A Simple Theoretical Model for Photoelectrochemical Solar Cell

4
 Solid State Communications, Vol. 51, No. 10, pp. 829-832, 1984. Printed in Great Britain. 0038-1098/84 $3.00 + .00 Pergamon Press Ltd. A SIMPLE THEORETICAL MODEL FOR PHOTOELECTROCHEMICAL SOLAR CELL S. Chandra, D.P. Singh and S.N. Sahu Department of Physics, Banaras Hindu University, Varanasi 221005, India (Received 5 March 1984; in revised form 15 May 1984 by R. Fieschi) An expression is derived for the quantum efficiency of a photoelectro- chemical solar cell considering the space charge recombination, charge transfer velocity and the dark current. The theory is applied to explain the quantum efficiency vs band bending curve for n-CdSe]S 2-, S]- junction solar cell for different light intensity and electrolyte concentration. 1. INTRODU CTION PHOTOELECTROCHEMICAL solar cells (PESCs) using semiconductor/electr olyte junction (instead o f a p-n junction) are of growing interest for solar energy con- version and storage [1-4]. It essentially consists of a semiconductor photoelectrode dipped in an electroltye and a metallic counter electrode dipped in the same electrolyte. Charge transfer at the semiconductor/ electrolyte interface produces a band bending (Vb) or space charge layer (SCL). In spite of a large amount of experimental work, the theoretical situation is far from being satisfactory. Most of the models of PESC end up in mathematical complexity or else recourse to over- simplification is adopted. The first attempt was made by Butler [5] based on Gartner's [6] approach developed for p-n junction solar cell. All the photogenerated car- riers are assumed to contribute to the photocurrent across the junction neglecting all loss mechanisms. Butler's theory failed for semiconductor/electrolyte junction solar cell because the space charge recombina- tion at the interface during the charge transfer cannot be neglected. Wilson's model [7] takes into account the recombination at the interface but the space charge recombination and the dark current contribution have been omitted. On the contrary Reichmann and Russak [8] did not consider the surface recombination while the space charge recombination was considered. More complete models taking into account of dark current contribution, space charge and surface recom- bination have been given by Haneman and McCann [9] using curvilinear quasi-Fermi-level as used by Panayotatos and Card [10] and E1 Guibaly et al. [11, 12] using fiat quasi-Fermi-level concept. The energy level diagram of an electrolyte near the illuminated inter- face under forward bias V is shown in Fig. 1 (El Guibaly [11, 12]. All the potential drop has been considered across the space charge layer. At the semiconductor- electrolyte interface, in actual practice, double layers also exist on the electrolyte side (termed as Helmholtz and Gouy layer) apart from the space charge layer in the semiconductor side. The Helmholtz layer is due to the formation of a dipolar structure at the interface and adsorption of ions from the electrolyte on the electrode surface [13]. For highly concentrated electrolyte, we can neglect the potential drop across the Helmholtz layer [14] but in general this is not true. Under forward bias, the quasi-Fermi-level for electrons (Ern) and for holes (E~) in the depletion region (DR) of the semi- conductor are assumed to be flat. The separation between them is q V under dark and q U under illumi- nation where U > V. This assumption represents the fact that the minority carrier concentration under illumi- nation is larger than its value in the dark. In the present paper we have tried to develop a mathematically simple theory for a PESC by including space charge recombination and opposing dark current based on E1 Guibaly's approach [11, 12]. In E1 Guibaly's derivation for photocurrent under bias, an expression based on Fig. 1, the total current is J=(S t/S)~-~{exp(qV/kT)+Bexp[q(v--U)/T]} -- (S~/S)Io{1 -- [exp (-- aW)/(1 + aLp)]} (1 a) = Jd--Jz (ab) where S~ = norm alized surface charge transfer velocity; S r = normalized surface recombination velocity; B = a space charge recombination parameter and S = S~ + Sr + exp [--q(Vb -- lO/kT] + B exp [--q(V b -- V-- U/2)/kT]. The second term in equation (1) has been identified as the photocurrent because of the occurrence of photon flux term , Io. The first term has been identified as the dark current, Ja. This is erroneous since the presence of U in the first term also implicitly makes it light intensity dependent. A correct approach would be to arrive at a detailed expression for current under illumination and 829

Transcript of A Simple Theoretical Model for Photoelectrochemical Solar Cell

5/11/2018 A Simple Theoretical Model for Photoelectrochemical Solar Cell - slidepdf.com

http://slidepdf.com/reader/full/a-simple-theoretical-model-for-photoelectrochemical-solar-cell 1/4

 

So l i d S t a t e Co mm u n i ca t i o n s , V o l . 51 , N o . 1 0 , p p . 8 2 9 - 8 3 2 , 1 9 8 4 .Pr in ted in Grea t B r i t a in .

