A SHORT INTRODUCTION TO TWO-PHASE FLOWSherve.lemonnier.sci.free.fr/TPF/NE/06-Slides.pdf · A SHORT...

43
A SHORT INTRODUCTION TO TWO-PHASE FLOWS Critical flow phenomenon Herv´ e Lemonnier DM2S/STMF/LIEFT, CEA/Grenoble, 38054 Grenoble Cedex 9 Ph. +33(0)4 38 78 45 40, [email protected] herve.lemonnier.sci.free.fr/TPF/TPF.htm ECP, 2011-2012

Transcript of A SHORT INTRODUCTION TO TWO-PHASE FLOWSherve.lemonnier.sci.free.fr/TPF/NE/06-Slides.pdf · A SHORT...

Page 1: A SHORT INTRODUCTION TO TWO-PHASE FLOWSherve.lemonnier.sci.free.fr/TPF/NE/06-Slides.pdf · A SHORT INTRODUCTION TO TWO-PHASE FLOWS Critical ow phenomenon Herv e Lemonnier DM2S/STMF/LIEFT,

A SHORT INTRODUCTION TO

TWO-PHASE FLOWS

Critical flow phenomenon

Herve LemonnierDM2S/STMF/LIEFT, CEA/Grenoble, 38054 Grenoble Cedex 9

Ph. +33(0)4 38 78 45 40, [email protected]

herve.lemonnier.sci.free.fr/TPF/TPF.htm

ECP, 2011-2012

Page 2: A SHORT INTRODUCTION TO TWO-PHASE FLOWSherve.lemonnier.sci.free.fr/TPF/NE/06-Slides.pdf · A SHORT INTRODUCTION TO TWO-PHASE FLOWS Critical ow phenomenon Herv e Lemonnier DM2S/STMF/LIEFT,

INDUSTRIAL OCCURRENCE

• Depressurization of a nuclear reactor, LOCA (small or large break)

• Industrial accidents prevention

– Safety valves sizing, SG, chemical reactor.

– liquid helium storage in case of vacuum loss.

– LPG storage in case of fire.

• Two typical situations,

– A pressurized liquid becomes super-heated due to the break, flashingoccurs.

– A gas is created in a vessel, exothermal chemical reaction, pressurizesthe vessel, thermal quenching to recover control.

• Critical flow: for given reservoir conditions (pressure), and varying outletconditions, there exists a limit to the flow rate that can leave the system.

Critical flow phenomenon 1/42

Page 3: A SHORT INTRODUCTION TO TWO-PHASE FLOWSherve.lemonnier.sci.free.fr/TPF/NE/06-Slides.pdf · A SHORT INTRODUCTION TO TWO-PHASE FLOWS Critical ow phenomenon Herv e Lemonnier DM2S/STMF/LIEFT,

SUMMARY

• Two-component flows

– Experimental characterization

– Geometry and inlet effects

• Steam water flows, saturation and subcooling

• Theory and modeling, 2 particular simple cases,

– Single-phase flow of a perfect gas

– Two-phase flow at thermodynamic equilibrium

– General theory, if time permits...

Critical flow phenomenon 2/42

Page 4: A SHORT INTRODUCTION TO TWO-PHASE FLOWSherve.lemonnier.sci.free.fr/TPF/NE/06-Slides.pdf · A SHORT INTRODUCTION TO TWO-PHASE FLOWS Critical ow phenomenon Herv e Lemonnier DM2S/STMF/LIEFT,

SINGLE-PHASE GAS FLOW, LONG NOZZLE

1 2 3 4 5 67 8 9 10 11 12 13 1415 16 17 18 19 20 21 22 23

0.0

0.25

0.5

0.75

1.0Non dimensional pressure P/P0

0.0 100.0 200.0 300.0 400.0

Abscissa (mm)

60A57M00.PRE60A50M00.PRE60A41M00.PRE60A30M00.PRE60A20M00.PRE60A16M00.PRE60B10M00.PRE60A10M00.PRE60A10E00.PRE

60A57M00.PRE60A50M00.PRE60A41M00.PRE60A30M00.PRE60A20M00.PRE60A16M00.PRE60B10M00.PRE60A10M00.PRE60A10E00.PRE

File MG Pback

kg/h bar

60A10E00.PRE 363.9 0.973

60A10M00.PRE 364.3 1.127

60B10M00.PRE 362.9 1.135

60A16M00.PRE 364.6 1.650

60A20M00.PRE 364.5 1.986

60A30M00.PRE 364.1 3.023

60A41M00.PRE 364.4 4.088

60A50M00.PRE 361.3 5.022

60A57M00.PRE 246.6 5.749

air, TG ≈ 18÷ 22oCP0 ≈ 6 bar, D = 10 mm

Choking occurs whenpt/p0 ≈ 0.5

Critical flow phenomenon 3/42

Page 5: A SHORT INTRODUCTION TO TWO-PHASE FLOWSherve.lemonnier.sci.free.fr/TPF/NE/06-Slides.pdf · A SHORT INTRODUCTION TO TWO-PHASE FLOWS Critical ow phenomenon Herv e Lemonnier DM2S/STMF/LIEFT,

SINGLE-PHASE GAS FLOW, SHORT NOZZLE

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.0

0.25

0.5

0.75

1.0Non dimensional pressure P/P0

0.0 100.0

Abscissa (mm)

