A QIP Course on Smart Grid Technology: Smart Grid...

69
A QIP Course on Smart Grid Technology: Smart Grid Protocols Ankush Sharma Assistant Professor Dept. of EE, IIT Kanpur E-mail: [email protected]

Transcript of A QIP Course on Smart Grid Technology: Smart Grid...

Page 1: A QIP Course on Smart Grid Technology: Smart Grid Protocolsiitk.ac.in/smartcity/qip/download/ppt/Day-4/Smart Grid Protocols.pdf · A QIP Course on Smart Grid Technology: Smart Grid

A QIP Course on Smart Grid Technology: Smart Grid Protocols

Ankush SharmaAssistant Professor

Dept. of EE, IIT KanpurE-mail: [email protected]

Page 2: A QIP Course on Smart Grid Technology: Smart Grid Protocolsiitk.ac.in/smartcity/qip/download/ppt/Day-4/Smart Grid Protocols.pdf · A QIP Course on Smart Grid Technology: Smart Grid

Contents

Various Smart Grid Protocols

IEC 61850 Protocol

Tele-Control Protocols

DLMS/COSEM Protocols

Page 3: A QIP Course on Smart Grid Technology: Smart Grid Protocolsiitk.ac.in/smartcity/qip/download/ppt/Day-4/Smart Grid Protocols.pdf · A QIP Course on Smart Grid Technology: Smart Grid

Smart Grid Protocols and Standards- IEEE C37.118:IEEE Standard for SynchrophasorMeasurements for Power Systems- IEC 61970: Common Information Model (CIM) / Energy Management- IEC 60870-6: Inter-Control CenterCommunications Protocol- IEC 60870-5-104: Network access for IEC 60870-5-101 using standard transport profiles

- IEC 61850: Power Utility Automation- IEC 61968: Common Information Model (CIM) / Distribution Management- IEC 62056: Data exchange for meter reading, tariff and load control- DNP 3.0: Interoperability between substation computers, RTUs, IEDs and master stations

- IEC 62325: Deregulated energy market communications standards- AS 4777: Grid connection of energy systems via inverters- AS 4577: Framework for the control of electrical devices for DRM

- IEC 62351: Security- IEC 61508: Functional safety of electrical/electronic/ programmable electronic safety-related systems- IEEE 1588: Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems

Major Smart Grid Protocols/

Standards

Page 4: A QIP Course on Smart Grid Technology: Smart Grid Protocolsiitk.ac.in/smartcity/qip/download/ppt/Day-4/Smart Grid Protocols.pdf · A QIP Course on Smart Grid Technology: Smart Grid

Smart Grid Protocols and StandardsOther Smart Grid Protocols/ Standards –

Green Button - Initiative to provide utility customers with easy and secure access to their energy usage information in

a consumer-friendly and computer-friendly format

MultiSpeak -The specification is a standard for the exchange of data among enterprise application software commonly

applied in utilities

SunSpec - Open interoperability specifications and information models to achieve plug-and-play

interoperability between Distributed Energy Resource (DER) components and smart grid applications

SEP 2.0 - Standard for applications that enable home energy management via wired and wireless devices that support

Internet Protocol

Page 5: A QIP Course on Smart Grid Technology: Smart Grid Protocolsiitk.ac.in/smartcity/qip/download/ppt/Day-4/Smart Grid Protocols.pdf · A QIP Course on Smart Grid Technology: Smart Grid

IEC61850

Page 6: A QIP Course on Smart Grid Technology: Smart Grid Protocolsiitk.ac.in/smartcity/qip/download/ppt/Day-4/Smart Grid Protocols.pdf · A QIP Course on Smart Grid Technology: Smart Grid

IEC 61850Before IEC 61850 - Power substations were mostly managed by substation

automation systems that - Utilize simple, straightforward and highly specialized communication

protocols Less concerned about the semantics of the exchanged data

Devices from different manufacturers used different substation automation protocols, disabling them to talk to each other

Utilities were paying enormous money and time to configure the devices to work together in a substation

Hence, device manufacturers recognized the need for a unified international standard to support seamless cooperation among products from different vendors

The IEC 61850 international standard, drafted by substation automation domain experts from 22 countries

Page 7: A QIP Course on Smart Grid Technology: Smart Grid Protocolsiitk.ac.in/smartcity/qip/download/ppt/Day-4/Smart Grid Protocols.pdf · A QIP Course on Smart Grid Technology: Smart Grid

IEC 61850 Takes advantage of a comprehensive object-oriented

data model and the Ethernet technology Part 1 to Part 3 - general ideas about the standard Part 4 – defining the project and management

requirements in an IEC 61850 enabled substation Part 5 - specifying the required parameters for physical

implementation Part 6 - defining an XML based language for IED

configuration Part 7 - elaborating on the logical concepts Part 8 – mapping of the internal objects to the

presentation layer and to the Ethernet link layer Part 9 - mapping from sampled measurement value

(SMV) to point-to-point Ethernet

Page 8: A QIP Course on Smart Grid Technology: Smart Grid Protocolsiitk.ac.in/smartcity/qip/download/ppt/Day-4/Smart Grid Protocols.pdf · A QIP Course on Smart Grid Technology: Smart Grid