0 0 3 8 - 1 0 9 8 / 8 4 $ 3 .0 0 + . 00Pergamon Press L td .

A S I M P L E T H E O R E T I C A L M O D E L F O R P H O T O E L E C T R O C H E M I C A L SO L A R C E L L

S. Chandra , D.P. Singh and S.N. Sahu

D ep a r t men t o f P h y s ic s , Ban a ras H i n d u U n i v e r s it y , V a ran asi 2 2 1 0 0 5 , I n d i a

(Rece ived 5 March 1 9 8 4 ; in rev ised form 15 M ay 1 9 8 4 by R . F ieschi )

A n ex p re s s io n is d e r iv ed fo r t h e q u a n t u m e f f i c i en cy o f a p h o t o e l ec t ro -chem ical so lar ce ll cons ider ing the space charge recom bina t ion , charget r an s f e r v e l o c i ty an d t h e d a rk cu r r en t . T h e t h e o ry i s ap p li ed t o ex p l a in t h eq u an t u m e f f i c i en cy v s b an d b en d i n g cu rv e fo r n -Cd Se ]S2- , S] - junct io ns o la r c e l l f o r d i f f e r en t l i gh t i n t en s i t y an d e l ec t ro l y t e co n ce n t r a t i o n .

1 . I N T R O D U C T I O N

PH O T O E L E C T RO CH E M ICA L s o la r c el ls (PE SCs ) u s in g

s e m i c o n d u c t o r / e l e c t ro l y t e j u n c t i o n ( in s te a d o f a p - n

j u n c t i o n ) a r e o f g ro w in g i n t e re s t f o r s o l a r en e rg y co n -vers ion and s to rage [1 -4 ] . I t es sen t ia l ly cons i s t s o f a

s emi co n d u c t o r p h o t o e l ec t ro d e d i p p ed i n an e l ec t ro l t y e

an d a me t a l l ic co u n t e r e l ec t ro d e d i p p ed i n t h e s ame

e l ec t ro l y t e . Cha rg e t r an s f e r a t t h e s em i co n d u c t o r /

e l ec t ro l y t e i n t e r f ace p ro d u ces a b an d b en d i n g ( V b) o r

space charge l ayer (SCL) . In sp i t e o f a l arge am oun t o f

ex p e r i men t a l w o rk , t h e t h eo re t i c a l s i t u a t io n i s f a r f r o m

b e i n g s a t is f ac t o ry . Mo s t o f t h e mo d e l s o f PE SC en d u p

i n ma t h em a t i ca l co m p l ex i t y o r e l se r eco u r s e t o o v e r-

s i mp l i f ic a t i o n i s ad o p t ed . T h e f i r s t a t t em p t w as mad e b y

Bu t l e r [ 5 ] b a sed o n G a r t n e r ' s [ 6 ] ap p ro ac h d ev e l o p ed

fo r p - n j u n c t i o n s o l a r c ell . A ll t h e p h o t o g en e ra t ed ca r -

r ie r s a r e a s s u med t o co n t r i b u t e t o t h e p h o t o cu r r en t

across the junct i on neg lec t ing al l loss mechan isms .

Bu t l e r ' s t h eo ry f a i led fo r s emi co n d u c t o r / e l ec t ro l y t e

junc t ion so lar ce l l because the space charge recom bina-

t i o n a t t h e i n t e r f ace d u r i n g t h e ch a rg e t ran s f e r c an n o t b e

neg lec ted . Wi lson's mod el [7 ] t akes in to acc oun t the

r eco m b i n a t i o n a t t h e i n t e r f ace b u t t h e s p ace ch a rg e

reco m b i n a t i o n an d t h e d a rk cu r r en t co n t r i b u t i o n h av e

