A-PRIORI AND A-POSTERIORI ERROR ANALYSIS FOR ...REISSNER-MINDLIN PLATE ELEMENTS L. BEIRAO DA VEIGA˜...

29
BIT Numerical Mathematics (2006)46:000-000 c Springer 2006. DOI:10.1007/s10543-000-0000-x A-PRIORI AND A-POSTERIORI ERROR ANALYSIS FOR THE FALK-TU FAMILY OF REISSNER-MINDLIN PLATE ELEMENTS L. BEIR ˜ AO DA VEIGA 1 , C. CHINOSI 2 , C. LOVADINA 3, * and R. STENBERG 4 1 Dipartimento di Matematica, Universit`a degli Studi di Milano, Via Saldini 50 Milano I-20133, Italy. Email: [email protected] 2 Dipartimento di Scienze e Tecnologie Avanzate, Universit` a del Piemonte Orientale, Via Bellini 25/G Alessandria I-15100, Italy. Email: [email protected] 3 Dipartimento di Matematica, Universit`a di Pavia and IMATI-CNR, Via Ferrata 1 Pavia I-27100, Italy. Email: [email protected] 4 Institute of Mathematics, Helsinki University of Technology P.O.Box 1100, 02015 TKK, Finland. Email: rolf.stenberg@hut.fi Abstract. A family of plate elements introduced by Falk and Tu [25] is considered. A new stability and a-priori error analysis is given. In addition, an a-posteriori error estimate is proved. The analysis is confirmed by numerical benchmark computations. AMS subject classification (2000): 65F20. Key words: Reissner-Mindlin plates, finite element methods, a-priori error analysis, a-posteriori error analysis. 1 Introduction The finite element simulation of Reissner-Mindlin plates has been an active re- search area, due both to its practical importance, and to the non-trivial problems to overcome. In particular, non-standard techniques need to be used to avoid the shear-locking phenomenon, as well as the occurrence of spurious modes and boundary layer effects. By now, the roots of the above-mentioned troubles are well-understood, and several strategies have been proposed and analyzed. How- ever, most of the mathematical literature on the subject is addressed to establish a-priori error estimates for the schemes under consideration, cf. [1], [12], [14], [24], [27], [32], [36], and the references therein. On the contrary, for the a- posteriori error analysis of plates, only relatively few results are available. To the our best knowledge, most of the relevant mathematical literature is restricted to the works [15]–[17], [26], [29], and [7]–[9]. In this paper we present an analysis of the Reissner-Mindlin plate elements proposed and studied by Falk and Tu [25]. We first give an alternative a- priori error analysis (see Section 3). In particular, we provide a stability result * Corresponding author.

Transcript of A-PRIORI AND A-POSTERIORI ERROR ANALYSIS FOR ...REISSNER-MINDLIN PLATE ELEMENTS L. BEIRAO DA VEIGA˜...

Page 1: A-PRIORI AND A-POSTERIORI ERROR ANALYSIS FOR ...REISSNER-MINDLIN PLATE ELEMENTS L. BEIRAO DA VEIGA˜ 1 , C. CHINOSI 2 , C. LOVADINA 3, ∗ and R. STENBERG 4 1 Dipartimento di Matematica,

BIT Numerical Mathematics (2006)46:000-000 c© Springer 2006.DOI:10.1007/s10543-000-0000-x

A-PRIORI AND A-POSTERIORI ERROR ANALYSIS

FOR THE FALK-TU FAMILY OF

REISSNER-MINDLIN PLATE ELEMENTS

L. BEIRAO DA VEIGA1, C. CHINOSI2, C. LOVADINA3,∗ and R. STENBERG 4

1Dipartimento di Matematica, Universita degli Studi di Milano, Via Saldini 50Milano I-20133, Italy. Email: [email protected]

2Dipartimento di Scienze e Tecnologie Avanzate, Universita del Piemonte Orientale, ViaBellini 25/G

Alessandria I-15100, Italy. Email: [email protected] di Matematica, Universita di Pavia and IMATI-CNR, Via Ferrata 1

Pavia I-27100, Italy. Email: [email protected] of Mathematics, Helsinki University of Technology

P.O.Box 1100, 02015 TKK, Finland. Email: [email protected]

Abstract.

A family of plate elements introduced by Falk and Tu [25] is considered. A newstability and a-priori error analysis is given. In addition, an a-posteriori error estimateis proved. The analysis is confirmed by numerical benchmark computations.