60A56B00.PRE60A47B00.PRE60A41B00.PRE60A33B00.PRE60A19B00.PRE60A13B00.PRE60A10A00.PRE

60A56B00.PRE60A47B00.PRE60A41B00.PRE60A33B00.PRE60A19B00.PRE60A13B00.PRE60A10A00.PRE

File MG Pback

kg/h bar

60A10A00.PRE 94.8 0.891

60A13B00.PRE 94.9 1.281

60A19B00.PRE 94.9 1.929

60A33B00.PRE 94.9 3.288

60A41B00.PRE 95.0 4.058

60A47B00.PRE 94.9 4.695

60A56B00.PRE 88.4 5.619

air, TG ≈ 19oCP0 ≈ 6 bar, D = 5 mmChoking occurs when

pt/p0 ≈ 0.5

Critical flow phenomenon 4/42

Page 6: A SHORT INTRODUCTION TO TWO-PHASE FLOWSherve.lemonnier.sci.free.fr/TPF/NE/06-Slides.pdf · A SHORT INTRODUCTION TO TWO-PHASE FLOWS Critical ow phenomenon Herv e Lemonnier DM2S/STMF/LIEFT,

TWO-PHASE AIR-WATER FLOW

1 2 3 4 5 67 8 9 10 11 12 13 1415 16 17 18 19 20 21 22 23

0.0

0.25

0.5

0.75

1.0Non dimensional pressure P/P0

0.0 100.0 200.0 300.0 400.0

Abscissa (mm)

60A56M36.PRE60A49M36.PRE60A37M36.PRE60A28M36.PRE60A21M36.PRE60A15M36.PRE60A10M36.PRE

60A56M36.PRE60A49M36.PRE60A37M36.PRE60A28M36.PRE60A21M36.PRE60A15M36.PRE60A10M36.PRE

File MG Pback

kg/h bar

60A10M36.PRE 215.2 0.912

60A15M36.PRE 217.4 1.489

60A21M36.PRE 216.9 2.050

60A28M36.PRE 216.1 2.798

60A37M36.PRE 204.1 3.731

60A49M36.PRE 155.3 4.897

60A56M36.PRE 94.3 5.593

TL ≈ TG ≈ 19oCP0 ≈ 6 bar, D = 10 mm,

ML ≈ 358 kg/h.Choking occurs when

pt/p0 < 0.5

Critical flow phenomenon 5/42

Page 7: A SHORT INTRODUCTION TO TWO-PHASE FLOWSherve.lemonnier.sci.free.fr/TPF/NE/06-Slides.pdf · A SHORT INTRODUCTION TO TWO-PHASE FLOWS Critical ow phenomenon Herv e Lemonnier DM2S/STMF/LIEFT,

TWO-PHASE AIR-WATER FLOWS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.0

0.25

0.5

0.75

1.0Non dimensional pressure P/P0

0.0 100.0

Abscissa (mm)

60A55B50.PRE60A45B50.PRE60A36B50.PRE60A24B50.PRE60A19B50.PRE60A14B50.PRE60B10A50.PRE

60A55B50.PRE60A45B50.PRE60A36B50.PRE60A24B50.PRE60A19B50.PRE60A14B50.PRE60B10A50.PRE

File MG Pback

kg/h bar

60B10A50.PRE 18.50 0.942

60A14B50.PRE 18.50 1.385

60A19B50.PRE 19.10 1.925

60A24B50.PRE 18.20 2.444

60A36B50.PRE 15.40 3.626

60A45B50.PRE 10.00 4.490

60A55B50.PRE 3.20 5.540

TL ≈ TG ≈ 19oCP0 ≈ 6 bar, D = 5 mm,

ML ≈ 500 kg/h.Choking simple criterion

lost.

Critical flow phenomenon 6/42

Page 8: A SHORT INTRODUCTION TO TWO-PHASE FLOWSherve.lemonnier.sci.free.fr/TPF/NE/06-Slides.pdf · A SHORT INTRODUCTION TO TWO-PHASE FLOWS Critical ow phenomenon Herv e Lemonnier DM2S/STMF/LIEFT,

SAFETY VALVE CAPACITY REDUCTION

0.0 200.0 400.0 600.0 800.0 1000.0

Liquid mass flow rate, kg/h

0.0

100.0

200.0

300.0

400.0Gas mass flow rate, kg/h

P0= 6 barP0= 4 barP0= 2 bar -Central injection (G)-P0= 6 barP0= 4 barP0= 2 bar -Annular injection (E)-Long throat EFGH , D = 10 mm

P0= 6 barP0= 4 barP0= 2 bar -Central injection (G)-P0= 6 barP0= 4 barP0= 2 bar -Annular injection (E)-Long throat EFGH , D = 10 mm

Critical flow phenomenon 7/42

Page 9: A SHORT INTRODUCTION TO TWO-PHASE FLOWSherve.lemonnier.sci.free.fr/TPF/NE/06-Slides.pdf · A SHORT INTRODUCTION TO TWO-PHASE FLOWS Critical ow phenomenon Herv e Lemonnier DM2S/STMF/LIEFT,

QUALITY EFFECT ON GAS CAPACITY

0.0 0.2 0.4 0.6 0.8 1.0

Gas quality

0.0

0.2

0.4

0.6

0.8

1.0Critical mass flow rate / Single-phase mass flow rate

P0= 6 barP0= 4 barP0= 2 bar -Central injection (G)-P0= 6 barP0= 4 barP0= 2 bar -Annular injection (E)-Long throat EFGH , D = 10 mm