b een o mi t t ed . O n t h e co n t r a ry Re i ch man n an d Ru s s ak

[8 ] d i d n o t co n s i d e r th e s u r f ace r eco m b i n a t i o n w h i l e t h e

s p ace ch a rg e r eco m b i n a t i o n w as co n s i d e r ed .Mo re co mp l e t e mo d e l s t ak i n g i n t o acco u n t o f d a rk

cu r r en t c o n t r i b u t i o n , s p ace ch a rg e an d s u r f ace r eco m-

b i n a t i o n h ave b een g iv en b y H an em an an d M cCan n [9 ]

us ing curv i l inear quas i -Fermi - level as used by

Pan ayo ta tos and Card [10] and E1 Guiba ly et al . [11 ,

12] us ing " f i a t " quas i -Fermi - level concep t . The energy

level d iagram of an e lec t ro ly te near the i l lumina ted in ter -

face unde r fo rw ard b ias V is shown in Fig . 1 (E l Guibaly

[11 , 12] . Al l the po ten t i a l d rop has been cons idered

ac ros s t h e s p ace ch arg e l ay e r . A t t h e s e m i co n d u c t o r -

e l ec t ro l y t e i n t e r face , i n ac t u a l p r ac t i c e , d o u b l e l ay e rs

a l so ex i s t o n t h e e l ec t ro l y t e si d e ( t e rmed a s H e l mh o l t z

an d G o u y l ay e r ) ap a r t f r o m t h e s p ace ch a rg e l ay e r i n t h e

s emi co n d u c t o r s i de . T h e H e l m h o l t z lay e r is d u e t o t h e

fo rm a t i o n o f a d i p o l a r s t r u c tu r e a t t h e i n t e r f ace an d

ad s o rp t i o n o f i o n s f ro m t h e e l ec t ro l y t e o n t h e e l ec t ro d e

s u r face [1 3 ] . Fo r h ig h l y co n c en t r a t ed e l ec t ro l y t e , w e

can n eg l ec t t h e p o t en t i a l d ro p ac ros s t h e H e l mh o l t z

layer [14] bu t in genera l th i s i s no t t rue . Under fo rward

b ias , the quas i -Fermi - level fo r e lec t rons (Ern) and fo r

h o l e s (E ~ ) i n t h e d ep l e t i o n r egi o n (D R ) o f t h e s emi -

co n d u c t o r a r e a s s u med t o b e f l a t. T h e s ep a ra t i o n

b e t w een t h em i s q V u n d e r d a rk an d q U under i l lumi -

nat ion w here U > V. Th is assumpt ion represen t s the fac t

t h a t t h e m i n o r i t y ca r r i e r co n ce n t r a t i o n u n d e r i l lu mi -

nat ion i s l a rger than i t s va lue in the dark .

In t h e p r e s en t p ap e r w e h av e tr i ed t o d ev e l o p a

ma t h em a t i ca l l y si mp l e t h eo ry fo r a PE SC b y i n c lu d i n gs p ace ch arg e r eco mb i n a t i o n an d o p p o s i n g d a rk cu r r en t

based on E1 Guiba ly 's approac h [11 , 12] . In E1 Guiba ly 's

d e r i v a ti o n fo r p h o t o c u r r en t u n d e r b ia s, an ex p re s s i o nbased on Fig . 1 , the to ta l c ur ren t is

J = ( S ' t / S ) ~ - ~ { e x p ( q V / k T ) + B e x p [ q ( v - - U ) / T ] }

-- (S~/S)Io{1 -- [ ex p ( - - aW ) / (1 + aL p ) ]} (1 a )

= J d - - J z ( a b )

whe re S~ = norm al ized sur face charge t rans fer ve lo c i ty ;

S r = n o rma l i zed su r f ace r eco m b i n a t i o n v e l o c i t y ; B = a

s p ace ch a rge r eco m b i n a t i o n p a r am e t e r an d S =

S~ + S r + exp [ - - q ( V b - - lO /k T] + B e x p [ - - q ( V b - - V - -

U / 2 ) / k T ] .