AMS subject classification (2000): 65F20.

Key words: Reissner-Mindlin plates, finite element methods, a-priori error analysis,a-posteriori error analysis.

1 Introduction

The finite element simulation of Reissner-Mindlin plates has been an active re-search area, due both to its practical importance, and to the non-trivial problemsto overcome. In particular, non-standard techniques need to be used to avoidthe shear-locking phenomenon, as well as the occurrence of spurious modes andboundary layer effects. By now, the roots of the above-mentioned troubles arewell-understood, and several strategies have been proposed and analyzed. How-ever, most of the mathematical literature on the subject is addressed to establisha-priori error estimates for the schemes under consideration, cf. [1], [12], [14],[24], [27], [32], [36], and the references therein. On the contrary, for the a-posteriori error analysis of plates, only relatively few results are available. Tothe our best knowledge, most of the relevant mathematical literature is restrictedto the works [15]–[17], [26], [29], and [7]–[9].

In this paper we present an analysis of the Reissner-Mindlin plate elementsproposed and studied by Falk and Tu [25]. We first give an alternative a-priori error analysis (see Section 3). In particular, we provide a stability result

∗Corresponding author.

Page 2: A-PRIORI AND A-POSTERIORI ERROR ANALYSIS FOR ...REISSNER-MINDLIN PLATE ELEMENTS L. BEIRAO DA VEIGA˜ 1 , C. CHINOSI 2 , C. LOVADINA 3, ∗ and R. STENBERG 4 1 Dipartimento di Matematica,

2 L. BEIRAO DA VEIGA, C. CHINOSI, C. LOVADINA AND R. STENBERG

which will be the basis of the a-posteriori error estimates obtained in Section 4.Moreover, we prove a new convergence result, confirming the locking-free featuresof the elements under consideration. In the a-posteriori analysis we establishthe equivalence, uniformly in the plate thickness, between a suitable residual-based estimator and the error, measured by means of the norm introduced inSection 3. To obtain such a result, we use the technique of [29]. We notice thatwe make use of a saturation assumption to prove the reliability of our estimator(cf. Section 4.2. Finally, we present a set of numerical experiments, whichshow the actual performances of the lowest order element in the Falk-Tu family,along with its corresponding error estimator. Our numerical tests confirm thetheoretical predictions concerning both the a-priori and the a-posteriori analysis.

Throughout the paper we will use standard notations for Sobolev norms andseminorms. Moreover, we will denote with C a generic constant which may takedifferent values in different occurrences, and which is independent of the meshparameter h and the plate thickness t.

2 The Reissner-Mindlin problem and the finite element discretiza-

tion

The Reissner-Mindlin problem, for a plate with polygonal mid-plane Ω, is tofind (θ, w,γ) such that

(2.1)

−div Cε(θ) − γ = 0 in Ω,

−div γ = g in Ω,

γ = µt−2(∇w − θ) in Ω,

θ = 0, w = 0 on ΓC ,

θ · t = 0, w = 0, (Cε(θ)n) · n = 0 (Cε(θ)n) · n = 0 on ΓH ,

w = 0, Cε(θ)n = 0 on ΓS ,

Cε(θ)n = 0, γ · n = 0 on ΓF .

Here, the boundary ∂Ω is split into four non-overlapping parts ΓC , ΓH , ΓS

and ΓF , where clamped, hard simply supported, soft simply supported and freeboundary conditions are imposed. We assume that ΓC has positive measure.Moreover, C is the tensor of bending moduli, θ represents the rotations, w thetransversal displacement, γ the scaled shear force and g a given transversal load.Finally, ε is the usual symmetric gradient operator, µ is the shear modulus, andt is the thickness. The variational formulation of problem (2.1) is:

(2.2)

Find (θ, w,γ) ∈ Θ × W × Γ such that

a(θ,η) + (∇v − η,γ) = (g, v) ∀(η, v) ∈ Θ × W,

(∇w − θ, τ ) − µ−1t2(γ, τ ) = 0 ∀τ ∈ [L2(Ω)]2,

Page 3: A-PRIORI AND A-POSTERIORI ERROR ANALYSIS FOR ...REISSNER-MINDLIN PLATE ELEMENTS L. BEIRAO DA VEIGA˜ 1 , C. CHINOSI 2 , C. LOVADINA 3, ∗ and R. STENBERG 4 1 Dipartimento di Matematica,

THE FALK-TU FAMILY OF REISSNER-MINDLIN PLATE ELEMENTS 3

where

(2.3)Θ =

η ∈ [H1(Ω)]2 | η = 0 on ΓC ; η · t = 0 on ΓH

,

W =v ∈ H1(Ω) | v = 0 on ΓC ∪ ΓS

and (·, ·) denotes the inner-product in L2(Ω) and [L2(Ω)]2. The bilinear forma(·, ·) is defined by

a(θ,η) :=

Ω

Cε(θ) : ε(η).