P0= 6 barP0= 4 barP0= 2 bar -Central injection (G)-P0= 6 barP0= 4 barP0= 2 bar -Annular injection (E)-Long throat EFGH , D = 10 mm

Critical flow phenomenon 8/42

Page 10: A SHORT INTRODUCTION TO TWO-PHASE FLOWSherve.lemonnier.sci.free.fr/TPF/NE/06-Slides.pdf · A SHORT INTRODUCTION TO TWO-PHASE FLOWS Critical ow phenomenon Herv e Lemonnier DM2S/STMF/LIEFT,

SAFETY VALVE CAPACITY REDUCTION, SHORT NOZZLE

0.0 0.2 0.4 0.6 0.8 1.0

Gas quality

0.0

0.2

0.4

0.6

0.8

1.0Critical gas mass flow rate / Single-phase gas flow rate

P0= 6 barP0= 4 barP0= 2 bar- Central (R) P0= 6 barP0= 4 barP0= 2 bar - Annular (S) Truncated short nozzle

P0= 6 barP0= 4 barP0= 2 bar- Central (R) P0= 6 barP0= 4 barP0= 2 bar - Annular (S) Truncated short nozzle

Critical flow phenomenon 9/42

Page 11: A SHORT INTRODUCTION TO TWO-PHASE FLOWSherve.lemonnier.sci.free.fr/TPF/NE/06-Slides.pdf · A SHORT INTRODUCTION TO TWO-PHASE FLOWS Critical ow phenomenon Herv e Lemonnier DM2S/STMF/LIEFT,

STEAM-WATER FLOWS

psat(TL0) = 2.09÷ 2.11 bar

Critical flow phenomenon 10/42

Page 12: A SHORT INTRODUCTION TO TWO-PHASE FLOWSherve.lemonnier.sci.free.fr/TPF/NE/06-Slides.pdf · A SHORT INTRODUCTION TO TWO-PHASE FLOWS Critical ow phenomenon Herv e Lemonnier DM2S/STMF/LIEFT,

SUCOOLING EFFET ON CRITICAL FLOW

0

10000

20000

30000

40000

50000

60000

−10 −8 −6 −4 −2 0 2 4 6

Cri

tial m

ass

flux

[kg

/m2 /s

]

Steam quality [%]

Data 60 barHEM

Super Moby Dick data, 60 bar, saturated and subcooledIn HEM here, friction is neglected.

Critical flow phenomenon 11/42

Page 13: A SHORT INTRODUCTION TO TWO-PHASE FLOWSherve.lemonnier.sci.free.fr/TPF/NE/06-Slides.pdf · A SHORT INTRODUCTION TO TWO-PHASE FLOWS Critical ow phenomenon Herv e Lemonnier DM2S/STMF/LIEFT,

MAIN FEATURES

• Gas flow rate reaches a limit when the back pressure drops.

• In single-phase flow, this limit depends on

– Mainly on pressure MG ∝ SP0

– Geometry, throat length, effect is second order.

• In two-phase flow,

– The gas flow rate depends on quality.

– The maximum flow rate of gas and the back pressure for choking depend ongeometry,

– and on inlet effects, mechanical non-equilibrium, wG 6= wL, history effects.

• In steam water flows, thermodynamic non-equilibrium plays the same role. Inflashing flows mechanical non-equilibrium may be secondary.

Critical flow phenomenon 12/42

Page 14: A SHORT INTRODUCTION TO TWO-PHASE FLOWSherve.lemonnier.sci.free.fr/TPF/NE/06-Slides.pdf · A SHORT INTRODUCTION TO TWO-PHASE FLOWS Critical ow phenomenon Herv e Lemonnier DM2S/STMF/LIEFT,

MODELING OF CHOKED FLOWS

• Single-phase gas or steam and water at thermal equilibrium.

• Theory of choked flows:

– Time dependent 1D-model, analysis of propagation

– Stationary flows, critical points of ODE’s

• Selected results in two-phase flows,

– Non equilibrium effects on critical flow.

– Some numerical results.

• Critical flow is a mathematical property of the 1D flow model.

Critical flow phenomenon 13/42

Page 15: A SHORT INTRODUCTION TO TWO-PHASE FLOWSherve.lemonnier.sci.free.fr/TPF/NE/06-Slides.pdf · A SHORT INTRODUCTION TO TWO-PHASE FLOWS Critical ow phenomenon Herv e Lemonnier DM2S/STMF/LIEFT,

PRIMARY BALANCE EQUATIONS (1D)

• Mixture mass balance

∂ρ

∂t+ w

∂ρ

∂z+ w

∂ρ

∂z= −ρw

A

dAdz

• Mixture momentum balance

∂w

∂t+ w

∂w

∂z+

∂p

∂z= −P

AτW

• Mixture total energy balance

∂t

(u+

12w2

)+ w

∂z

(h+

12w2

)=PAqW

• Volume forces have been neglected.

• τW : wall sher stress, qW : heat flux to the flow. P: Common wetted andheated perimeter

• Closures must be provided and remain algebraic (no differential terms).

Critical flow phenomenon 14/42

Page 16: A SHORT INTRODUCTION TO TWO-PHASE FLOWSherve.lemonnier.sci.free.fr/TPF/NE/06-Slides.pdf · A SHORT INTRODUCTION TO TWO-PHASE FLOWS Critical ow phenomenon Herv e Lemonnier DM2S/STMF/LIEFT,

SECONDARY BALANCE EQUATIONS (1D)

• mixture enthalpy balance,

∂h

∂t− 1ρ

∂p

∂t+ w

∂h

∂z=PAρ

(τWw + qW )

• Mixture entropy balance,

∂s

∂t+ w

∂s

∂z=PAρT

(τWw + qW )

• NB: secondary equations were derived from primary ones.