T h e s eco n d t e rm i n eq u a t i o n (1 ) h a s b een i d en t i f ied

a s t h e p h o t o c u r r e n t b e c a u se o f t h e o c c u r r e n c e o f p h o t o n

f lux t e rm , Io . The f i r s t t e rm has been ide n t i f i ed as the

d a rk cu r r en t , Ja . This is e r roneou s s ince the p resen ce o f

U in the f i r s t t e rm a lso im pl ic i t ly ma kes i t l igh t in tens i ty

d ep en d en t . A co r r ec t ap p ro ach w o u l d b e t o a r r i v e a t a

d e t a i led ex p re s s i o n fo r cu r r en t u n d e r i l l u mi n a t i o n an d

8 2 9

5/11/2018 A Simple Theoretical Model for Photoelectrochemical Solar Cell - slidepdf.com

http://slidepdf.com/reader/full/a-simple-theoretical-model-for-photoelectrochemical-solar-cell 2/4

 

8 3 0 T H E O R E T I C A L M O D E L F O R P H O T O E L E C T R O C H E M I C A L S O L A R C E L L

[ S e m ic o n d u c t o r ] [ ,E t e c t ro t y t e I J M e t a l

Ee- ; :

I r v . . . . . . . . . . . . . . . . . ' ~ - , . - . . t ~

Efn£i

[ f , r e a D z

I = W I - - 0X

F i g . 1 . S c h e m a t i c o f t h e e n e r g y b a n d d i a g r a m o f a n - t y p es e m i c o n d u c t o r / e l e c t r o l y t e i n t e r f a c e ( s e e t e x t ) .

t h e n s u b t r a c t t h e s t a n d a r d d a r k c u r r e n t c o n t r i b u t i o n .

T h i s is w h a t h a s b e e n a t t e m p t e d i n t h is p a p e r . F u r t h e r , a

s imple de r iv a t ion i s g iven he re fo r ca l cu l a t i ng the h o le

dens i ty a t t he edge o f t he space cha rge r eg ion . The f ina le x p r e s s i o n f o r q u a n t u m e f f i c i en c y o f a P E S C i s i n a

s i m p l e c al c u la b l e f o r m a n d e x p l a i n s t h e e x p e r i m e n t a l

r e su l t s o f t he n -CdSe /S 2 - , S~- e l ec t ro ly t e s ys t em.

2 . T H E O R Y

C o n s i d e r a s e m i c o n d u c t o r / e l e c t r o l y t e j u n c t i o n a s

s h o w n i n F ig . 1 . T h e d e n s i t y o f h o l e s ( m i n o r i t y c a r ri e rs )

i n d a r k ( P . o ) a n d u n d e r i l l u m i n a t i o n ( P n ) i n t h e n e u t r a l

r eg ion a re r e l a t ed a s [15] .

d 2P n P n - - P n o + G ( x ) = 0, (2)D p d x 2 T p

w h e r e D p and rp a re t he d i f fus ion coe f f i c i en t and l i f e

t i m e f o r h o l e s.

G ( x ) i s t h e p h o t o g e n e r a t i o n r a t e g iv e n b y [ 6 ]

G ( x ) = O d o ( 1 - r ) e - ~ , ( 3)

wh e re a i s t he abs orp t ion coe f f i c i en t , Io i s t he i n c iden t

p h o t o n f l u x a n d r i s t h e r e f l e c t a n c e .

S o l v in g e q u a t i o n ( 2 ) u n d e r t h e b o u n d a r y c o n d i t i o n s

( i ) a t x = 0% Pn = Pno, (i i) at x = W , Pn = Pn ( W ) =

Pno eqU/kT [16] ; t he ho le dens i ty a t any po in t i ns ide t he

s e m i c o n d u c t o r i s o b t a i n e d a s :

P n ( X ) - - P nO = P n o [e q U / k T - - 1 ] e ( W - x ) / L p

eft0(1 -- r)rp [ e W O _ o . L p _ x / W ) / L p _ e-aX] (4)+

w h e r e L p = ho le d i f fus ion l eng th = (D pr p) 1/2.

p , ( W ) = h o l e d e n s i t y a t t h e e d g e o f d e p l e t i o n l a y e r

o f w i d t h , W .

W = ( 2 e s e o / q N D ) l n ( V b - V) 1 /2 .

