A site specific expert system with supporting equipment for crop management

5

Click here to load reader

description

This system consists of: - Automated soil sampler with packaging systems. - Automated work station for the analyses of the physical and chemical attributes of the sample including pH, organic matter, particle size, sesquioxides, carbonates and nutrient elements. - An expert system to consider the analytical results combined with data bases of crop models, fertilizers, chemicals, weather, field history, seed characteristics, yield results, economic criteria and other inputs. The system then uses dynamic simulation to forecast requirements of seeds, nutrients and chemicals. - An implementation system to determine the application program for the crop for seeds, nutrients and chemicals. - An automated applicator to carry out the program.

Transcript of A site specific expert system with supporting equipment for crop management

Page 1: A site specific expert system with supporting equipment for crop management

McGRATH DE, SKOTNIKOV AV and BOBROV VA. 1994. A

site-specific expert system with supporting equipment for crop

management. p. 619-635. In: Roberts PC et al. eds. Proc. Of site-

specific management for agricultural systems, march 27-30, 1994.

Amer. Soc. Of Agronomy.

A SITE SPECIFIC EXPERT SYSTEM

WITH SUPPOTING EQUIPMENT FOR CROP MANAGEMENT

D.E.McGrath, A.V.Skotnikov, V.A. Bobrov *

ABSTRACT

Many of the contemporary approacher in solving problems in Site Specific Crop

Management (SSCM) are based on existing or created zonal maps of filds based on soil types or

other charac- teristics. However, it is known that the chemical and physical attributes of soil can

change inside these zones and may overlap between zones.

A direct method of economically determining these attributes will contribute to the

development of SSCM. This concept has drawn significant attention.As a response to this

interest an au- tomated system of equipment, handware and software has been de- signed and

constructed.

This system consists of:

- Automated soil sampler with packaging systems.

- Automated work station for the analyses of the physical and chemical attributes of the

sample including pH, organic matter, particle size, sesquioxides, carbonates and nutrient

elements.

- An expert system to consider the analytical results combined with data bases of crop

models, fertilizers, chemicals, weather, field history, seed characteristics, yield results, economic

criteria and other inputs. The system then uses dynamic simulation to forecast requirements of

seeds, nutrients and chemicals.

- An implementation system to determine the application program for the crop for seeds,

nutrients and chemicals.

- An automated applicator to carry out the program.

The expert is designed to be self instructing. As data on results are accumulated algorithms

are modified to improve fore casting availability.

KEYWORDS. Site specific, Fertilizer, Seeding, Expert System.

INTRODUCTION

A major problem in site specific agriculture (also known as precision farming, site specific

management, etc.) has been the economical collection, correlation and processing of the data

necessary in order to automate the decision making and application of the appropriate nutrients.

Spatially variable maps such as the organic matter map (Gaultney et al., 1988, McGrath et

al., 1990, Alsip and Ellingson, 1991) may be used as an indicator of the approximate rate of

fertilizer to apply. Applicators have used USDA soil maps, grid sampling or other data as basis

for estimating fertilizer requirements.

However, it is know that the chemical and physical attributes of soil can change inside

these zones and may overlap between zones.

Page 2: A site specific expert system with supporting equipment for crop management

A direct method of economically determining these attributes contribute to the

development of SSCM. This concept has drawn significant attention.

Work done at the Institute of Experimental Botany of the Academy of Science of Belarus

has suggested a possible method of data collection, evaluation and decision making ABSTRACT

can be combined into a whole package consisting of an Expert System and support equipment. In

this work a complex study of the key factors and mechanism of the production process of plants

(taking into account the mechanical composition and fertility of soil) in accordance with the

methodology of the agro system simulation was done.

As a response to this interest automated equipment, hardware and software has been

designed and constructed.

RESEARCH OBJECTIVE

To develop an economically feasible system that incorporates the theoretical work done

optimizing production of field crops.

