0.64

23.3 52,6 0.0 0.44 0.25 Cavarretta et aZ.'t98t

0,13-2.26 0.40-7.39 0.05-0.66 0.00-0.01 3.03-3.62 Present study

0.2-1 .2 0 .3 -3 .1 3 .8 -4 .2 Gu lbrandsen ]9660.13-1 .65 0 .17-0 ,84 3 .10-4 .93 l ,4cc le l lan & Lehr 1969

- No data. 1 Ana'lyst:1,1. Nedachi.

Page 7: A SODIAN SULFATIAN FLUORAPATITE FROM AN EPITHERMAL … · A SODIAN SULFATIAN FLUORAPATITE FROM AN EPITHERMAL CALCITE_OUARTZ VEIN OF THE KUSHIKINO MINE, KAGOSHIMA PREFECTURE, JAPAN

(1971) and Rouse & Dunn (1982). The chemical com-positions ofthis series reported so far (Table 3) sug-gest the possibility of a continuous solid solution.On the other hand, the general formula of the secondseries is represented as follows: Car_rrNalP,-$r)3-O'2(F,OH,CI), where r ranges from 0 (apatite) to 1(cesanite). It is not yet evident whether this series iscompletely continuous. However, the Kushikinomaterial proves the existence of a solid solution con-taining nearly l4tlo of the CarNa3S3Or2(F,OH,Cl)end member Clable 2). Apatite with small amountsof S and Na reported by Brauns (1917) and Vasil'evaet al. (1958) are not referred to here because of theIack of complete analytical data.

The Na:S atomic ratio in members of the secondseries should be equal to unity. However, this ratioin the Kushikino material is somewhat less than onein most cases (Table 2). Values of the (Na+Si):Satomic ratio are close to one, especially in the Naand S-rich samples. This finding indicates the exis-tence of substitution of (SiO)+ for a part of(POJ3- in the material and suggests a certain extenrof overlap of the two series.

Physicochemicol conditions of formationof the sulfate and sulfotian apatites

The sulfate and sulfatian apatites have been inves-tigated so far with special attention to the chemistryand crystal structure; their contribution to an under-standing of ore formation and petrogenesis has beenrather limited. In order to deduce aspects ofthe phys-icochemical conditions of formation of thoseminerals, the literature on chemical composition ofnatural apatite was extensively reviewed (Table 3).Apatite commonly occur3 as an accessory mineralin various rocks and ore deposits. In igneous rocks,carbonatite, and sedimentary rocks, the mineral isgenerally poor in SO3. The sulfate and sulfatianapatites tend to occur in hydrothermal ore depositsand hydrothermally altered rocks, although apatitein such ore deposits and rocks is not always rich inSO3, like apatite from the Uzunosawa ore depositof the Chichibu mine, Japan.

Baoed on the equilibria in sulfur-containing aque-ous solutions (e.g., Figs. 6-8 of Barnes & Kullerud196l), (HSO)= or (SOJ2--predominant solutions,from which the sulfate and sulfatian apatites are con-sidered to precipitate, are stable under high lO2)and wide ranges of temperature, pH, andfis). The/(O), therefore, appears to be a more importantfactor for controlling the formation of those mineralsthan the others. This study supports the previous sug-gestion that epithermal-type gold-silver quartz veins,including the Kushikino ore deposits, may formunder oxidizing condition (e.g., Shikazono 1978,Izawa & Urashima 1983, Izawa 1984).