IEC 61850 – Substation ArchitectureIEC 61850 based Substation Architecture

Page 9: A QIP Course on Smart Grid Technology: Smart Grid Protocolsiitk.ac.in/smartcity/qip/download/ppt/Day-4/Smart Grid Protocols.pdf · A QIP Course on Smart Grid Technology: Smart Grid

IEC 61850 – System Overview

Source: ABB

Page 10: A QIP Course on Smart Grid Technology: Smart Grid Protocolsiitk.ac.in/smartcity/qip/download/ppt/Day-4/Smart Grid Protocols.pdf · A QIP Course on Smart Grid Technology: Smart Grid

IEC 61850 - VirtualizationLogical Representation of Device in IEC 61850-

Page 11: A QIP Course on Smart Grid Technology: Smart Grid Protocolsiitk.ac.in/smartcity/qip/download/ppt/Day-4/Smart Grid Protocols.pdf · A QIP Course on Smart Grid Technology: Smart Grid

IEC 61850 – Object Naming

Physical Device(network address)

Logical Device(e.g. Relay1)

MMXU1 MMXU2

MXMX

AV

Logical Nodes

Functional Constraint

“MMXU2$MX$A” =Feeder #2 Current Measurements

Anatomy of an IEC61850 Object Name

Page 12: A QIP Course on Smart Grid Technology: Smart Grid Protocolsiitk.ac.in/smartcity/qip/download/ppt/Day-4/Smart Grid Protocols.pdf · A QIP Course on Smart Grid Technology: Smart Grid

IEC 61850 – Object Naming

L System LN

P Protection

R Protection related

C Control

G Generic

I Interfacing and archiving

A Automatic control (4)

M Metering and measurement

S Sensor and monitoring

X Switchgear

T Instrument transformers

Y Power transformers

Z Further power system equipment

Examples:

PDIF: Differential protection

RBRF: Breaker failure

XCBR: Circuit breaker

CSWI: Switch controller

MMXU: Measurement unit

YPTR: Power transformer

Logical node groups

Page 13: A QIP Course on Smart Grid Technology: Smart Grid Protocolsiitk.ac.in/smartcity/qip/download/ppt/Day-4/Smart Grid Protocols.pdf · A QIP Course on Smart Grid Technology: Smart Grid

IEC 61850 – Communication ProfileC

omm

unic

atio

n St

ack

App

licat

ion

Dom

ain

IEC 61850 Communication Profile

Page 14: A QIP Course on Smart Grid Technology: Smart Grid Protocolsiitk.ac.in/smartcity/qip/download/ppt/Day-4/Smart Grid Protocols.pdf · A QIP Course on Smart Grid Technology: Smart Grid

IEC 61850 – Communication Profile

Page 15: A QIP Course on Smart Grid Technology: Smart Grid Protocolsiitk.ac.in/smartcity/qip/download/ppt/Day-4/Smart Grid Protocols.pdf · A QIP Course on Smart Grid Technology: Smart Grid

IEC 61850 Communication

Source: ABB

Page 16: A QIP Course on Smart Grid Technology: Smart Grid Protocolsiitk.ac.in/smartcity/qip/download/ppt/Day-4/Smart Grid Protocols.pdf · A QIP Course on Smart Grid Technology: Smart Grid

IEC 61850 Interface Model

Source: ABB

Page 17: A QIP Course on Smart Grid Technology: Smart Grid Protocolsiitk.ac.in/smartcity/qip/download/ppt/Day-4/Smart Grid Protocols.pdf · A QIP Course on Smart Grid Technology: Smart Grid

IEC 61850 - ACSIAbstract Communications Service Interface - ACSI

Defines a set of Objects

Defines a set of Services to manipulate and access those objects

Defines a base set of data types for describing objects

Example ACSI services – GetDataSetValue, CreateDataSet, DetDataDirectory

Page 18: A QIP Course on Smart Grid Technology: Smart Grid Protocolsiitk.ac.in/smartcity/qip/download/ppt/Day-4/Smart Grid Protocols.pdf · A QIP Course on Smart Grid Technology: Smart Grid

IEC 61850 - SMVSampled Measured Values (SMV)

Page 19: A QIP Course on Smart Grid Technology: Smart Grid Protocolsiitk.ac.in/smartcity/qip/download/ppt/Day-4/Smart Grid Protocols.pdf · A QIP Course on Smart Grid Technology: Smart Grid

IEC 61850 - GOOSEIEC61850 Generic Object Oriented Substation Event - GOOSE

Device to multi-device communication – Local or Wide Area

Bridgeable but Non-routable User-defined Dataset sent in an

Ethernet Multicast message Message sent on change of state as

well periodically to enable detection of device failure

Reliability effected through message repeat

GOOSE Header:• Multicast Address• Name• Time Until Next GOOSE• Etc.