Following [18], we write the pair (θ, w) as

(2.4) (θ, w) = (θ0 + θr, w0 + wr),

where (θ0, , w0) is the solution of the Kirchhoff-type limit problem:

(2.5)

Find (θ0, w0,γ0) ∈ Θ × W × Γ such that

a(θ0,η) + 〈∇v − η,γ0〉 = (g, v) ∀(η, v) ∈ Θ × W,

〈∇w0 − θ0, τ 〉 = 0 ∀τ ∈ Γ,

and (θr, wr) can be thought as a remainder. Here, 〈·, ·〉 is the duality pairingbetween H0,ΓD

(rot,Ω) = τ ∈ H(rot,Ω) | τ · t = 0 on ΓC ∪ ΓH and its dualΓ = (H0,ΓD

(rot,Ω))′. For the clamped plate, i.e. ΓC = ∂Ω, one has thefollowing result (cf. [31]).

Proposition 2.1. Let Ω be a convex polygonal domain and let Ωi be a domaincompactly embedded in Ω. Denote by (w,θ,γ) the Reissner–Mindlin solution forthe clamped plate and let w = w0 +wr, where w0 is the deflection obtained fromthe limit problem (2.5). With g ∈ Hs−2(Ω) and tg ∈ Hs−1(Ω), s ≥ 1, it thenholds

(2.6) ‖w0‖2 + t−1‖wr‖1 + ‖θ‖1 + ‖γ‖−1 + t‖γ‖0 ≤ C(‖g‖−2 + t‖g‖−1),

(2.7) ‖w0‖3 + t−1‖wr‖2 + ‖θ‖2 + ‖γ‖0 + t‖γ‖1 ≤ C(‖g‖−1 + t‖g‖0)

and

(2.8)‖w0‖s+2,Ωi

+ t−1‖wr‖s+1,Ωi+ ‖θ‖s+1,Ωi

+ ‖γ‖s−1,Ωi+ t‖γ‖s,Ωi

≤ C(‖g‖s−2 + t‖g‖s−1).

Let Th be a sequence of decompositions of Ω into triangular elements T , sat-isfying the usual compatibility conditions (see [22]). We also assume that thefamily Th is regular , i.e. there exists a constant σ > 0 such that

(2.9) hT ≤ σρT ∀T ∈ Th,

Page 4: A-PRIORI AND A-POSTERIORI ERROR ANALYSIS FOR ...REISSNER-MINDLIN PLATE ELEMENTS L. BEIRAO DA VEIGA˜ 1 , C. CHINOSI 2 , C. LOVADINA 3, ∗ and R. STENBERG 4 1 Dipartimento di Matematica,

4 L. BEIRAO DA VEIGA, C. CHINOSI, C. LOVADINA AND R. STENBERG

where hT is the diameter of the element T and ρT is the maximum diameter ofthe circles contained in T . Moreover, given the decomposition Th we will denotewith Eh the set of all the edges E of the triangles T ∈ Th, and with EI

h ⊂ Eh theset of all internal edges. The subset of boundary edges will instead be indicatedwith EC

h , EHh , ES

h and EFh , representing respectively the set of edges laying in ΓC ,

ΓH , ΓS and ΓF .The family to be considered uses the FE spaces (see [25]), for k ≥ 1:

Θh =η ∈ Θ | η|T ∈ [Pk(T ) + Bk+3(T )]2 ∀T ∈ Th

,(2.10)

Wh =v ∈ W | v|T ∈ Pk+1(T ) ∀T ∈ Th

,(2.11)

Γh =τ ∈ [L2(Ω)]2 | τ |T ∈ [Pk(T )]2 ∀T ∈ Th

,(2.12)

where Pl(T ), l = k, k + 1, is the space of polynomials of degree l defined on T ,and Bk+3(T ) = Pk+3(T )∩H1

0 (T ) is a space of bubbles on T . Then, we considerthe discrete problem:(2.13)

Find (θh, wh;γh) ∈ Θh × Wh × Γh such that

a(θh,η) + (γh,∇v − η) = (g, v) ∀(η, v) ∈ Θh × Wh,

(∇wh − θh, τ ) − µ−1t2(γh, τ ) = 0 ∀τ ∈ Γh.