• Mixture equations remain valid if mechanical or thermodynamic non-equilibrium are accounted for.

Critical flow phenomenon 15/42

Page 17: A SHORT INTRODUCTION TO TWO-PHASE FLOWSherve.lemonnier.sci.free.fr/TPF/NE/06-Slides.pdf · A SHORT INTRODUCTION TO TWO-PHASE FLOWS Critical ow phenomenon Herv e Lemonnier DM2S/STMF/LIEFT,

PROPAGATION ANAYSIS

• Mass, momentum, entropy balances for the mixture,

A∂X∂t

+ B∂X∂z

= C

• Equation of state, p(ρ, s), the pressure p should be eliminated.

X =

ρ

w

s

, A =

1 0 0

0 1 0

0 0 1

, B =

w ρ 0

p′ρ/ρ 1 p′s/ρ

0 0 w

,

• Waves are small perturbations, perturbation method,, X = X0 +εX1 + · · · ,

• X0: Steady state solution.

• Taylor expansion, polynomials in ε ...

Critical flow phenomenon 16/42

Page 18: A SHORT INTRODUCTION TO TWO-PHASE FLOWSherve.lemonnier.sci.free.fr/TPF/NE/06-Slides.pdf · A SHORT INTRODUCTION TO TWO-PHASE FLOWS Critical ow phenomenon Herv e Lemonnier DM2S/STMF/LIEFT,

SOLUTIONS

• Steady flow,

B∂X0

∂z= C

• Linear perturbation,

A(X0)∂X1

∂t+ B(X0)

∂X1

∂z= DX1

• RHS are evaluated at X0,

DX1 =∂C∂X

X1 −∂A∂X

X1∂X0

∂t− ∂B∂X

X1∂X0

∂z.

• Perturbation as waves, X1 = X1ei(ωt−kz)

• c, phase velocity of small perturbations,

c ,ω

k,

(cA− B− D

ik

)X1 = 0

• Dispersion equation.

Critical flow phenomenon 17/42

Page 19: A SHORT INTRODUCTION TO TWO-PHASE FLOWSherve.lemonnier.sci.free.fr/TPF/NE/06-Slides.pdf · A SHORT INTRODUCTION TO TWO-PHASE FLOWS Critical ow phenomenon Herv e Lemonnier DM2S/STMF/LIEFT,

DISPERSION EQUATION, SOUND VELOCITY• Large wave number assumption, k →∞ (X0: is quasi uniform),

• Non zero solutions if and only if,

det (cA− B) = (w − c)(w2 − p′ρ) = 0

• 3 propagation modes: w, w ± a, a: so called isentropic speed of sound,

a2 = p′ρ ,

(∂p

∂ρ

)s

• Examples,

– Perfect gas, R =R

M, R p. g. cst., γ =

CPCV

,

a2 = γRT

– Steam and water at thermal equilibrium,

a2 =h′x

ρ′ph′x + ρ′x(1/ρ− h′p)

,

h(x, p) = xhV sat + (1− x)hLsat,

v(x, p) = xvV sat + (1− x)vLsat = 1ρ

Critical flow phenomenon 18/42

Page 20: A SHORT INTRODUCTION TO TWO-PHASE FLOWSherve.lemonnier.sci.free.fr/TPF/NE/06-Slides.pdf · A SHORT INTRODUCTION TO TWO-PHASE FLOWS Critical ow phenomenon Herv e Lemonnier DM2S/STMF/LIEFT,

WAVE PROPAGATIONS AND CHOKING

w-a w+aw w-a w w+a

t

z

(a) subsonic flow

w-a

w+aw

w-a

w

w+a

t

z

(b) supersonic flow

• When w − a < 0 every where, subsonic flow, flow rate depends on back pressure

• If somewhere, w − a > 0, supersonic flow,

– Waves can no longer propagate from downstream

– the point where w = a is the critical (sonic) section. Waves are stationary.

Critical flow phenomenon 19/42

Page 21: A SHORT INTRODUCTION TO TWO-PHASE FLOWSherve.lemonnier.sci.free.fr/TPF/NE/06-Slides.pdf · A SHORT INTRODUCTION TO TWO-PHASE FLOWS Critical ow phenomenon Herv e Lemonnier DM2S/STMF/LIEFT,

THE CRITICAL VELOCITY OF THE HEM

0

50

100

150

200

250

300

350

400

450

500

0 0.2 0.4 0.6 0.8 1

HE

M−

soun

d ve

loci

ty (

m/s

)

steam quality

1 bar50 bar

100 bar150 bar200 bar

• Air at 20oC,

a ≈ 343 m/s

• Steam and water at 5 bar,

– Thermal equilibrium mixture

1 < a < 439 m/s

– Saturated Water only at 5 bara ≈ 1642 m/s

– Saturated steam only at 5 bar :a ≈ 494 m/s

• The mixture compressibility resultsfrom the change in composition atthermodynamic equilibrium.