User-Defined Dataset• Status Information• Analog Values• Data Quality• Time

Page 20: A QIP Course on Smart Grid Technology: Smart Grid Protocolsiitk.ac.in/smartcity/qip/download/ppt/Day-4/Smart Grid Protocols.pdf · A QIP Course on Smart Grid Technology: Smart Grid

IEC 61850 – GOOSE Messaging

Page 21: A QIP Course on Smart Grid Technology: Smart Grid Protocolsiitk.ac.in/smartcity/qip/download/ppt/Day-4/Smart Grid Protocols.pdf · A QIP Course on Smart Grid Technology: Smart Grid

IEC 61850 – GSSE/MMSGeneric Substation State Events (GSSE)

Only Status data can be exchanged through GSSE and it uses a status list (string of bits) rather than a dataset as is used in GOOSE

GSSE messages are transmitted directly over IEC/ISO 8802-2 and 8802-3 (IEEE 802.3) using a similar mechanism to GOOSE messages

As the GSSE format is simpler than GOOSE it is handled faster in some devices.

GSSE is being progressively superseded by the use of GOOSE and support for it may eventually disappear

Manufacturing Message Specification (MMS)

It is a messaging system for transferring real time process data and supervisory control information between networked devices and/or computer applications. MMS Defines the following -

A set of standard objects which must exist in every device, on which operations like read, write, event signaling etc. can be executed.

A set of standard messages exchanged between a client and a server stations for the purpose of monitoring and/or controlling these objects.

A set of encoding rules for mapping these messages to bits and bytes when transmitted.

Page 22: A QIP Course on Smart Grid Technology: Smart Grid Protocolsiitk.ac.in/smartcity/qip/download/ppt/Day-4/Smart Grid Protocols.pdf · A QIP Course on Smart Grid Technology: Smart Grid

IEC 61850 - SCLSCL – Substation Configuration Language

Description language for communication in electrical substations related to the IEDs

XML based language that allows a formal description of -– Substation automation system and the switchyard and the

relation between them– IED configuration– IEC 61850 language used in the XML files is called SCL

language

Page 23: A QIP Course on Smart Grid Technology: Smart Grid Protocolsiitk.ac.in/smartcity/qip/download/ppt/Day-4/Smart Grid Protocols.pdf · A QIP Course on Smart Grid Technology: Smart Grid

IEC 61850 - SCLSCL File Types

SSD: System Specification Description.

XML description of the entire system.

SCD: Substation Configuration Description.

XML description of a single substation.

ICD: IED Capability Description.

XML description of items supported by an IED.

CID: Configured IED Description.

XML configuration for a specific IED.

Page 24: A QIP Course on Smart Grid Technology: Smart Grid Protocolsiitk.ac.in/smartcity/qip/download/ppt/Day-4/Smart Grid Protocols.pdf · A QIP Course on Smart Grid Technology: Smart Grid

IEC 61850 - SCLSCL File Sample

SSD: System Specification Description.

XML description of the entire system.

SCD: Substation Configuration Description.

XML description of a single substation.

ICD: IED Capability Description.

XML description of items supported by an IED.

CID: Configured IED Description.

XML configuration for a specific IED.

Page 25: A QIP Course on Smart Grid Technology: Smart Grid Protocolsiitk.ac.in/smartcity/qip/download/ppt/Day-4/Smart Grid Protocols.pdf · A QIP Course on Smart Grid Technology: Smart Grid

IEC 61850: The SCL language (IED Modelling)

Page 26: A QIP Course on Smart Grid Technology: Smart Grid Protocolsiitk.ac.in/smartcity/qip/download/ppt/Day-4/Smart Grid Protocols.pdf · A QIP Course on Smart Grid Technology: Smart Grid

Bay Unit (IED)

PTRC (Trip, Operate)

SCL

Bay A

IEC 61850: The SCL language (IED modelling)

Page 27: A QIP Course on Smart Grid Technology: Smart Grid Protocolsiitk.ac.in/smartcity/qip/download/ppt/Day-4/Smart Grid Protocols.pdf · A QIP Course on Smart Grid Technology: Smart Grid

SCLSCL

IEC 61850: The SCL language (IED modelling)It is possible to “structure” the Logical Nodes, and group them under different Logical Devices.The “rules” of this structure are described in the XML file.

Page 28: A QIP Course on Smart Grid Technology: Smart Grid Protocolsiitk.ac.in/smartcity/qip/download/ppt/Day-4/Smart Grid Protocols.pdf · A QIP Course on Smart Grid Technology: Smart Grid

The SCL file also describes what the IED can do (services). In this case it seems that the IED cannot offer upload of disturbance recorder file, as the “FileHandling Service” is not listed:

IEC 61850: Services (IED modelling)

While this IED allows to upload the disturbance recorder files(FileHandling Service” is listed):

Page 29: A QIP Course on Smart Grid Technology: Smart Grid Protocolsiitk.ac.in/smartcity/qip/download/ppt/Day-4/Smart Grid Protocols.pdf · A QIP Course on Smart Grid Technology: Smart Grid

IEC 61850 - CIDCID File Generation

Page 30: A QIP Course on Smart Grid Technology: Smart Grid Protocolsiitk.ac.in/smartcity/qip/download/ppt/Day-4/Smart Grid Protocols.pdf · A QIP Course on Smart Grid Technology: Smart Grid

IEC 61850 - CIDCID File Generation

Page 31: A QIP Course on Smart Grid Technology: Smart Grid Protocolsiitk.ac.in/smartcity/qip/download/ppt/Day-4/Smart Grid Protocols.pdf · A QIP Course on Smart Grid Technology: Smart Grid