SUMMARY

The site specific expert system with supporting equipment de- signed to optimize product

capacity of a field for a given crop (SO) (See Figure 1) is a new approach. It is a complete

package designed by the TYLER firm and includes automated units consis- ting of:

- desktop computer (PC);

- packages of software programs (Fig.2-7);

- automated soil sampler (AS);

- automated workstation for sample analysis (AWAS);

- yield monitoring system (YMS);

- automated system for fertilizer and pesticides application

(ASFA);

- automated system for seed (ASR) variable rate planting. ┌────────┐ ╔════════════╗ ┌──────────────────┐ ┌──────────────────┐ ┌┤Location├──────>║ Automatic ╟────┤ Cartrige with │ │Economic solution:│ ││ system │ ^ ║soil sampler║ │ the soil samples │ │ - MAX profit │ │└────────┘ │ ╚════════════╝ └────────┬─────────┘ │ - MAX yields │ │ │ │ │ - MIN possible │ │ ┌───────┴──────────┐ ╔══════════════════V═══════╗ │ of applied │ │<──┤Field map with the├┐ ║ Automatic work station ║ │ fertilizer │ │ │program of motion ││ ║ for the analysis ║ └───────^──────────┘ │ └──────────────────┘│ ║ of soil samples ║ │ │ ┌─────────────┐ │ ╚═════════^════════════════╝ │ │ │Date base of ├>──┐ └────┐ │ ┌──────────────────────────┘ │ │field history│ │ │ │ │ │ └─────────────┘ │ ╔═V══════V══V══╗ ┌───────────────┐ ╔══════════╗ │ ┌──────────────┐ │ ║┌────────────┐╟──>┤Sowing program │ ║ Automated║ │ │Date base on ├>─┼───>╢│ ╔══╗ ╔══ │║ │( quantity & ├>─╢ system ║ │ │fertilizers │ │ ║│ ╠══╝ ║ │║ │ type of seed )│ ║ for seed ║ │ │and pesticides│ │ ║└─╨ ╚══──┘║ └───────────────┘ ║ variable ║ │ └──────────────┘ │ ╚══^═════╤═════╝ ║ rate ║ │ ┌─────────────┐ │ │ │ ┌───────────────────┐ ║ planting ║ │ │Prognosis of │ │ │ ├───>┤Application program│ ╚══════════╝ │ │the provision├─>─┘ │ │ │ of fertilizers │ ╔═══════════╗ │ │with heat and│ │ │ │ and pesticides ├──>╢Automated ║ │ │ moisture │ │ └──┐ └───────────────────┘ ║system for ║ │ └─────────────┘ ╔════════╧══════╗ │ ┌───────────────┐ ║fertilizers║ └───────────────────>╢ Yield monitor ║ └─>┤Quantity & type├─────>╢ and ║ ╚═══════════════╝ │of fertilizers │ ║pesticides ║ │and pesticides │ ║application║ └───────────────┘ ╚═══════════╝

Fig. 1. Functional diagram of the expert system with supporting equipment

Page 3: A site specific expert system with supporting equipment for crop management