Critical flow phenomenon 20/42

Page 22: A SHORT INTRODUCTION TO TWO-PHASE FLOWSherve.lemonnier.sci.free.fr/TPF/NE/06-Slides.pdf · A SHORT INTRODUCTION TO TWO-PHASE FLOWS Critical ow phenomenon Herv e Lemonnier DM2S/STMF/LIEFT,

PRACTICAL IMPLEMENTATION

• Transient analysis shortcomings:

– Physical consistency of the two-fluid one-pressure models

– Conditionally hyperbolic,

– Terrible numerical analysis (non-conservative schemes)

– Time and space requirements are large to resolve waves.

• Critical flow can be analyzed with the stationary model

• Steady equations are much simpler,

– EDO’s instead of EDP’s, no physical consistency problems,

– Initial value problem,

– Simple and accurate schemes (Runge-Kutta, adaptative step)

– Price to pay: critical points, where solutions is not unique (there’s nofree lunch...)

Critical flow phenomenon 21/42

Page 23: A SHORT INTRODUCTION TO TWO-PHASE FLOWSherve.lemonnier.sci.free.fr/TPF/NE/06-Slides.pdf · A SHORT INTRODUCTION TO TWO-PHASE FLOWS Critical ow phenomenon Herv e Lemonnier DM2S/STMF/LIEFT,

STATIONARY FLOW OF A PERFECT GAS

• Mass balance,ddzAρw = 0

• Momentum balance, circular pipe, CF is the friction coefficient,

ρwdwdz

+dpdz

= − 4D

12CF ρw

2 = 0

• Energy balance, adiabatic flow,

ddz

(h+

12w2

)= 0

• For a perfect gas and a variable section, D(z), Only one ODE,

Ma =w

a,

dM2

dz=

4M2(1 + γ−12 M2)(γCFM2 −D′)D(1−M2)

Critical flow phenomenon 22/42

Page 24: A SHORT INTRODUCTION TO TWO-PHASE FLOWSherve.lemonnier.sci.free.fr/TPF/NE/06-Slides.pdf · A SHORT INTRODUCTION TO TWO-PHASE FLOWS Critical ow phenomenon Herv e Lemonnier DM2S/STMF/LIEFT,

SOLUTIONS ANALYSIS

• Variable section nozzle, D = F (x), y = Ma2,

dydx

=Y (x, y)X(x, y)

=4y(1 + γ−1

2 y)(γCF y − F ′)F (1− y)

,

• Autonomous form, dxdu

= X(x, y)

dydu

= Y (x, y)

• u dummy, advancement parameter, the system is autonomous when u isnot explicit in the RHS. u > 0 selected, signe of X.

• Solve the initial value problem: Draw the current lines of vector (X,Y ).The analysis of the solution topology does not require to calculate them!

Critical flow phenomenon 23/42

Page 25: A SHORT INTRODUCTION TO TWO-PHASE FLOWSherve.lemonnier.sci.free.fr/TPF/NE/06-Slides.pdf · A SHORT INTRODUCTION TO TWO-PHASE FLOWS Critical ow phenomenon Herv e Lemonnier DM2S/STMF/LIEFT,

ADIABATIC FLOW WITH CONSTANT SECTION,• Constant section, F =cst, CF =cst.

X = F (1− y) and Y = 4γCF y2

(1 +

γ − 12

y

).

• Solution analysis, signs of X and Y.

• back to EDO’s, integration is possible,• Evolution equation, Ma→M

1−M2

M4(1 + γ−12 M2)

dM2 =4γCFD

dz.

• Initial conditions, z = 0, M = M0

4CF zD

= G(M)−G(M0), G(M) =γ + 1

2γln

1 + γ−12 M2

M2− 1γM2

.

• for given M = M0, z cannot exceed z∗, limiting length.

4CF z∗

D= G(1)−G(M) =

1−M2

γM2+γ + 1

2γln

(γ + 1)M2

2(1 + γ−12 M2)

Critical flow phenomenon 24/42

Page 26: A SHORT INTRODUCTION TO TWO-PHASE FLOWSherve.lemonnier.sci.free.fr/TPF/NE/06-Slides.pdf · A SHORT INTRODUCTION TO TWO-PHASE FLOWS Critical ow phenomenon Herv e Lemonnier DM2S/STMF/LIEFT,

ADIABATIC FLOW WITH FRICTION: FANNO FLOW

• Because of friction the flow is not isentropic, M evolution parameter,

• Velocityv

v∗= M

√γ + 1

2(1 + γ−12 M2)

• Temperature,T

T ∗=

γ + 12(1 + γ−1

2 M2)

• Density

ρ

ρ∗=

1M

√2(1 + γ−1

2 M2)γ + 1

• Pressure,p

p∗=

1M

√γ + 1

2(1 + γ−12 M2)

Critical flow phenomenon 25/42

Page 27: A SHORT INTRODUCTION TO TWO-PHASE FLOWSherve.lemonnier.sci.free.fr/TPF/NE/06-Slides.pdf · A SHORT INTRODUCTION TO TWO-PHASE FLOWS Critical ow phenomenon Herv e Lemonnier DM2S/STMF/LIEFT,

ADIABATIC FLOW WITH VARIABLE SECTION

• Variable section, adiabatic flow,

X = F (1− y)

Y = 4y(1 +γ − 1

2y)(γCF y − F ′)

• No analytic solution,

• Signs of X and Y, 4 quadrants,

X = 0⇒ y = 1, Y = 0⇒ F ′(x) = γCF

• Critical point: X and Y are both zero. (x∗, y∗) downstream the throat.

• Linear analysis around the critical point.