IEC 61850 - SSDSSD File

Page 32: A QIP Course on Smart Grid Technology: Smart Grid Protocolsiitk.ac.in/smartcity/qip/download/ppt/Day-4/Smart Grid Protocols.pdf · A QIP Course on Smart Grid Technology: Smart Grid

IEC 61850-90-5: Mapping with C37.118

Page 33: A QIP Course on Smart Grid Technology: Smart Grid Protocolsiitk.ac.in/smartcity/qip/download/ppt/Day-4/Smart Grid Protocols.pdf · A QIP Course on Smart Grid Technology: Smart Grid

IEC 61850-90-5: Mapping with C37.118

Page 34: A QIP Course on Smart Grid Technology: Smart Grid Protocolsiitk.ac.in/smartcity/qip/download/ppt/Day-4/Smart Grid Protocols.pdf · A QIP Course on Smart Grid Technology: Smart Grid

IEC 61850Benefits of IEC 61850

• IEC 61850 normally uses the approach of common information model (CIM) of real devices in terms of logical nodes (LN) for standardization

• High‐level services enable self‐describing devices & automatic object discovery saving money and effort in configuration and maintenance

• Standardized naming conventions with power system context eliminates device dependencies and tag mapping

• Standardized configuration file formats enables seamless exchange of device configuration

• Higher performance multi‐cast messaging for inter‐relay communications enables functions not possible with hard wires

• Multi‐cast messaging enables sharing of transducer (CT/PT) signals

Page 35: A QIP Course on Smart Grid Technology: Smart Grid Protocolsiitk.ac.in/smartcity/qip/download/ppt/Day-4/Smart Grid Protocols.pdf · A QIP Course on Smart Grid Technology: Smart Grid

Tele‐ControlProtocols

Page 36: A QIP Course on Smart Grid Technology: Smart Grid Protocolsiitk.ac.in/smartcity/qip/download/ppt/Day-4/Smart Grid Protocols.pdf · A QIP Course on Smart Grid Technology: Smart Grid

IEC 60870‐5‐101 protocol (Serial mode communication from RTUto Control Center)

IEC 60870‐5‐104 protocol (network mode communication fromRTU to Control Center)

IEC 60870‐6‐502 ( ICCP) protocol (between two Control Canters)

IEC 60870‐5‐103 protocol (for communication between IEDs in aSubstation)

DNP 3.0 Protocol (Serial)

DNP 3.0 Protocol (TCP/IP)

Tele-Control Protocols for SCADA

Page 37: A QIP Course on Smart Grid Technology: Smart Grid Protocolsiitk.ac.in/smartcity/qip/download/ppt/Day-4/Smart Grid Protocols.pdf · A QIP Course on Smart Grid Technology: Smart Grid

Area-LDC

SLDC

RLDC

SLDC

Area-LDC

RTU RTU

Wide Band /PLCC Commn

Wide Band Commn

Wide Band Commn

(MW / FO)

RTU

Wide Band Commn

Wide Band Commn

(MW / FO)

Three of the most important part of a SCADA system: Master Station, Remote Terminal (RTU, PLC, IED), and communication between them

Communication Channel for Information flow

Page 38: A QIP Course on Smart Grid Technology: Smart Grid Protocolsiitk.ac.in/smartcity/qip/download/ppt/Day-4/Smart Grid Protocols.pdf · A QIP Course on Smart Grid Technology: Smart Grid
Page 39: A QIP Course on Smart Grid Technology: Smart Grid Protocolsiitk.ac.in/smartcity/qip/download/ppt/Day-4/Smart Grid Protocols.pdf · A QIP Course on Smart Grid Technology: Smart Grid

A microprocessor‐controlled electronic device that interfacesobjects in the physical world to an SCADA system

Transmits telemetry data to a master SCADA system, and controlconnected objects based on SCADA Command.

SCADA master station gets status of a certain circuit breaker fromthe mapped status point of an RTU.

SCADA protocols consist of two message sets or pairs –

Master protocol, containing the valid statements for master stationinitiation or response

RTU protocol, containing the valid statements an RTU can initiate andrespond to

the message pairs are considered a poll or request for informationexchange

Remote Terminal Unit

Page 40: A QIP Course on Smart Grid Technology: Smart Grid Protocolsiitk.ac.in/smartcity/qip/download/ppt/Day-4/Smart Grid Protocols.pdf · A QIP Course on Smart Grid Technology: Smart Grid

RTU Dataflow

Page 41: A QIP Course on Smart Grid Technology: Smart Grid Protocolsiitk.ac.in/smartcity/qip/download/ppt/Day-4/Smart Grid Protocols.pdf · A QIP Course on Smart Grid Technology: Smart Grid

Standard polling The master station continuously requests the real‐time data values.

Exception reportingThe RTU is polled but only reports values that have changed since the prior poll

Push CommunicationsThe RTU initiates messages on an event or time basis.

Peer to peer communicationsRTUs can communicate with the master station and also with each other if there is a communication path.