┌─────────┐ ┌──────────┐ ┌──────────┐ │ Precipi-│ │ Air │ ┌ ─ ─│ Wind │ │ tation │──────────────┐ │ humidity │ | │ speed │ └─────────┘ │ � └──────────┘ | └──────────┘ � │ � | ┌─────────┐ █▀▀▀▀▀▀▀▀▀▀▀▀▀█ │ /───────────┐ | ┌──────────┐ │ Irri- │ █ █ │\│/ Evapotrans-│<── ─ ┘ │ Air tem- │ │ gation │───────>█ Soil █ │/│\ piration │<── ─ ─ ─ ─│ perature │ └─────────┘ █ moisture █ │ \───────────┘ └──────────┘ █ █─────┘ � ______ | ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀ | / Plant\ | � /───────────┐ └ ─ ─ ─/develop.\<── ─ ─┘ ┌─────────┐ │\│/ Vertical │ \ phases / │ Ground │ │/│\ flow │ \______/ │ water │<─────────────┘ \───────────┘ └─────────┘ Fig. 2. The model of soil moisture and yield ┌─────────────┐ │N in soil or-│<──────────────────────────────┐ │ganic matter │───────────────┐ ┌─────────\ │ │and organic │ ┌──────────\ │ │ Mineral.-\│/│ ┌──────────┐ │fertilizers │─┐│Release of \│/│ │ immobil. /│\│ │ Ammonium │ └─────────────┘ ││inorganic N/│\│ └─────────/ │ ┌────────────────┤ in preci-│ ┌────────────\ │└──────────/ │ � � │ pitation │ │Release of \│/│ │ █▀▀▀▀▀▀▀▀▀▀▀▀▀█ ──── └──────────┘ │microbial N /│\│ └────>█ Plant █ \ / └────────────/ └──────────────────>█ available █<─┬────\/────█▀▀▀▀▀▀▀▀▀▀▀▀█ ┌────────\ ┌────█ ammonium █ │ /\ █ Nitrate and█ │Nitrifi- \│/│ █ █ │ / \ █ ammonium in█ │ cation /│\│ ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀ │ / \ █ solid █ █▀▀▀▀▀▀▀▀▀▀▀▀▀█ └────────/ │ │ │ │ Dis- │ █ mineral █ █ Plant █<─────────────┘ │ │ │ sol- │ █ fertilizers█ █ available █───────────────────────────────┤ │ │ ving │ ▀▀▀▀▀▀▀▀▀▀▀▀▀▀ █ nitrate █────┐ /─────────┐ ┌────────\ │ │ └──────┘ │ █ █ │\│/ Leaching │ │ Plants \│/│ │ ┌────────────┤ ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀ │/│\ │ │ uptake /│\│ │ │ ┌────────\ │ │ � � \─────────┘ └────────/ � │ │ │ Denitri-\│/│ │ └────────────────────────────────────────┘ │ │ fication/│\│ └─────────────────────────>────────────────────────┘ └────────/ � Fig. 3. Nitrogen submodel ┌─────────────┐ │P in soil or-│<──────────────────────────────┐ █▀▀▀▀▀▀▀▀▀▀▀▀█ │ganic matter │ ┌─────────\ │ █ P █ │and organic │───────────────┐ │ Mineral.-\│/│ ──── █ in solid █ │fertilizers │ ┌──────────\ │ │ immobil. /│\│ \ / █ mineral █ └─────────────┘ │Release of \│/│ └─────────/ │ ┌─────────\/────█ fertilizers█ │ │inorganic P/│\│ │ │ /\ █ █ │ └──────────/ │ � � / \ ▀▀▀▀▀▀▀▀▀▀▀▀▀▀ │ /────────────┐ │ █▀▀▀▀▀▀▀▀▀▀▀▀▀█ / \ │\│/ Release of │ └────>█ P █ │ Dis- │ │/│\ microbial P │ █ in plant █ │ sol- │ │ \────────────┘ █ available █ │ ving │ └────────────────────────────────>█ form █ │ │ ┌──────────┐ ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀ \ / │ P │ ┌─────────\ │ � \ / │ in soil │ │ Plants \│/│ └──────────\/──────│ minerals │ │ uptake /│\│ /\ │ │ └─────────/ │ / \ └──────────┘ � ──── Fig. 4. Phosphorus submodel

Page 4: A site specific expert system with supporting equipment for crop management