Critical flow phenomenon 26/42

Page 28: A SHORT INTRODUCTION TO TWO-PHASE FLOWSherve.lemonnier.sci.free.fr/TPF/NE/06-Slides.pdf · A SHORT INTRODUCTION TO TWO-PHASE FLOWS Critical ow phenomenon Herv e Lemonnier DM2S/STMF/LIEFT,

CRITICAL POINTS FEATURES

• Linearize around critical point, change of variable,

dy′

dx′=Y1

X1=

Yx(x∗, y∗)x′ + Yy(x∗, y∗)y′

Xx(x∗, y∗)x′ +Xy(x∗, y∗)y′,

x′ = x− x∗

y′ = y − y∗

• Slope of solutions at the critical point, λ = y′/x′ = Y1/X1,

F (x∗)λ2 + 2CF γ(γ + 1)λ− 2(γ + 1)F”(x∗) = 0

• 2 real roots since F”(x*),

∆ = 4γ2(γ + 1)2C2F + 8(γ + 1)F (x∗)F”(x∗), λ1λ2 =

−2(γ + 1)F”(x∗)F (x∗)

• At the critical point, 2 branches one is subsonic the other is supersonic, othercritical points may occur (Kestin & Zaremba, 1953).

• For a variable and decreasing back pressure, subsonic flow, critical flow and su-personic flow. Some range of back pressure can not be reached. In agreementwith experiments provided that 1D assumption is correct.

Critical flow phenomenon 27/42

Page 29: A SHORT INTRODUCTION TO TWO-PHASE FLOWSherve.lemonnier.sci.free.fr/TPF/NE/06-Slides.pdf · A SHORT INTRODUCTION TO TWO-PHASE FLOWS Critical ow phenomenon Herv e Lemonnier DM2S/STMF/LIEFT,

ISENTROPIC FLOW WITH VARIABLE CROSS SECTION• Very important particular case: isentropic flow.

(y − 1)dy2y(1 + γ−1

2 y)=

2F ′dxF

=dA

A

• No history effect (CF = 0), A is the main variable, no longer z. Critical pointscan only be at the throat or at the end.

• Evolution,

A

A∗=

1M

[(2

γ + 1

)(1 +

γ − 12

M2

)] γ+12(γ−1)

• Pressure,

p0

p=(

1 +γ − 1

2M2

) γγ−1

,p∗

p0=(

2γ + 1

) γγ−1

≈ 0, 5283

• Mass flux,

G = ρw = p0

√γ

RT0

M(1 + γ−1

2 M2) γ+1

2(γ−1)

, G∗ =p0√RT0

√γ

(2

γ + 1

) γ+1γ−1

Critical flow phenomenon 28/42

Page 30: A SHORT INTRODUCTION TO TWO-PHASE FLOWSherve.lemonnier.sci.free.fr/TPF/NE/06-Slides.pdf · A SHORT INTRODUCTION TO TWO-PHASE FLOWS Critical ow phenomenon Herv e Lemonnier DM2S/STMF/LIEFT,

STEAM WATER FLOW WITH THE HEM

• Important and simple particular case: isentropic flow with saturated reser-voir conditions, p0, x0 → h0, s0

• Mass, energy and entropy for the mixture, closed form solution,

m = Sρw,

h0 = h+12w2,

s0 = s.

• Mixture variables, thermodynamical variables at saturation

(x, p) =x

ρV (p)+

1− xρL(p)

= v(x, p) = xvV (p) + (1− x)vL(p)

h(x, p) = xhV (p) + (1− x)hL(p),

s(x, p) = xsV (p) + (1− x)sL(p),

Critical flow phenomenon 29/42

Page 31: A SHORT INTRODUCTION TO TWO-PHASE FLOWSherve.lemonnier.sci.free.fr/TPF/NE/06-Slides.pdf · A SHORT INTRODUCTION TO TWO-PHASE FLOWS Critical ow phenomenon Herv e Lemonnier DM2S/STMF/LIEFT,

A SIMPLE ALGORITHM• Look for the back pressure, p, that makes G = ρw maximum,

• Get the quality from entropy,

x =s0 − sL(p)

sV (p)− sL(p)

• get the velocity from energy

w =√

2(h0 − h)

• Calculates the mass flux,

G = ρw =w

v

P x h w ρ G c

bar - kJ/kg m/s kg/m3 kg/m2/s m/s

5.00 .0000 640.38 .00 915.3 .0 4.56

4.90 .0015 640.37 5.26 594.5 3128.7 6.84

4.80 .0031 640.35 8.21 434.4 3568.6 9.13

4.70 .0047 640.32 10.95 338.5 3707.7 11.42

4.60 .0063 640.29 13.63 274.6 3744.0 13.71

4.50 .0079 640.25 16.31 229.0 3734.7 16.00

4.40 .0096 640.20 18.99 194.9 3702.0 18.30

Critical flow phenomenon 30/42

Page 32: A SHORT INTRODUCTION TO TWO-PHASE FLOWSherve.lemonnier.sci.free.fr/TPF/NE/06-Slides.pdf · A SHORT INTRODUCTION TO TWO-PHASE FLOWS Critical ow phenomenon Herv e Lemonnier DM2S/STMF/LIEFT,

SATURATED WATER 5 BAR

0

500

1000

1500

2000

2500

3000

3500

4000

4 4.2 4.4 4.6 4.8 5 0

5

10

15

20

25

30

35

G (

kg/m

2 /s)

w e

t c (

m/s

)

P (bar)