F u r t h e r , t h e h o l e f l u x a t a n y p o i n t i n t h e d e p l e t i o n

r e g i o n is g i v e n b y f o l l o w i n g c o n t i n u i t y e q u a t i o n [ 1 5 ]

] d~ { F p ( x ) } = V ( x ) - R ( x ) ,

w h e r e G ( x ) a n d R ( x ) a r e g e n e r a t i o n a n d r e c o m b i n a t i o n

ra t e s . In t eg ra t ing equa t ion (5 ) wi th in t he l imi t x = 0 t o

x = W we ob ta in t he ho le f l ux a t t he su r face , Fp(0) ,

F p(O ) = F p ( W ) - - I o ( 1 - -r ) 1 l ~ _ L p ] f R ( x ) d xo (6)

w h e r e

F p ( W ) = -- D dpn = DpPn° (eqU/kT-- 1)P d x x = W L p

~Lp/o (1 - - r ) e -~w(7)

a L p + 1

I t i s ve ry d i f f i cu l t t o exac t ly eva lua t e t he i n t eg ra l appea r -

ing in equa t ion (6 ) because o f i l l -de f ined gene ra l na tu re

o f R ( x ) . H o w e v e r , u n d e r t h e a s s u m p t i o n o f f la t q ua s i-

F e r m i - le v e l s o f e l e c t r o n s a n d h o l e s s e p a r a t e d b y qU , th ee x p r e s s i o n s g i ve n b y S a h et al. [17] and Grove [16] can

b e w r i t t e n a s

W

J R 1 . ~ A / ~ IA / ~ q U / 2 k T( X ) d x = 2 O Vth ~ V t , , i . . . . ( 8 )

0

whe re a i s t he cap tu re c ross - sec t ion fo r e l ec t rons and

h o l e s a s s u m e d a s e q u a l, vth i s t he ca r r i e r t he rma l

ve loc i ty , N t i s t he t r ap d ens i ty nea r t he i n t r ins i c Fe rmi -

level E i , and rt i i s t he i n t r i ns i c ca r r i e r con cen t ra t i on .

F r o m e q u a t i o n s ( 6 ) , ( 7 ) a n d ( 8 ) w e g e t

( e ° tp ( 0 ) = D p p . o ( e q U / k T 1 ) - - Io ( 1 - - r ) 1

+ B W e q U / z k T , (9)

w h e r e B = ½aVthNtn .

N o w w e o b t a i n a n a l t e r n a t e e p x r e s s i o n f o r F p ( 0 ) i n

t e r m s o f s u r f a c e r e c o m b i n a t i o n v e l o c i t y ( S t ) a n d s u r f a c e

t r a n s f e r v e l o c i ty (S t ) a t t he i n t e r face g iven be low:

Fp(O) = - - (Sr + S t )[Pn(O ) -p do (O )] , ( 1 0 )

w h e r e Pdo(O) a n d Pn(O) a re r e spec t ive ly t he su r face con-

c e n t r a t i o n s o f h o l e s in d a r k a t e q u i l ib r i u m a n d i n t h e

pre sence o f l igh t and app l i ed b i a s , V.

In gene ra l Sr ~ S t . H e n c e , S r c a n b e n e g l e c t e d a n d

( S t + S t ) can be s imply w r i t t en a s S . Fr om Fig . 1 i t is

c l ea r t ha t

P d o ( O ) = P .o e ° V b / k T

an d

p , ( O ) = Pn o ea V# kT [ e q ( v - V)/kT]. ( 1 1 )

T h e n f r o m e q u a t i o n s ( 1 0 ) a n d ( 11 )

F p ( 0 ) = - - SPn o eq Vb /kT[e q ( U - v ) / kT - 1)] . (12)

V o l . 5 1 , N o . 1 0

(5 )

5/11/2018 A Simple Theoretical Model for Photoelectrochemical Solar Cell - slidepdf.com

http://slidepdf.com/reader/full/a-simple-theoretical-model-for-photoelectrochemical-solar-cell 3/4

 

V o l. 5 1, N o . 1 0 T H E O R E T I C A L M O D E L F O R P H O T O E L E C T R O C H E M I C A L S O L A R C E L L 8 31

1 0 1 0

0 8

0 .6

.2

~ 0 4

E

o

( a )

. . ,~ =__ ,~- : : - : b 0 .5

. g " , ' " . ~ 0 .6

zf " b ) ~ 0 4

~ 0 2

I I IO ~ 0 2 0 3 O a 0 5 0 . 6 0. 7 0 . 8

B a n d b e n d i ng ~ V b - V ( v o lt s )