Apatite is also of interest in that it generally con-

679

tains elevated amounts of the halogens fluorine andchlorine, believed in many cases to be carriers of ore-forming metals. The F, Cl and OH contents ofnatural apatite are distinctly variable (Iable 3). Thepartitioning of halogens between apatite and solu-tion is said to be controlled by temperature, pres-sure and pH (e.9., Stormer & Carmichael l9Tl,Latil& Maury 1977, Argiolas & Baumer 1978). Latil &Maury (1977) noted, based on their studies underhydrothermal conditions, that F- displaces Cl- andOH- in the apatite structure and that Cl- has noinfluence on proportion of F- and OH-. From thepoint of view of crystal chemistry, it is difficult forCl- to enter the apatite structure, especially at lowt^emperature, because of its large ionic radius (1.!lA) relative to that of F and OH- (1.33 and 1.36 A,respectively). The following relations on halogensbetween apatite and hydrothermal solution may bepointed out: l) fluorapatite indicates a F-rich solu-tion, but it is not evident whether the solution is richor not in Cl (e.g., Kushikino apatite); 2) chlorine-rich apatite indicates a Cl-dominant, F-poor solu-tion (e.9., some of the Crestmore and Chichibu apa-tite), and 3) hydroxylapatite probably indicates a F-poor solution, but it is not evident whether the solu-tion is rich or not in Cl (e.g., Tojyo apatite).

CoNcr-usroNs

The Kushikino sodian-sulfatian fluorapatite is anintermediate member of the apatite-cesanite Gtrictlyspeaking, fluorapatite-"fluorcesanite") series.'Ihemineral is considered to have formed at 200 to250oC from a F-rich oxidizing solution.

The variety of chemical compositions of naturalapatite indicates a flexibility in composition accord-ing to and dependent on the geochemistry and phys-ical chemistry of the solution from which the mineralformed. Thus apatite is expected to provide usefulinformation on the environment of formation of themineral and of ores and rocks containing it. The sul-fate and sulfatian apatites appear to form under highf(O), rxher independent of temperature, pH,lS),and halogen species in solution. These minerals there-fore are unlikely to occur in ore deposits and rocksthat form under reducing condition (e.9., pyrrhotite-containing ore). Apatite in such ore deposits androcks is probably deficient in SO3.

ACKNOWLEDGEMENTS

The authors express their sincere thanks to Dr. A.Kato of the National Science Museum of Japan andto Professor M. Nedachi of Kagoshima Universityfor critical reading of the manuscript and kindadvice. Thanks are also due to Dr. E. lzawa ofKyushu University for measurement of homogeni-zation temperatures of fluid inclusions and to Dr.

SODIAN SULFATIAN FLUORAPATITE FROM AN EPITHERMAL VEIN. JAPAN

Page 8: A SODIAN SULFATIAN FLUORAPATITE FROM AN EPITHERMAL … · A SODIAN SULFATIAN FLUORAPATITE FROM AN EPITHERMAL CALCITE_OUARTZ VEIN OF THE KUSHIKINO MINE, KAGOSHIMA PREFECTURE, JAPAN

680 THE CANADIAN MINERALOGIST

N. Shikazono of University of Tokyo for providingan anhydrite microprobe standard. The authors aregrateful to Dr. I. Kusachi of Okayama Universityfor helpful discussion. The kind assistance of Messrs.K. Uemura and M. Takahashi of the MitsuiKushikino Mining Company, Ltd., during fieldwork, is gratefully acknowledged. The reviewers ofthe manuscript provided valuable comments. Thefinancial support for the present study was suppliedfrom the Scientific Research Fund (Grant No.59740421) of the Ministry of Education awarded tothe frst author (Y.S.) and from the Special ResearchGrant of the Ministry of Education @elegate: secondauthor, Y.U.).

REFERENcES

Anorours, R. & BeuMen, A. (1978): Synthdse de chlo-rapatite par voie hydrothermale: 6tude de I'influencede la sursaturation sur l'6volution des facids descristaux. Can. Minerol. 16. 285-290.

Berwns, H.L. & Kullsnuo, G. (1961): Equilibria insulfur-containing aqueous solutions, in the systemFe-S-O, and their conelation during ore deposition.Econ. Geol. 56, 648-688.

BeNca, A.E. & ArsBB, A.L. (1968): Empirical correc-tion factors for the electron microanalysis of sili-cates and oxides. ,/. Geol. 76,382-403.