GG (tableau 4)

wc

Critical flow phenomenon 31/42

Page 33: A SHORT INTRODUCTION TO TWO-PHASE FLOWSherve.lemonnier.sci.free.fr/TPF/NE/06-Slides.pdf · A SHORT INTRODUCTION TO TWO-PHASE FLOWS Critical ow phenomenon Herv e Lemonnier DM2S/STMF/LIEFT,

CRITICAL FLOW WITH THE HEM (SATURATED INLET)

0

1000

2000

3000

4000

5000

6000

7000

2 3 4 5 6 7 8 9 10

G (

kg/m

2 /s)

P (bar)

x0 = 0

x0 = 1Gc, ∆x0=0.1

1

2

3

4

5

6

7

8

9

2 3 4 5 6 7 8 9 10P c

(ba

r)P (bar)

x0 = 0

x0 = 1

Pc, ∆x0=0.1

Critical flow phenomenon 32/42

Page 34: A SHORT INTRODUCTION TO TWO-PHASE FLOWSherve.lemonnier.sci.free.fr/TPF/NE/06-Slides.pdf · A SHORT INTRODUCTION TO TWO-PHASE FLOWS Critical ow phenomenon Herv e Lemonnier DM2S/STMF/LIEFT,

CRITICAL FLOW WITH THE HEM (CT’D)

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 20 40 60 80 100 120 140 160

G (

kg/m

2 /s)

P (bar)

x0 = 0

x0 = 1

Gc, ∆x0=0.1 0

20

40

60

80

100

120

0 20 40 60 80 100 120 140 160P c

(ba

r)P (bar)

x0 = 0

x0 = 1

Pc, ∆x0=0.1

Critical flow phenomenon 33/42

Page 35: A SHORT INTRODUCTION TO TWO-PHASE FLOWSherve.lemonnier.sci.free.fr/TPF/NE/06-Slides.pdf · A SHORT INTRODUCTION TO TWO-PHASE FLOWS Critical ow phenomenon Herv e Lemonnier DM2S/STMF/LIEFT,

TWO-PHASE FLOW WITH THE TWO-FLUID MODEL

• Two-fluid model, 6 equations or more.

• Wealth of behavior, non-equilibriums, numerical integration is required

• Critical conditions are mathematical properties of the system.

– The consistency of the velocity propagation depend on the closureconsistency.

– Wave propagation may differ from sound velocity,

– However the solution topology is identical to that of single-phase flow.

– The critical section may differ in position (greatly)

• Many choked flow models assume the critical section position, though itresults from the calculation

• The critical nature of the flow is assumed, though it derives from thecalculation.

Critical flow phenomenon 34/42

Page 36: A SHORT INTRODUCTION TO TWO-PHASE FLOWSherve.lemonnier.sci.free.fr/TPF/NE/06-Slides.pdf · A SHORT INTRODUCTION TO TWO-PHASE FLOWS Critical ow phenomenon Herv e Lemonnier DM2S/STMF/LIEFT,

CRITICAL POINTS ANALYSIS

• ODE’s n equations solved wrt derivatives,

BdXdz

= C,dxidz

=∆i

∆, i = 1, · · ·n

• Autonomous form,dzdu

= ∆,dxidu

= ∆i

• Critical point condition,

∆ = 0, ∆i = 0, i = 1, · · ·n

• (Bilicki et al. , 1987) showed,

∆ = 0 and ∆i0 = 0⇒ ∆i = 0, i 6= i0 ∈ [1, n]

• Only two independent critical conditions:

– ∆ = 0, critical condition (i), same as w = a in single phase flow,

– ∆i = 0, sets the critical section location, same as F ′(x) = γf .

Critical flow phenomenon 35/42

Page 37: A SHORT INTRODUCTION TO TWO-PHASE FLOWSherve.lemonnier.sci.free.fr/TPF/NE/06-Slides.pdf · A SHORT INTRODUCTION TO TWO-PHASE FLOWS Critical ow phenomenon Herv e Lemonnier DM2S/STMF/LIEFT,

SOLUTION TOPOLOGY

After Bilicki et al. (1987).

Critical flow phenomenon 36/42

Page 38: A SHORT INTRODUCTION TO TWO-PHASE FLOWSherve.lemonnier.sci.free.fr/TPF/NE/06-Slides.pdf · A SHORT INTRODUCTION TO TWO-PHASE FLOWS Critical ow phenomenon Herv e Lemonnier DM2S/STMF/LIEFT,

NUMERICAL SOLUTION OF EQUATIONS

• n equations, dimension of phase space is n+ 1

• ∆ = 0 ou ∆i=0 defines a manifold of dimension n.

• All critical points ∈ S manifold of dimension n− 1.

• Topology at the critical point, identical to single-phase flow

• The linearized system has only tow non-zero eigenvalues.

• The corresponding eigenvectors, solution near the critical point.

• One step there and resume numerical integration.

• Shooting problem: Find the point in S connected to X0 by a solution.

Critical flow phenomenon 37/42

Page 39: A SHORT INTRODUCTION TO TWO-PHASE FLOWSherve.lemonnier.sci.free.fr/TPF/NE/06-Slides.pdf · A SHORT INTRODUCTION TO TWO-PHASE FLOWS Critical ow phenomenon Herv e Lemonnier DM2S/STMF/LIEFT,

PRACTICAL IMPLEMENTATION

• Boundary problem with a free boundary, z∗ < L.

• n-1 upstream conditions are given, shooting on the last one (ex. gas flowrate).