RTU Communication

Page 42: A QIP Course on Smart Grid Technology: Smart Grid Protocolsiitk.ac.in/smartcity/qip/download/ppt/Day-4/Smart Grid Protocols.pdf · A QIP Course on Smart Grid Technology: Smart Grid

CFE

S

M

M

RTU

CFE CFE

M M

M M

RTU

Normal RTU

CFE

Critical RTU

LAN-ALAN-A

LAN-B LAN-B

RTU Connectivity Options

Page 43: A QIP Course on Smart Grid Technology: Smart Grid Protocolsiitk.ac.in/smartcity/qip/download/ppt/Day-4/Smart Grid Protocols.pdf · A QIP Course on Smart Grid Technology: Smart Grid

Based on the reduced communication reference model called Enhanced Performance Architecture (EPA)

Companion standards IEC 60870‐5‐101 and IEC 60870‐5‐104 are derived from the IEC 60870‐5 protocol standard definition

EPA includes three layers of the OSI model – Application layer Data Link layer Physical layer

* The ITU ( International Telecommunication Union ) Telecommunication Standardization (ITU-T)

IEC 60870-5 Protocol

101104

Page 44: A QIP Course on Smart Grid Technology: Smart Grid Protocolsiitk.ac.in/smartcity/qip/download/ppt/Day-4/Smart Grid Protocols.pdf · A QIP Course on Smart Grid Technology: Smart Grid

Application

Presentation

Session

Transport

Network

Data Link

Physical

Application

Data Link

Physical

OSI  EPA

7‐Layer 3‐Layer

Reason for 3‐Layered Structure of EPA ‐1)  Short Reaction Time2)  Reduced Transmission Bandwidth

Protocol Structure

Page 45: A QIP Course on Smart Grid Technology: Smart Grid Protocolsiitk.ac.in/smartcity/qip/download/ppt/Day-4/Smart Grid Protocols.pdf · A QIP Course on Smart Grid Technology: Smart Grid

Supports unbalanced (master initiated message) & balanced (master/slave initiated message) modes of data transfer

supports point‐to‐point and multidrop communication links carrying serial‐bit low‐bandwidth data communications

Link address and application service data unit (ASDU) addresses are provided for classifying the end station and sectors under same n/w

Data is classified into different information objects and each information object is provided with a specific address

Facility to classify the data into high priority (class‐1) and low priority (class‐2) and transfer the same using separate mechanisms

Possibility of classifying the data into different groups (1‐16) to get the data according to the group by issuing specific group interrogation commands from the master 

Cyclic & Spontaneous data updating schemes are provided Facility for time synchronization schemes for transfer of files 

IEC 60870-5-101

Page 46: A QIP Course on Smart Grid Technology: Smart Grid Protocolsiitk.ac.in/smartcity/qip/download/ppt/Day-4/Smart Grid Protocols.pdf · A QIP Course on Smart Grid Technology: Smart Grid

Physical Layer  : Information (data) bit  : 8 bitStart bit:1 , Stop bit : 1Parity bit  :  Even

Data Link LayerStandard Frame Format  :  FT 1.2 (frame format 

of IEC 101 which is suitable for asynchronous communication)

Data Transmission at Link Layer ( Station address field Length : 1 or 2 bytes )Unbalanced Mode :

Transmitted messages are categorized on two priority classes( Class 1 & Class 2 )Balanced Mode :

All the messages are sent, No categorization of Class 1 and Class 2

Application LayerLength of header fields of data structure are:‐ Station address 1 or 2 byte ( User defined )‐ ASDU Address : 1 or 2 bytes‐ Information Object address : 2 bytes‐ Cause of Transmission : 1 byte

Network Layer :  Not defined as  870‐5‐101 as it is not IP based

Selection of ASDUsASDU 1 : Single point informationASDU 2 : Single point information with time tagASDU 3 : Double point informationASDU 4 : Double point information with time tagASDU 9 : Measured value, Normalized valueASDU 10 : Measured value, Normalized value with timetagASDU 11 : Measured Value, Scaled valueASDU 12 : Measured value, Scaled value with time tagASDU 100 : Interrogation CommandASDU 103 : Clock Synchronization CommandASDU 120 ‐ 126 : File transfer Command

IEC 60870-5-101 Layers

Page 47: A QIP Course on Smart Grid Technology: Smart Grid Protocolsiitk.ac.in/smartcity/qip/download/ppt/Day-4/Smart Grid Protocols.pdf · A QIP Course on Smart Grid Technology: Smart Grid

IEC 60870-5-101 Data FrameFrame Length

Control Field

Address

• As balanced communications are point‐to‐point the link address is redundant, but may be included for security

• ASDU contains address of the controlling station in the ‘control direction’, and the address of the controlled station in the ‘monitoring direction’

• Unique address for each data element

Page 48: A QIP Course on Smart Grid Technology: Smart Grid Protocolsiitk.ac.in/smartcity/qip/download/ppt/Day-4/Smart Grid Protocols.pdf · A QIP Course on Smart Grid Technology: Smart Grid

Link Layer Balanced Transmission Link Layer Unbalanced Transmission

At the link layer, all devices are equal

restricted to point‐to‐point and to multiple point‐to‐point configurations

Collision avoidance by‐ Full duplex point to point connection 

(RS232 or four wire RS485) Designated master polls slaves on n/w

Only Master device can transmit primary frames

Collision avoidance is not necessary since slave device cannot initiate exchange

If the slave device responds with NACK: (requested data not available) the master will try again until it gets data, or a response time‐out occurs