Remark 2.1. We point out that eliminating γh from system (2.13), ourscheme is equivalent to the following problem involving only the rotations andthe vertical displacements:(2.14)

Find (θh, wh) ∈ Θh × Wh such that

a(θh,η) + µt−2(∇wh − Πhθh,∇v − Πhη

)= (g, v) ∀(η, v) ∈ Θh × Wh,

where Πh denotes the L2-projection operator onto Γh. We note that in obtain-ing (2.14) we need to use the fundamental property (cf. (2.11) and (2.12))

(2.15) ∇Wh ⊂ Γh.

3 The stability and a-priori error analysis

By denoting

(3.1)B(θ, w,γ;η, v, τ ) :=a(θ,η) + (∇v − η,γ)

+ (∇w − θ, τ ) − µ−1t2(γ, τ ),

the continuous problem (2.2) reads

(3.2)

Find (θ, w;γ) ∈ Θ × W × [L2(Ω)]2 such that

B(θ, w,γ;η, v, τ ) = (g, v) ∀(η, v; τ ) ∈ Θ × W × [L2(Ω)]2 ,

Page 5: A-PRIORI AND A-POSTERIORI ERROR ANALYSIS FOR ...REISSNER-MINDLIN PLATE ELEMENTS L. BEIRAO DA VEIGA˜ 1 , C. CHINOSI 2 , C. LOVADINA 3, ∗ and R. STENBERG 4 1 Dipartimento di Matematica,

THE FALK-TU FAMILY OF REISSNER-MINDLIN PLATE ELEMENTS 5

while the discrete problem (2.13) is

(3.3)

Find (θh, wh;γh) ∈ Θh × Wh × Γh such that

B(θh, wh,γh;η, v, τ ) = (g, v) ∀(η, v; τ ) ∈ Θh × Wh × Γh.

Following the lines of [18, 28, 29, 32, 36], we prove a priori error estimateswith respect to the norms

(3.4) |||(η, v)|||2h := ||η||21 + ||v||21 +∑

T∈Th

1

h2T + t2

||∇v−η||20,T ∀(η, v) ∈ Θ×W

and

(3.5) ||τ ||Θ′ + t ||τ ||0 ∀τ ∈ [L2(Ω)]2 .

Above, || · ||Θ′ denotes the norm in Θ′, the dual space of Θ.Remark 3.1. For a clamped plate, we have Θ = [H1

0 (Ω)]2. Therefore, thenorm || · ||Θ′ is the usual norm in [H−1(Ω)]2.

We will also use the following discrete norm

(3.6) ||τ ||2h :=∑

T∈Th

h2T ||τ ||

20,T + t2||τ ||20 ∀τ ∈ [L2(Ω)]2 .

Before proceeding, we need the following lemma, which establishes a suitablenorm equivalence in the used finite element spaces.

Lemma 3.1. For each (η, v) ∈ Θh × Wh it holds

(3.7)(||η||21 +

T∈Th

1

h2T + t2

||∇v − Πhη||20,T

)1/2

≤ |||(η, v)|||h

and

(3.8) |||(η, v)|||h ≤ C(||η||21 +

T∈Th

1

h2T + t2

||∇v − Πhη||20,T

)1/2

.

Proof. Since (3.7) is trivial, we only consider (3.8). Therefore, take η ∈ Θh,and v ∈ Wh. We write

(3.9) ∇v − η = (∇v − Πhη) + (Πhη − η),

so that we get

(3.10)

||∇v − η||20,T ≤ 2(||∇v − Πhη||20,T + ||Πhη − η||20,T

)

≤ C(||∇v − Πhη||20,T + h2

T |η|21,T

)

Page 6: A-PRIORI AND A-POSTERIORI ERROR ANALYSIS FOR ...REISSNER-MINDLIN PLATE ELEMENTS L. BEIRAO DA VEIGA˜ 1 , C. CHINOSI 2 , C. LOVADINA 3, ∗ and R. STENBERG 4 1 Dipartimento di Matematica,

6 L. BEIRAO DA VEIGA, C. CHINOSI, C. LOVADINA AND R. STENBERG

Therefore, we obtain

(3.11)

1

h2T + t2

||∇v − η||20,T ≤ C( 1

h2T + t2

||∇v − Πhη||20,T +h2

T

h2T + t2

|η|21,T

)

≤ C( 1

h2T + t2

||∇v − Πhη||20,T + |η|21,T

).