• PIF algorithm by Yan Fei (Giot, 1994, 2008)

– Assume the critical point is a saddle. Dichotomic search.∗ If calculation goes up to the nozzle end, flow is subcritical. increase

the gas flow rate.∗ If solution turns back, ∆ changes sign z∗ < L. Decrease the flow rate.

– This method cannot cross the critical point.

– Cannot reach the supercritical branch.

Critical flow phenomenon 38/42

Page 40: A SHORT INTRODUCTION TO TWO-PHASE FLOWSherve.lemonnier.sci.free.fr/TPF/NE/06-Slides.pdf · A SHORT INTRODUCTION TO TWO-PHASE FLOWS Critical ow phenomenon Herv e Lemonnier DM2S/STMF/LIEFT,

• Direct method (Lemonnier & Bilicki, 1994, Lemaire, 1999).

– Assume there is a saddle. Check later.

– Find an estimate of critical point by PIF.

– Set two its coordinates to satisfy exactly. (∆ = ∆p = 0).

– Backward integration (linearization, eigen-values, chek here for the sad-dle, eigen-vectors...)

– Solve (Newton) for the remaining (n− 2) coordinates to reach X0

• Allows the full determination of the critical point topology.

• Get the two downstream branches afterwards.

• NB: with non equilibriums, backward integration may become unstable isthe system is stiff: change the model...

Critical flow phenomenon 39/42

Page 41: A SHORT INTRODUCTION TO TWO-PHASE FLOWSherve.lemonnier.sci.free.fr/TPF/NE/06-Slides.pdf · A SHORT INTRODUCTION TO TWO-PHASE FLOWS Critical ow phenomenon Herv e Lemonnier DM2S/STMF/LIEFT,

NON-EQUILIBRIUM EFFECTS

• Thermal non-equilibrium in steam water flows, Homogeneous relaxation model, HRM

– 3 mixture equations, x 6= xeq, hL < hLsat(p), hV = hV sat(p)

dxdz

= −x− xeq

wθ, ρ = ρ(p, h, x)

– θ is a closure, from Super Moby Dick experiment (Downar-Zapolski et al. , 1996).

A′

A=PCFw2

2A∂ρ

∂p+x− xeq

θρ

∂ρ

∂x

– The critical section shifts downstream due to non-equilibrium.

• Mechanical non-equilibrium air-water flows,

– Two-component isothermal flow

– Mechanical on equilibrium: liquid inertia and interfacial friction, τi

A′

A=PA

τWρGw2

G

− 3(1− α)τi4RdρGw2

G

(1− ρGw

2G

ρLw2L

)– The critical section shifts downstream. May leave the nozzle...

Critical flow phenomenon 40/42

Page 42: A SHORT INTRODUCTION TO TWO-PHASE FLOWSherve.lemonnier.sci.free.fr/TPF/NE/06-Slides.pdf · A SHORT INTRODUCTION TO TWO-PHASE FLOWS Critical ow phenomenon Herv e Lemonnier DM2S/STMF/LIEFT,

MORE ON CRITICAL FLOW

• Two-phase choked flows,

– Introduction, Giot (1994)

– Text, Giot (2008), in French

– Non-equilibrium effects, Lemonnier & Bilicki (1994)

• Voir aussi,

– Single-phase flow, very tutorial Kestin & Zaremba (1953)

– Math aspects and critical points, Bilicki et al. (1987)

– Modeling, HRM, Downar-Zapolski et al. (1996)

– Two-component flows, Lemonnier & Selmer-Olsen (1992)

Critical flow phenomenon 41/42

Page 43: A SHORT INTRODUCTION TO TWO-PHASE FLOWSherve.lemonnier.sci.free.fr/TPF/NE/06-Slides.pdf · A SHORT INTRODUCTION TO TWO-PHASE FLOWS Critical ow phenomenon Herv e Lemonnier DM2S/STMF/LIEFT,

REFERENCES

Bilicki, Z., Dafermos, C., Kestin, J., Majda, J., & Zeng, D. L. 1987. Trajectories andsingular points in steady-state models of two-phase flows. Int. J. Multiphase Flow, 13,511–533.

Downar-Zapolski, P., Bilicki, Z., Bolle, L., & Franco, J. 1996. The non-equilibriumrelaxation model for one-dimensional flashing liquid flow. Int. J. Multiphase Flow,22(3), 473–483.

Giot, M. 1994. Two-phase releases. J. Loss Prev. Process Ind., 7(2), 77–93.

Giot, M. 2008. Thermohydraulique des reacteurs nucleaires. Collection genie atomique.EDP Sciences. Chap. 11-Blocage des ecoulements diphasiques, pages 421–474.

Kestin, J., & Zaremba, S. K. 1953. One-dimensional high-speed flows. Aircraft Engi-neering, June, 1–5.

Lemaire, C. 1999. Caracterisation et modelisation du blocage de debit en ecoulementdisperse a deux constituants en geometrie tridimensionnelle. Ph.D. thesis, InstitutNational Polytechnique de Grenoble, Grenoble, France.

Lemonnier, H., & Bilicki, Z. 1994. Multiphase Science and Technology. Vol. 8. BegellHouse. G.F. Hewitt, J.M. Delhaye and N. Zuber, Eds. Chap. 6, Steady two-phasechoked flow in channels of variable cross sectional area.

Lemonnier, H., & Selmer-Olsen, S. 1992. Experimental investigation and physical mod-elling of two-phase two-component flow in a converging-diverging nozzle. InternationalJournal of Multiphase Flow, 18(1), 1–20.

Critical flow phenomenon 42/42