0 1 0 . 2 0 3 O z . 0 .5 0 6 O r7 0 8

B a n d b e n d i n g , V b - V ( v o t t s )

F i g . 2 . T h e o r e t i c a l ( s o l i d l i n e ) a n d e x p e r i m e n t a l ( d o t t e dl in e ) q u a n t u m e f f i c ie n c y a t d i ff e r e n t i n t e n s i ty o fi l lu m i n a t i o n a s a f u n c t i o n o f b a n d b e n d i n g . T h e a d j u s t -a b l e p a r a m e t e r s : S = 1 × 1 0 3 c m s e c - l , B = 2 . 6 × 1 01 4c m - a - s e c - 1. I n t e n s i t y o f i l l u m i n a t i o n i s : ( i ) f o r c u r v e a ,7 . 1 m W c m - 2 ( e q u i v a l e n t t o I o = 3 . 7 m A c m - = ) a n d ( ii )f o r c u r v e b , 0 . 7 1 m W c m - 2 ( e q u i v a l e n t t o I 0 =0 . 3 7 m A c m - 2 ) .

F i g . 3 . T h e o r e t i c a l ( s o l id l in e s ) a n d e x p e r i m e n t a l ( d o t t e dl in e ) q u a n t u m e f f i c i e n c y f o r d i f f e r e n t e l e c t r o l y t ec o n c e n t r a t i o n s a t I o = 0 . 3 7 m A c m -~ ( ~ 0 . 71 m W c m - Z ) .T h e a d j u s t a b l e p a r a m e t e r s a r e : B = 2 . 6 x 1 0 x4 c m - 3sec -1, S = 103 cm sec -1 fo r cu rve a c o r re spo nd in g to t hee l e c t r o l y t e ( 2 . 5 M N a 2 S + 1 M S + 1 M K O H ) a n d S =l 0 s c m s e c - x f o r c u r v e b c o r r e s p o n d i n g t o t h e e l e c t ro -l y t e ( 0 . 2 5 M N a z S + 0 . 1 M S + 1 M K O H ) .

T h u s e q u a t i n g e q u a t i o n s ( 9 ) a n d ( 1 2 ) a n d s o l v in g f o r

e qU / zkT we g e t

e q U / 2 k T = X

= _ L p 1 + - d - L p i] ) ]I

2 ~D p p n ° + S P n o e q ( V b - V ) / k T( L , , )

T h e n i n t r o d u c i n g X i n e q u a t i o n ( 1 2 ) w e g e t

F p ( O ) = - - S P n o e q ( V b - V ) / k T [ ~ - - e q V / k T ] . ( 1 4 )

T h e a b o v e f l u x i s r e a c h i n g a t t h e s u r f a c e i n t h e

p r e s e n c e o f li g h t . T h e h o l e f l u x r e a c h i n g a t t h e s u r f a c e i n

t h e d a r k i n p r e s e n c e o f a p p l i e d b i a s F i s g i v e n b y [ 1 6 ]

F f f (O ) = D p P n o ( eqV/kT _ 1 ) + B W e qv /2kT . (15 )

L pT h e r e f o r e , t h e n e t h o l e f l u x r e a c h in g t h e s u r f ac e o f t h e

s e m i c o n d u c t o r d u e t o p h o t o e x c i t a t i o n i s g i v e n b y

F~(O) = Fp(O)--Fap(O)

= _ { S P n ° e q ( V b - V ) l h T ( X 2 _ e q V / k T )

+ D p P n ° ( e q V / k T - - 1 ) + B W e q V / 2~ T } . ( 1 6 )L p

T h e q u a n t u m e f f i c ie n c y is g i v en b y

f F ~ ( 0 ) j

7 7 - Io

(13)

3 . R E S U L T S A N D D I S C U S S I O N

I n o r d e r t o c h e c k t h e v a l i d it y o f o u r t h e o r y w e h a v e

a p p l i e d o u r r e s u l t s t o c a l c u l a te t h e e f f e c t o f ( i) i ll u m i n a -

t i o n i n t e n s i t y , a n d ( i i ) e l e c t r o l y t e c o n c e n t r a t i o n

c o n t r o l li n g t h e c h a r g e t r an s f e r v e l o c i t y o n t h e q u a n t u m

e f f e ic i e n c y o f n - C d S e p h o t o a n o d e a n d p o l y s u l f id e

e l e c t r o l y t e j u n c t i o n P E S C . T h e v a l u e s o f c o n s t a n t s a r e