Summing over all the triangle contributions, we get

(3.12)∑

T∈Th

1

h2T + t2

||∇v − η||20,T ≤ C( ∑

T∈Th

1

h2T + t2

||∇v − Πhη||20,T + ||η||21

).

Furthermore, Poincare’s inequality yields

(3.13)

||v||1 ≤ C||∇v||0 ≤ C (||∇v − η||0 + ||η||0)

≤ C[( ∑

T∈Th

1

h2T + t2

||∇v − η||20,T

)1/2+ ||η||1

].

The estimate (3.8) now follows from (3.12)–(3.13).By known techniques (cf. [18, 28, 32, 36]) we prove the following stability

result.Proposition 3.2. Given (β, z;ρ) ∈ Θh × Wh × Γh there exists (η, v; τ ) ∈

Θh × Wh × Γh such that

(3.14) B(β, z,ρ;η, v, τ ) ≥ C(|||(β, z)|||2h + ||ρ||2h

),

and

(3.15) |||(η, v)|||h + ||τ ||h ≤ C(|||(β, z)|||h + ||ρ||h

)

Proof. Let (β, z;ρ) be given in Θh × Wh × Γh. Using exactly the samearguments of [18] and [28] we get that there exists (η, v; τ ) in Θh × Wh × Γh

such that

(3.16) B(β, z,ρ;η, v, τ ) ≥ C(||β||21 +

T∈Th

1

h2T + t2

||∇z − Πhβ||20,T + ||ρ||2h

)

and

(3.17)

||η||1+( ∑

T∈Th

1

h2T + t2

||∇v − Πhηh||20,T

)1/2

+ ||τ ||h

≤ C(||β||1 +

( ∑

T∈Th

1

h2T + t2

||∇z − Πhβ||20,T

)1/2

+ ||ρ||h

).

The assertion now follows from the equivalence of norms given in Lemma 3.1.

Page 7: A-PRIORI AND A-POSTERIORI ERROR ANALYSIS FOR ...REISSNER-MINDLIN PLATE ELEMENTS L. BEIRAO DA VEIGA˜ 1 , C. CHINOSI 2 , C. LOVADINA 3, ∗ and R. STENBERG 4 1 Dipartimento di Matematica,

THE FALK-TU FAMILY OF REISSNER-MINDLIN PLATE ELEMENTS 7

It is now easy to prove the following result.Theorem 3.3. It holds

|||(θ − θh, w − wh)|||h + ||γ − γh||h + ‖γ − γh‖Θ′

≤ C inf(η,v,τ )∈Θh×Wh×Γh

|||(θ − η, w − v)|||h + ||γ − τ ||h .(3.18)

Proof. By noting that our method is consistent (see (3.2) and (3.3)), and byProposition 3.2, a standard “consistency–stability argument” immediately givesthe estimate

|||(θ − θh, w − wh)|||h + ||γ − γh||h

≤ C inf(η,v,τ )∈Θh×Wh×Γh

|||(θ − η, w − v)|||h + ||γ − τ ||h .(3.19)

To get the shear error in the norm of Θ′, an application of the ”Pitkaranta-Verfurth trick” (cf. [34, 39] and [29]) leads to

(3.20) ||γ − γh||Θ′ ≤ C (||γ − γh||h + ||θ − θh||1) .