IEC 60870-5-101 Data Exchange

Page 49: A QIP Course on Smart Grid Technology: Smart Grid Protocolsiitk.ac.in/smartcity/qip/download/ppt/Day-4/Smart Grid Protocols.pdf · A QIP Course on Smart Grid Technology: Smart Grid

Based on data transmission via Ethernet (TCP/IP) An extension of IEC 101 protocol with the changes in transport, network, link & 

physical layer services to suit the complete network access Application layer of IEC 104 is same as that of IEC 101 with some of the data 

types and facilities not used offers considerable benefits compared with the serial data transmission ‐

Higher level safety Flexible network layout Numerous network utilities Simplified management of connected devices Reduced time and cost for maintenance and servicing 

The security of IEC 104, by design has been proven to be problematic

IEC 60870-5-104

Page 50: A QIP Course on Smart Grid Technology: Smart Grid Protocolsiitk.ac.in/smartcity/qip/download/ppt/Day-4/Smart Grid Protocols.pdf · A QIP Course on Smart Grid Technology: Smart Grid

Operation of the lower layers of IEC 60870‐5‐104 is completely different from that of the IEC 60870‐5‐101. 

These layers correspond to all the layers below the application layer,  Architectures of these layers are concerned with how message transports happen.

IEC 60870-5-104

Page 51: A QIP Course on Smart Grid Technology: Smart Grid Protocolsiitk.ac.in/smartcity/qip/download/ppt/Day-4/Smart Grid Protocols.pdf · A QIP Course on Smart Grid Technology: Smart Grid

• Inter‐Control Center Communications Protocol (ICCP or IEC 60870‐6‐502)• To provide data exchange over wide area networks (WANs) between utility

control centers, utilities, power pools, regional control centers, and Non‐Utility Generators.

ICCP Protocol

Page 52: A QIP Course on Smart Grid Technology: Smart Grid Protocolsiitk.ac.in/smartcity/qip/download/ppt/Day-4/Smart Grid Protocols.pdf · A QIP Course on Smart Grid Technology: Smart Grid

AssociationsAn application Association needs to be established between two ICCP instances before anydata exchange can take place. Associations can be Initiated, Concluded or Aborted by theICCP instances.

Bilateral Agreement and Table for Access ControlA Bilateral Agreement between two control‐centers (say A and B) for data access. ABilateral Table is a digital representation of the Agreement.

Data ValuesData Values are objects that represent the values of control‐center objects includingpoints (Analog, Digital, and Controls) or data structures.

Data SetsData Sets are ordered‐lists of Data Value objects that can be created locally by an ICCPserver or on request by an ICCP client

Information MessagesInformation Message objects are used to exchange text or other data between ControlCenters.

Transfer SetsTransfer Set objects are used for complex data exchange schemes to transfer Data Sets (allelements or a subset of the Data set elements) etc.

DevicesDevices are the ICCP objects that represent controllable objects in the control center.

ICCP Protocol

Page 53: A QIP Course on Smart Grid Technology: Smart Grid Protocolsiitk.ac.in/smartcity/qip/download/ppt/Day-4/Smart Grid Protocols.pdf · A QIP Course on Smart Grid Technology: Smart Grid

Conformance Blocks• ICCP divides the entire ICCP functionality into 9 conformance block subsets• Implementations can declare the blocks that they provide support for• Specify the level of ICCP supported by the implementation• Any ICCP implementation must necessarily support Block 1Block 1 – Basic ServicesStatus and analogue points, quality flags, time‐stamp, protection events, association, data setBlock 2 – Extended Data Set Condition MonitoringProvides report on exception of the data types that block 1 is able to transfer periodicallyBlock 3 – Blocked TransfersProvides a means of transferring Block 1 and Block 2 data types as block transfers instead of pointby pointBlock 4 – Information MessageInformation Message objects, Simple text and binary filesBlock 5 – Device ControlControl requests: on/off, trip/close, raise/lower etc. and digital setpointsBlock 6 ‐ Program ControlAllows an ICCP client to remote control programs executing on an ICCP serverBlock 7 ‐ Event ReportingExtended reporting to a client of error conditions and device state changes at a server.Block 8 ‐ Additional User ObjectsScheduling, accounting, outage and other plant information.Block 9 ‐ Time Series DataAllows client to request server a report of historical time series data between start & end date

ICCP Protocol

Page 54: A QIP Course on Smart Grid Technology: Smart Grid Protocolsiitk.ac.in/smartcity/qip/download/ppt/Day-4/Smart Grid Protocols.pdf · A QIP Course on Smart Grid Technology: Smart Grid

• Secure ICCP is an extension of the existing standard ICCP.• Transport Layer Security (TLS) is inserted into the appropriate layer of 

the standard communications profile• TLS is a certificate‐based cryptographic protocol that provides 

encryption and authentication• Secure ICCP provides application layer authentication and message 

encryption between ICCP servers. 