BnauNs, R. (1917): Uber den Apatit aus dem LaacherSeegebiet. Sulfatapatit und Carbonatapatit. NeuesJahrb. Mineral. Geol., Beil. B. 41, 6U92.

Cevannrrra, G., MorreNe, A. & TBccB, F. (1981):Cesanite, CazNa:[(OHXSO)3], a sulphate isotypicto apatite, from the Cesano geothermal field(Latium, Iraly). Mineral. Mag. 44,269-273.

Coonev, P.G. (1970): A carbonate-bearing fluor-chlor-hydroxyapatite from Matale, Ceylon, Amer.Mineral. 55, 2038-2041.

EarlB, A.S. & Rocrns, A.F. (1914): Wilkeite, a newmineral of the apatite group, and okenite, its alter-ation product, from southern California. Amer. J.Sci. 1E7, 262-267.

Furuvaua, K. (1954): Geology and ore deposits oftheArakawa mine, Kagoshima Prefecture, Japan. J.Sci., Kumamoto Univ,, Ser. B. 19-89.

Gur-sneNosrN, R.A. (1966): Chemical composition ofphosphorites of the Phosphoria Formation.Geochim. Cosmochim. Acta 30, 7 69-778.

-, Kneurn, J.R., Beamv, L.B. & Mevs, R.E.(1966): Carbonate-bearing apatite from FaradayTownship, Ontario, Canada. Amer. Mineral. 51,819- 824.

Hanere, K., Necasnrraa, K., Narao, K. & Karo, A.(1971): Hydroxylellestadite, a new apatite fromChichibu mine, Saitama Prefecture, Japan. Amer.Mineral. 56, 1507-1518.

Hervecr, C. (1984): Apatite-rich iron deposits of theAvnik (Bine6l) region, southeastern Turkey. Econ.Geol. 79,354-371.

Izawa, E. (1984): Gold-silver mineralization insouthern Kyushu, and the related igneous activitiesand geothermal system. Mining Geol. 34, 66-67(abstr.). (In Japanese).

& HasHzuvr, M. (1982): Mineralogy of thegold-silver quartz veins of the Kushikino mine,Kagoshima Prefecture, J apan. Mining Geol. 32, 17 0(abstr.). (In Japanese).

& Unasnrue, Y. (1983): Gold-silver deposits insouthern Kyushu, Japan. Proc. Mining Metall. Inst.Japan/Aasffalaisian Inst. Mining Metall. Symp.,97-ttt.

Kusacl, I., HewvI, C. & Flrm'at, K. (1982): Occurrenceof wilkeite from skarnized crystalline limestone inTojyo, Hiroshima Prefecture, Japan. Coll. Abstr.Autumn Joint Meet. Mineral. Soc. Japan, Soc. Min-ing Geol. Japan, Japan. Assoc. Mineral, PetrologyEcon. Geol., C-49, 153 (abstr.). (In Japanese).

Larrr, C. & Meunv, R. (1977): Contribution i l'6tudedes 6changes d'ions OH-, Cl- et F et de leur fixa-tion dans les apatites hydrothermales, Soc. franQ,Min6ral. Crist. Bull. 100, 246-250.

McCr.sLr-eN, G.H. & LBnn, J.R. (1969): Crystal chem-ical investigation of natural apatites. Amer. Mineral,54,137+1391.

McCor.nnrl, D. (1937): The substitution of SiO4- andSOa-groups for POa-groups in the apatite structure;ellestadite, the end-member. Amer. Mineral. 22,977-986.

- (1938): A structural investigation of the isomor-phism of the apatite group. Amer. Mineral.23,l-19.

MITI (1979): Report on the regional explorationresearches of the Hokusatsu-Kushikino region(1978), Ministry of International Trade and Indus'try, l-92. (In Japanese).