[8 ] : Ca r r i e r l if e t ime , rp = 10 -9 sec , i n t r i ns i c ca r r i e r con-

c e n t r a t i o n , n i = 1 07 c m - 3 , h o l e d i f f u s i o n l e n g t h , L p - -

1 × 1 0 - 4 c m , r e f l e c t a n c e , r = 0 . 1 , a b s o r p t i o n c o e f f i c i e n t ,

a = 5 . 2 × 1 0 4 c m - 1, i n i ti a l b a n d b e n d i n g , F ~ ( w i t h o u t

a p p l i e d b i a s ) = 0 . 7 V , d o n o r c o n c e n t r a t i o n , N D =

1 . 0 x 1 0 1 7 c m - 3 , d i f f u s i o n c o e f f i c i e n t , D p = 1 0 c m 2 s e c - I ,

w a v e l e n g t h o f l i g h t, X = 6 5 0 n m .

F i g u r e 2 s h o w s t h e e f f e c t o f i n t e n s i t y o f l i g h t a t

( k = 6 5 0 n m ) o n q u a n t u m e f f i ci e n c y o f P E S C f o r di f-

f e r e n t b a n d b e n d i n g s . F o r t h e o r e t i c a l c a l c u l a t i o n s ,

q u a n t i t i e s S a n d B a r e tr e a t e d a s p a r a m e t e r s w h i l e o t h e r

c o n s t a n t s a r e t a k e n a s a b o v e . I t is c le a r t h a t t h e a g r e e -

m e n t b e t w e e n o u r t h e o r y a n d e x p e r i m e n t [ 8 ] is

5/11/2018 A Simple Theoretical Model for Photoelectrochemical Solar Cell - slidepdf.com

http://slidepdf.com/reader/full/a-simple-theoretical-model-for-photoelectrochemical-solar-cell 4/4

 

83 2 T H E O R E T I C A L M O D E L F O R P H O T O E L E C T R O C H E M I C A L S O L A R C E L L V o l. 5 1, N o . 10

r ea s o n ab l y g o o d f o r l o w an d h i g h e r v a l u es o f b an d b en d -

i n g. B u t f o r m o d e r a t e v a l ues o f b an d b en d i n g t h e

theore t ica l va lues ar e h igher than exper imenta l va lues .

T h e d i s c r ep an cy i s a t t r i b u t ed t o t h e f o l lo w i n g r ea s o n s :

( i ) T h e s u r f ace r eco m b i n a t i o n p l ay s an i m p o r t an t

r o l e in t h e m o d e r a t e b an d b en d i n g r eg io n b ecau s e o f t h e

c o m p e t i t i o n b e t w e e n S r a nd S t [ 1 8 ]. H o w ev e r w e h av e

neg lec ted Sr in the p resen t case .

( i i ) the charge t r ans fer parameter 'S ' i s t r ea ted in

o u r m o d e l a s in d ep en d en t o f ap p l ied b i a s an d b a n d

b en d i n g w h i ch i s n o t r i g o r o u sl y t r u e i n v i ew o f t h e ab o v e

[ 11 ] . An othe r p o in t which eme rges f rom Fig . 2 i s tha t as

we lower the in ten s i ty , the e f f ic iency a l so decreases .

T h i s i s a co n s eq u en ce o f t h e n o n - l i n ea r d ep en d en c e o f

b ~( O ) o n I 0 a s g i v en i n eq u a t i o n ( 1 6 ) .

F i g u r e 3 s h o w s t h e e f f ec t o f ch a r g e t r an s f e r v e l o c i t y

o n q u a n t u m e f f i c i en cy f o r d i f fe r en t b an d b en d i n g . T h e

v a l u es o f p a r am e t e r S f o r d i f f e r en t co n cen t r a t i o n s a r e

a s s u m ed t o b e r e l a t ed a s :

S = kCredox,

where k i s a cons tan t , and Creaox i s t h e co n cen t r a t i o n o f

t h e e l ec t r o l y t e . Fo r h i g h e r co n c en t r a t i o n o f e l ec t r o l y t e ,

t h e r e i s a r ea s o n ab le ag r eem en t b e t w ee n t h e t h e o r y an d

ex p e r i m en t w h i l e i t is n o t s o a t l o w er co n cen t r a t i o n s .