Estimates (3.19) and (3.20) imply the bound (3.18).For the special case of clamped plate and a convex domain the techniques

of [32] gives the the following estimate.Proposition 3.4. Let Ω be a convex polygon and let Ωi be a domain compactly

embedded in Ω. For g ∈ Hk−2(Ω), tg ∈ Hk−1(Ω) it holds

|||(θ − θh, w − wh)|||h + t‖γ − γh‖0 + ‖γ − γh‖−1

≤ Chk

i (‖g‖k−2 + t‖g‖k−1) + hb(‖g‖−1 + t‖g‖0)

,(3.21)

(3.22) ‖θ − θh‖0 ≤ Chhk

i (‖g‖k−2 + t‖g‖k−1) + hb(‖g‖−1 + t‖g‖0)

and

(3.23) ‖w − wh‖1 ≤ C(h + t)hk

i (‖g‖k−2 + t‖g‖k−1) + hb(‖g‖−1 + t‖g‖0)

,

where

(3.24) hi := maxT⊂Ωi

hT ; hb := maxT 6⊂Ωi

hT .

4 A posteriori error estimates

In this section e introduce the error estimator and we study its reliability andefficiency. The edge set Eh we split into

(4.1) Eh = EIh ∪ EF

h ∪ ESh ∪ EH

h ,

Page 8: A-PRIORI AND A-POSTERIORI ERROR ANALYSIS FOR ...REISSNER-MINDLIN PLATE ELEMENTS L. BEIRAO DA VEIGA˜ 1 , C. CHINOSI 2 , C. LOVADINA 3, ∗ and R. STENBERG 4 1 Dipartimento di Matematica,

8 L. BEIRAO DA VEIGA, C. CHINOSI, C. LOVADINA AND R. STENBERG

where EIh is the set of the inner edges, while EF

h , ESh and EH

h are the sets wherefree, soft simply supported and hard simply supported boundary conditions areimposed. For each T ∈ Th we introduce the following quantity

(4.2)

η2T := h2

T ||div Cε(θh) + γh||20,T + h2

T (h2T + t2)||div γh + gh||

20,T

+µ2

h2T + t2

||µ−1t2 γh − (∇wh − θh)||20,T ,

where gh is an approximation of the load g. Moreover, we set(4.3)

η2E := hE || [[Cε(θh)n]] ||20,E + hE(h2

E + t2)|| [[γh · n]] ||20,E E ∈ EIh ∪ EF

h ,

η2S := hE || [[Cε(θh)n]] ||20,E E ∈ ES

h ,

η2H := hE ||( [[Cε(θh)n]] ) · n||20,E E ∈ EH

h ,

where hE is the length of the side E and [[·]] denotes the jump operator. Weadopt the usual notation that the jump operator on a boundary edge is equal tothe restriction operator on that edge. We then define the local indicator ηT as

(4.4) ηT :=(η2

T +∑

E⊂∂T∩(EI

h∪EF

h)

η2E +

E⊂∂T∩ES

h

η2S +

E⊂∂T∩EH

h

η2H

)1/2

,

and the global indicator η as

(4.5) η :=( ∑

T∈Th

η2T +

E∈EI

h∪EF

h

η2E +

E∈ES

h

η2S +

E∈EH

h

η2H

)1/2

.

4.1 Lower bounds

The efficiency of the error estimator we prove using the techniques of [29].Proposition 4.1. Let (θ, w;γ) (resp. (θh, wh;γh)) be the solution of the

continuous (respectively discrete) problem. Given T ∈ Th, it holds

(4.6)

ηT ≤C

(1

(h2T + t2)1/2

∣∣∣∣∇(wh − w) − (θh − θ)∣∣∣∣

0,T+ ||θh − θ||1,ωT

+ ||γh − γ||Θ(ωT )′ + t ||γh − γ||0,ωT

+( ∑

T ′⊂ωT

h2T ′(h2

T ′ + t2)||g − gh||20,T ′

)1/2)

,

where ηT is defined by (4.2)–(4.4), and ωT is the union of the triangles in Th

sharing a side with T . Moreover, Θ(ωT )′ is the dual of the space

Θ(ωT ) = η|ωT|η ∈ Θ and η = 0 on ∂ωT \ ∂Ω.

Page 9: A-PRIORI AND A-POSTERIORI ERROR ANALYSIS FOR ...REISSNER-MINDLIN PLATE ELEMENTS L. BEIRAO DA VEIGA˜ 1 , C. CHINOSI 2 , C. LOVADINA 3, ∗ and R. STENBERG 4 1 Dipartimento di Matematica,

THE FALK-TU FAMILY OF REISSNER-MINDLIN PLATE ELEMENTS 9

Proof. We fix a triangle T ∈ Th. Arguing e as in [29], we can obtain

(4.7)

(η2

T +∑

E⊂∂T∩EI

h

η2E

)1/2

≤ C( 1

(h2T + t2)1/2

∣∣∣∣∇(wh − w) − (θh − θ)∣∣∣∣

0,T+ ||θh − θ||1,ωT

+ ||γh − γ||−1,ωT+ t ||γh − γ||0,ωT

+( ∑

T ′⊂ωT

h2T ′(h2

T ′ + t2)||g − gh||20,T ′

)1/2).