┌─────────────┐ │K in soil or-│<──────────────────────────────┐ █▀▀▀▀▀▀▀▀▀▀▀▀█ │ganic matter │ ┌─────────\ │ █ K █ │and organic │───────────────┐ │ Mineral.-\│/│ ──── █ in solid █ │fertilizers │ ┌──────────\ │ │ immobil. /│\│ \ / █ mineral █ └─────────────┘ │Release of \│/│ └─────────/ │ ┌─────────\/────█ fertilizers█ │ │inorganic K/│\│ │ │ /\ █ █ │ └──────────/ │ � � / \ ▀▀▀▀▀▀▀▀▀▀▀▀▀▀ │ /────────────┐ │ █▀▀▀▀▀▀▀▀▀▀▀▀▀█ / \ │\│/ Release of │ └────>█ K █ │ Dis- │ │/│\ microbial K │ █ in plant █ │ sol- │ │ \────────────┘ █ available █ │ ving │ └────────────────────────────────>█ form █ │ │ ┌──────────┐ ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀ \ / │ K │ ┌─────────\ │ � \ / │ in soil │ │ Plants \│/│ └──────────\/──────│ minerals │ │ uptake /│\│ /\ │ │ └─────────/ │ / \ └──────────┘ � ──── Fig. 5. Potassium submodel █▀▀▀▀▀▀▀▀▀▀▀▀▀█ █ █ ┌────>█ Humus █─┐ │ █ █ ├─────┐ │ █ █ │ │ /───────────┐ ┌─────────\ │ ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀ │ │\│/ Destruction│ │ Humifi- \│/│ │ │/│\ │<─ ─ ──█▀▀▀▀▀▀▀▀▀▀▀▀▀█ │ cation /│\│ █▀▀▀▀▀▀▀▀▀▀▀▀▀█ │ │ \───────────┘ █ N, P, K █ └─────────/ │ █ █ │ └────────────────────>█ in plant █ │ █ Plant █ │ █ available █ ├─────█ residues █─(─┐ ┌────────────────────>█ form █ │ █ █ │ │ │ ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀ │ ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀ │ │ │ /───────────────┐ │ │ │ │\│/ Release of │ │ █▀▀▀▀▀▀▀▀▀▀▀▀▀█ │ │ │/│\ inorganic. NPK │ │ █ █ │ ├───┘ \───────────────┘ └─────█ Organic █─┘ │ █ fertilizers █───┘ █ █ ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀ Fig. 6. Organic matter submodel █▀▀▀▀▀▀▀▀▀▀▀▀▀█ ______ █ █ / Plant\ █ Plant █ - state variable /develop.\ - calculated parameters █ residues █ \ phases / █ █ \______/ ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀ ┌──────────┐ │ Air │ - external source │ │ humidity │ or factor │ - substrate flow └──────────┘ │ or transformation � ┌─────────\ │ │ Plants \│/│ - process | │ uptake /│\│ | - correlation └─────────/ │ | Fig. 7. List of symbols

Page 5: A site specific expert system with supporting equipment for crop management

ACKNOWLEDGEMENT

his study was funded in part by Fund of Fundamental Research of Belarus. (Director

Vasiljev, E.I.)

Many suggestions and comments from Dr. Nikolaj Kan (Research and Technological

Center "Biomodel", Novocherkask, RUS) and Dr. Tamara Yanchevskaya (Laboratory of

Optimization the Productivity of the Institute Experimental Botany the Belarus Academy of

Science, Minsk, Republic of Belarus) have been incorporated into this chapter and the authors

acknowledge this contribution.

A grant from the "Special American Business Internship Training" (SABIT) program

supported the preparation and presentation of this paper. SABIT is a program of the U.S.

government private sector partnership, providing technical assistance to the independent States

of the former Soviet Union. Managed by the U.S. Department of Commerce in cooperation with

the Agency for International Development. Tyler Limited Partnership of Benson, Minnesota

provided conceptual design and funding for equipment development.

_____________________________________________________________________

* D.E. McGrath, President of General Partner of Tyler Limited Partnership, a Minnesota

limited partnership.

A.V. Skotnikov, Associate Professor, Farm Machinery Department ofthe Byelorussian

Agri-Technical University.

V.A. Bobrov, Chief of Laboratory of Optimization of Agrocenous Productivity of the

Institute Experimental Botany the Belarus Academy of Science, Minsk, Republic of Belarus.