MrvasnA M., KeTo, A., Mars.nove, S. & Morouune'Y. (1977): Pyrostilpnite from the east silver - blackore body of No. I Vein, Kushikino Mine, KagoshimaPrefecture, Japan. .I. Mineral. Soc. Japan 13,209-219. (In Japanese).

Motouune, Y., Yanaavoro, S., Weranavasnt' K. &Htnowarepl, F. (1981): Gold-silver ores from theArakawa No. 3 vein of Kushikino mine, KagoshimaPr ef ectv e. Mining Geol,, Spec. Issue 10, I 5-23. (InJapanese, with Engl. abstr.).

Page 9: A SODIAN SULFATIAN FLUORAPATITE FROM AN EPITHERMAL … · A SODIAN SULFATIAN FLUORAPATITE FROM AN EPITHERMAL CALCITE_OUARTZ VEIN OF THE KUSHIKINO MINE, KAGOSHIMA PREFECTURE, JAPAN

Muraryeua, H. & Izawe, E. (1964): The gold-silverores from the Kushikino mine, Kagoshima Prefec-ture, Japan, with special reference to the occurenceof naumannite. Mining Geol. 14, l9l-199. (lnJapanese, with Engl. abstr.).

NasH, W.P. (1972): Apatite chemistry and phosphorusfugacity in a differentiated igneous intrusion..4zer.Mineral. 57, 877-886.

(1976): Fluorine, chlorine, and OH-bearingminerals in the Skaergaard intrusion. Amer. J. Sci.n6,546-556.

Nnpacu, M. & UnNo, H. (1981): Chlorine and fluorinein apatites from the Orikabe granitic rocks, KitakamiMountains, Japa* Mining Geol., Spec. Issue 10,219-225. (In Japanese, with Engl. abstr.).

Rousr, R.C. & Dur.rN, P.J. (1982): A contribution tothe crystal chemistry of ellestadite and the silicatesulfate apatites. Amer. Mineral. 67, 90-96.

Sruca, Y. & URASHTMA" Y. (1983): Au-Ag-Pb-Te'mineralization in the Kushikino ore deposits. Coll.Abstr. Autumn Joint Meet, Mineral. Soc. Japan,Soc, Mining Geol. Japan, Japan. Assoc. Mineral.Petrology Econ. Geol, C-25, 123 (abstr.). (InJapanese).

& Kero, A. (1985): A sodian sulpha-tian fluorapatite from the Kushikino mine,Kagoshima Prefecture, Japan. Mineral. J. 12,269-274.

SHxazoro, N. (1978): Selenium content of acanthiteand the chemical environments of Japanese vein-typedeposits. Econ. Geol. 73, 524-533.

Sronwn, J.C. & Cenrr,ucrerr-, I.S.E. (1971): Fluorine-hydroxyl exchange in apatite and biotite: a poten-tial igneous geothermometer, Contr. Mineral,Petrology 31, l2l-131.

TarnucHr, K. (1978): On Ag-Te minerals from theArakawa No. 5 vein of the Kushikino mine,Kagoshima Prefecture, Japan. Mining Geol, ?3'42-43 (abstr.). (In Japanese).

Tezzour, V. (1983): The crystal structure of cesanite,Cal *rNaa-lSOa)3(OH)r.(l-x)H2O, a sulPhate iso-typic to apatite. Mineral. Mog. 47,59-63.

Tsusun, A., NEpecst, M. & Mrzure, T. (1981): On thegranitic rocks of the Tsumo mining district' espe-cially on the halogen contents of rock-formingminerals. Mining Geol., Spec. Issue 9, 15-22. (InJapanese, with Engl. abstr.).

Vasrl'nva, 2.V., Ltrsensv, M.A. & OncaNove, N.I.(1958): Natural sulfate-apatite. Dokl. Akad. Sci.SSSR 11E, 577-580. (In Russ.).

681

Received November 18, 1986, revised manuscriptaccepted March 4, 1987.

SODIAN SULFATIAN FLUORAPATITE FROM AN EPITHERMAL VEIN, JAPAN