If the triangle T contains a boundary edge E ∈ EFh , the same technique leads to

the estimate

(4.8)ηE ≤ C

(||θh − θ||1,T + ||γh − γ||Θ(T )′ + t ||γh − γ||0,T

+ hT (hT + t)||g − gh||0,T

),

where Θ(T )′ is the dual space of

Θ(T ) = η|T |η ∈ Θ and η = 0 on ∂T \ ∂Ω.

Similarly, for boundary edges E ∈ ESh and E ∈ EH

h , we respectively get

(4.9) ηS ≤ C(||θh − θ||1,T + ||γh − γ||Θ(T )′ + t ||γh − γ||0,T

),

and

(4.10) ηH ≤ C(||θh − θ||1,T + ||γh − γ||Θ(T )′ + t ||γh − γ||0,T

).

Since it holds

(4.11)||γh − γ||−1,ωT

≤ ||γh − γ||Θ(ωT )′

||γh − γ||Θ(T )′ ≤ ||γh − γ||Θ(ωT )′ ,

(4.6) follows from (4.7)–(4.10).

4.2 Upper bounds

We now prove the reliability of the error estimator. Given an integer k ≥ 1(and, therefore, an element in the Falk-Tu family), we will prove our upperbounds by means of a saturation assumption involving the higher order (k + 1)-th Falk-Tu element. In order to avoid cumbersome notation, we will denote allthe quantities relative to this latter element by a ”tilde”. We will use the fol-lowing

Page 10: A-PRIORI AND A-POSTERIORI ERROR ANALYSIS FOR ...REISSNER-MINDLIN PLATE ELEMENTS L. BEIRAO DA VEIGA˜ 1 , C. CHINOSI 2 , C. LOVADINA 3, ∗ and R. STENBERG 4 1 Dipartimento di Matematica,

10 L. BEIRAO DA VEIGA, C. CHINOSI, C. LOVADINA AND R. STENBERG

Saturation assumption: Let (θh, wh,γh) ∈ Θh × Wh × Γh and (θh, wh, γh) ∈

Θh × Wh × Γh be the discrete solutions using the k-th and (k + 1)-th Falk-Tuelement, respectively. We assume that there exists 0 < ρ < 1 such that

(4.12)|||(θ − θh, w − wh)|||h + ||γ − γh||Θ′ + t ||γ − γh||0

≤ ρ(|||(θ − θh, w − wh)|||h + ||γ − γh||Θ′ + t ||γ − γh||0

).

By using the saturation assumption (4.12), it is easily seen that one gets thereliability estimate

(4.13)

|||(θ − θh, w − wh)|||h + ||γ − γh||Θ′ + t ||γ − γh||0

≤ C( ∑

T∈Th

(η2

T + h2T (h2

T + t2)||g − gh||20,T

))1/2

,

provided one is able to bound

(4.14) |||(θh − θh, wh − wh)|||h + ||γh − γh||Θ′ + t ||γh − γh||0 .

To this aim, we first notice that Θh × Wh × Γh ⊂ Θh × Wh × Γh. We need thefollowing result, which states that functions in Θh × Wh can be approximatedby functions in Θh × Wh.

Lemma 4.2. Given (η, v) ∈ Θh × Wh, set (Iη, I v) ∈ Θh × Wh, where Idenotes the usual Lagrange interpolating operator. Then it holds

(4.15)

T∈Th

h−2T

(||η − Iη||20,T +

1

h2T + t2

||v − I v||20,T

)

+∑

E∈EI

h

h−1E

(||η − Iη||20,E +

1

h2E + t2

||v − I v||20,E

)≤ C|||(η, v)||| 2h .

Proof. Let (η, v) ∈ Θh × Wh be given. By standard approximation resultsand scaling arguments, we have

(4.16)∑

T∈Th

h−2T ||η − Iη||20,T +

E∈EI

h

h−1E ||η − Iη||20,E ≤ C||η||21.