T h e p r o b ab l e r ea s o n s f o r d i s ag r eem en t a r e :

( i ) O u r a s s u m p t i o n t h a t S i s i n d ep en d e n t o f b an d

bend ing , i s no t r igorous ly t rue as po in ted ou t ear l ie r .

( ii ) t h e p o t en t i a l d r o p ac r o s s t h e H e l m h o l t z l ay e r

can n o t b e n eg l ec t ed f o r t h e l es s co n ce n t r a t ede l ec t r o l y t e , an d

( i ii ) the ser ies r es i s tance ca n a l so no t be neg lec ted

f o r l es s co n d u c t i n g e l ec t r o l y t e a t l o w er co n cen t r a t i o n s .

We have no t cons idered the ser ies r es i s tance ef f ec t in our

m o d e l w h i c h i s k n o w n t o b e q u i te c o m p l i c a t e d f o r p - n

junct ion so lar ce l l s .

R E F E R E N C E S

1. S . Chandra & R.K . Pand ey , Phys. Status . Sol idi .(a ) 7 2 , 4 1 5 ( 1 9 8 2 ) .

2 . S . Chand ra , Photoelect roc hemica l So lar Cell ,G o r d o n an d B r each Sc ien ce Pu b l is h e rs , N ew Y o r k(1984) ( in p ress ) .

3. R . Me mm ing ,Phi l ips Teeh. Rev . 38 , 160

( 1 9 7 8 / 7 9 ) .4 . H . Ger i scher , in Solar Energy C onvers ion , T o p i c s

i n A p p l . p h y s . 3 1 . ( E d i t ed b y B .O . Se r ap h in ) ,Spr inger Ver lag, Ber l in (1979) .

5 . M .A . B u t t l e r ,Z Appl . Phys . 4 8 , 1 9 1 4 ( 1 9 7 7 ) .6 . W . W .G~irtner, Phys . Rev . 116 , 84 (1959) .7. R.H . Wilson, J . App l . Phys . 4 8 , 4 2 9 2 ( 1 9 7 7 ) .8 . J . R e i ch m an & K . R u s s ak , P h o t o e f f ect s a t S em i -

conductor /Elect ro ly te In ter face , A C S S y m p . 1 4 6 ,p . 3 5 9 ( ed i t ed b y A . J . N o z i k ) ( 1 9 8 1 ) .

9 . D . H a n e m a n & J . F . M c C a n n , P h y s . R e v . 25, 1241( 1 9 8 2 ) .

10 . P . Pa nay o ta tos & H.C. Card , Solid State Electr .23 , 41 (1980) .

I 1 . F . E1 Guib aly , K. Colbow & B.L . Fu n t , J . Appl .Phys . 5 2 , 3 4 8 0 ( 1 9 8 1 ) .

12 . F . E1 Guib aly & K. Colbo w, J . App l . Phys . 5 3 ,1 7 3 7 ( 1 9 8 2 ) .

13. M.A. Butle r & D.S. Gin ley, J . E lect rochem. Soc.1 2 5 , 2 2 8 ( 1 9 7 8 ) .

1 4 . V .A . M y am l i n & Y u .V . P l e s k o v , Elect rochemis t ryo f S e m i c o n d u c to r s , A cad em i c P re ss , N ew Y o r k( 1 9 7 6 ) .

15 . H .J . Hovel , S em i co n d u c t o r s a n d S em i m e t a l s , V o l .11, Solar Cells ( E d i t ed b y R .K . Wi l l a rd s o n & A .C.B ee r ), A cad em i c P r e ss , N ew Y o r k ( 1 9 7 5 ) .

16 . A . Grove , P h ys ic s a n d Tech n o l o g y o f S em i co n d u c -

tor Devices, p . 1 8 6 . Wi l ey , N ew Y o r k ( 1 9 6 7 ) .1 7 . C . Sah , R . N o y c e & W. Sch o ck l ey , Proc. IRE 4 5 ,

1228 (1957) .18 . H . Ger i scher , J . Electroanal. Chem. 150 , 553

( 1 9 8 3 )