Secure ICCP Protocol

Page 55: A QIP Course on Smart Grid Technology: Smart Grid Protocolsiitk.ac.in/smartcity/qip/download/ppt/Day-4/Smart Grid Protocols.pdf · A QIP Course on Smart Grid Technology: Smart Grid

Distributed Network Protocol (DNP), an open protocol, used between components in process automation systems 

Based on Enhanced Performance architecture  ( EPA) model Primarily used for communications between a master station and IEDs or 

RTUs Supports multiple‐slave, peer‐to‐peer and multiple‐master 

communications DNP contains Application and Data Link Layers, with a pseudo‐transport 

layer DNP protocol is simply encapsulated within TCP/IP widely used over a variety of physical layers, including RS‐232, RS‐422, RS‐

485, and TCP/IP Supports the operational modes of polled and quiescent operation

DNP 3 Protocol

Page 56: A QIP Course on Smart Grid Technology: Smart Grid Protocolsiitk.ac.in/smartcity/qip/download/ppt/Day-4/Smart Grid Protocols.pdf · A QIP Course on Smart Grid Technology: Smart Grid

Pseudo‐transport layer(OSI Layer 4) used to build application data messages larger than a single data link frame

Uses FT3 frame format Can request and respond with multiple data types in single messages segment messages into multiple frames to ensure excellent error detection 

and recovery designed to optimize the transmission of data acquisition information and 

control commands from one computer to another Respond without request (unsolicited) provides interoperability between different vendor’s equipment provides multiplexing, data fragmentation, error checking, link control, 

prioritization, and layer 2 addressing services for user data not designed to be secure from attacks by hackers

DNP 3 Protocol

Page 57: A QIP Course on Smart Grid Technology: Smart Grid Protocolsiitk.ac.in/smartcity/qip/download/ppt/Day-4/Smart Grid Protocols.pdf · A QIP Course on Smart Grid Technology: Smart Grid

DNP 3 Protocol Layers

The pseudo‐transport layer• To allow for the transmission of larger blocks of data • Network functions for routing and flow control of data packets over networks. • Transport functions provide network transparent end‐to‐end delivery of messages• Disassembly and reassembly, and error correction of messages.

Page 58: A QIP Course on Smart Grid Technology: Smart Grid Protocolsiitk.ac.in/smartcity/qip/download/ppt/Day-4/Smart Grid Protocols.pdf · A QIP Course on Smart Grid Technology: Smart Grid

DNP 3 Message Buildup

Page 59: A QIP Course on Smart Grid Technology: Smart Grid Protocolsiitk.ac.in/smartcity/qip/download/ppt/Day-4/Smart Grid Protocols.pdf · A QIP Course on Smart Grid Technology: Smart Grid

DNP 3 Protocol - FT3 frame format

• 10 byte header, followed optionally by up to 16 data blocks• Overall message size limited to 292 bytes, maximum data capacity of 250 bytes• Fully packed frame will comprise the header plus 16 data blocks, with the last

block containing 10 data bytes• START - 2 bytes: Start of frame• LENGTH - Count of user data in bytes• CONTROL - Frame control byte• DESTINATION - 2 byte destination address (LSB, MSB)• SOURCE - 2 byte source address (LSB, MSB)• CRC - 2 byte cyclic redundancy check code

Page 60: A QIP Course on Smart Grid Technology: Smart Grid Protocolsiitk.ac.in/smartcity/qip/download/ppt/Day-4/Smart Grid Protocols.pdf · A QIP Course on Smart Grid Technology: Smart Grid

DNP 3 - Message Communication

• In SCADA, some stations may be identified as master stations, and others as slave stations• There may be some devices that act both as slave stations and master stations• Master/slave distinction applies at the application level• At the data link level, the terms balanced and unbalanced • In ‘unbalanced’ systems, only master stations will initiate communications• The DNP3 protocol supports balanced communications at the data link level to provide 

greater flexibility by allowing non‐master stations to initiate communications• In DNP3 any station can be an originator or primary station (Not necessary to be master)• Master/Slave used at the link level for setting of a message direction bit, the DIR bit.

Page 61: A QIP Course on Smart Grid Technology: Smart Grid Protocolsiitk.ac.in/smartcity/qip/download/ppt/Day-4/Smart Grid Protocols.pdf · A QIP Course on Smart Grid Technology: Smart Grid

DNP 3.0 IEC 60870‐5‐101

Standard Open Standard IEC Standard

Dominant Market North America Europe

Architecture 4‐layer architecture supports TCP/IP

3‐layer EPA architecture

Application Layer function

messages encapsulated in data link frames

Application functions specified in a data link layer message

Frames application layer messageconsist of many data link frames

Single application function require several messages to be sent to complete function

Transmission Only balanced Balanced and unbalanced

DeviceAddressing

pairs of devices may swap master and slave roles

pairs of devices will not  swap master and slave roles

Frame Format FT3 FT1.2

DNP 3 Vs. IEC 60870-5-101

Page 62: A QIP Course on Smart Grid Technology: Smart Grid Protocolsiitk.ac.in/smartcity/qip/download/ppt/Day-4/Smart Grid Protocols.pdf · A QIP Course on Smart Grid Technology: Smart Grid

SmartMeterProtocols

Page 63: A QIP Course on Smart Grid Technology: Smart Grid Protocolsiitk.ac.in/smartcity/qip/download/ppt/Day-4/Smart Grid Protocols.pdf · A QIP Course on Smart Grid Technology: Smart Grid

IS 16444IS 16444 was adopted by the BIS in 2015 and consists of Two parts –

IS 16444 (Part 1): 2015 • Static Watthour direct connected meters consisting of measuring element(s), time of use

register (s), display, load switch, and built in / plug in type bidirectional communication module all integral with the meter housing.

• Smart meter for indoor use & capable of forward (import) or both forward (import) and reverse (export) energy measurement.

• Covers the general requirements and tests for a.c. static direct connected Watthour smart meter, class 1 & 2.

IS 16444 (Part 2): 2017• Transformer operated static watt-hour meters & Var-Hour meters consisting of

measuring element(s), time of use register(s), display and built in / plug in type bidirectional communication module all integral with the meter housing.

• Smart meter for indoor use & capable of forward (import) or import and export energy measurement.

• Covers the general requirements and tests for a.c. Static Transformer operated Watthour & Var-Hour Smart Meters, Class 0.2S, 0.5S & 1.0S.

Page 64: A QIP Course on Smart Grid Technology: Smart Grid Protocolsiitk.ac.in/smartcity/qip/download/ppt/Day-4/Smart Grid Protocols.pdf · A QIP Course on Smart Grid Technology: Smart Grid

IEC 62056• Set of Protocols for electricity metering data exchange (IEC  TC13WG14)• International version of DLMS (Device Language Message Specification)/COSEM 

(Companion Specification for Energy Metering)• COSEM contains set of specifications that define the Transport and Application 

layer of DLMS protocol• DLMS users association defines protocol into set of 4 specification documents –

Green Book – DLMS/COSEM Architecture and Protocols Blue Book ‐ COSEM interface classes and OBIS (Object Identification 

System) Yellow Book ‐ DLMS/COSEM Conformance Testing Process White Book ‐ Glossary of Terms

• Not only applicable to electricity metering, it is equally applicable to water, gas, and heating metering systems also

• All the data in electronic meters and associated devices are represented by means of mapping them to appropriate classes and attributes

• Specifies an interface model and communication protocols for data exchange with metering equipment

Page 65: A QIP Course on Smart Grid Technology: Smart Grid Protocolsiitk.ac.in/smartcity/qip/download/ppt/Day-4/Smart Grid Protocols.pdf · A QIP Course on Smart Grid Technology: Smart Grid

DLMS/COSEMThe DLMS/COSEM specification follows a 

three‐step approach:

• Step 1, Modelling: Covers the interface 

model of metering equipment and rules 

for data identification;

• Step 2, Messaging: Covers the services 

for mapping the interface model to 

application layer protocol data units 

(APDU) and the encoding of this APDUs.

• Step 3, Transporting: Covers the 

transportation of the messages through 

the communication channel.

Source: DLMS/COSEM Green Book

Page 66: A QIP Course on Smart Grid Technology: Smart Grid Protocolsiitk.ac.in/smartcity/qip/download/ppt/Day-4/Smart Grid Protocols.pdf · A QIP Course on Smart Grid Technology: Smart Grid

DLMS/COSEM Communication Model

Source: DLMS/COSEM Green Book

• Uses the concepts of OSI model to model information exchange between meters and data collection systems (DCS)

• Application functions of meters & DCS are modelled by application processes (APs).

• Communication between APs is modelled by communication between application entities (AEs)

• AE represents the communication functions of an AP.

HDLC ‐ High‐level Data Link ControlLLC ‐ Logical Link Control (Sublayer)SAP ‐ Service Access PointMAC ‐ Medium Access ControlUDP ‐ User Datagram ProtocolTCP ‐ Transmission Control Protocol

Client Server Model

Source: DLMS/COSEM Green Book

Page 67: A QIP Course on Smart Grid Technology: Smart Grid Protocolsiitk.ac.in/smartcity/qip/download/ppt/Day-4/Smart Grid Protocols.pdf · A QIP Course on Smart Grid Technology: Smart Grid

Connection oriented operation• The DLMS/COSEM AL is connection oriented• A communication session consists of three phases:

First, an application level connection, called Application Association (AA), is established between a client and a server Application Entities (AE)

Once the AA is established, message exchange can take place At the end of the data exchange, the AA is released.

• Servers cannot initiate the establishment of an AA• A COSEM logical device may support one or more AAs, each with a different client• Each AA determines the contexts in which information exchange takes place.

Source: DLM

S/CO

SEM G

reen Book

Page 68: A QIP Course on Smart Grid Technology: Smart Grid Protocolsiitk.ac.in/smartcity/qip/download/ppt/Day-4/Smart Grid Protocols.pdf · A QIP Course on Smart Grid Technology: Smart Grid

DLMS/COSEM Server ModelAC

SE ‐Association Co

ntrol Service Elemen

tAS

E ‐A

pplication Service Elem

ent

CO ‐Co

nnectio

n‐oriented

Page 69: A QIP Course on Smart Grid Technology: Smart Grid Protocolsiitk.ac.in/smartcity/qip/download/ppt/Day-4/Smart Grid Protocols.pdf · A QIP Course on Smart Grid Technology: Smart Grid

DLMS/COSEM Client Model