Furthermore, it holds

(4.17)||v − I v||20,T ≤ Ch4

T |v|22,T = Ch4

T |∇v|21,T

≤ Ch4T

(|∇v − η|21,T + |η|21,T

).

Using an inverse inequality we get

(4.18) ||v − I v||20,T ≤ Ch2T ||∇v − η||20,T + Ch4

T |η|21,T .

Page 11: A-PRIORI AND A-POSTERIORI ERROR ANALYSIS FOR ...REISSNER-MINDLIN PLATE ELEMENTS L. BEIRAO DA VEIGA˜ 1 , C. CHINOSI 2 , C. LOVADINA 3, ∗ and R. STENBERG 4 1 Dipartimento di Matematica,

THE FALK-TU FAMILY OF REISSNER-MINDLIN PLATE ELEMENTS 11

Therefore, we obtain

(4.19)

T∈Th

h−2T

h2T + t2

||v − I v||20,T

≤ C∑

T∈Th

1

h2T + t2

||∇v − η||20,T + C∑

T∈Th

h2T

h2T + t2

|η|21,T

≤ C

(∑

T∈Th

1

h2T + t2

||∇v − η||20,T + ||η||21

)

≤ C|||(η, v)||| 2h .

The shape regularity of Th, scaling arguments, and estimate (4.19) show that

(4.20)∑

E∈EI

h

h−1E

h2E + t2

||v −I v||20,E ≤ C∑

T∈Th

h−2T

h2T + t2

||v −I v||20,T ≤ C|||(η, v)||| 2h .

Collecting (4.16), (4.19) and (4.20) gives th estimate (4.15).We are now ready to prove the following proposition.Proposition 4.3. We have

(4.21)

|||(θh − θh, wh − wh)|||h + ||γh − γh||Θ′ + t ||γh − γh||0

≤ C( ∑

T∈Th

(η2

T + h2T (h2

T + t2)||g − gh||20,T

))1/2

.

Proof. Consider (θh −θh, wh −wh; γh −γh) ∈ Θh × Wh × Γh. The discretestability for the (k + 1)-th Falk-Tu element (see Proposition 3.2) implies that

there exists (η, v; τ ) in Θh × Wh × Γh such that

(4.22) |||(η, v)|||h + ||τ ||h ≤ 1

and

(4.23)

C(|||(θh − θh, wh − wh)|||h + ||γh − γh||h

)

a(θh − θh, η) + (γh − γh,∇v − η)

+−(∇(wh − wh) − (θh − θh), τ ) + µ−1t2(γh − γh, τ )

= I + II.

On one hand, since (θh, wh; γh) (respectively (θh, wh;γh)) solves the higher-order (low-order) discrete problem, we have

(4.24)

I = a(θh − θh, η) + (γh − γh,∇v − η)

= (g, v) − a(θh, η) − (γh,∇v − η)

= (g, v − I v) − a(θh, η − Iη) −(γh,∇(v − I v) − (η − Iη)

),

Page 12: A-PRIORI AND A-POSTERIORI ERROR ANALYSIS FOR ...REISSNER-MINDLIN PLATE ELEMENTS L. BEIRAO DA VEIGA˜ 1 , C. CHINOSI 2 , C. LOVADINA 3, ∗ and R. STENBERG 4 1 Dipartimento di Matematica,

12 L. BEIRAO DA VEIGA, C. CHINOSI, C. LOVADINA AND R. STENBERG

where Iη ∈ Θh and I v ∈ Wh are as in Lemma 4.2. An elementwise integrationby parts gives(4.25)

I =∑

T∈Th

T

(div Cε(θh) + γh

)· (η − Iη) −

∂T

Cε(θh)n · (η − Iη)

+∑

T∈Th

T

(div γh + g

)(v − I v) −

∂T

γh · n (v − I v)

by which(4.26)

I =∑

T∈Th

T

(div Cε(θh) + γh

)· (η − Iη) −

E∈Eh

E

[[Cε(θh)n]] · (η − Iη)

+∑

T∈Th

T

(div γh + g

)(v − I v) −

E∈Eh

E

[[γh · n]] (v − I v) .

Hence, recalling the boundary conditions in (2.3), and denoting EIFSh = EI

h ∪EF

h ∪ ESh and EhIF = EI

h ∪ EFh it holds

(4.27)

I ≤ C[( ∑

T∈Th

h2T ||div Cε(θh) + γh||

20,T

)1/2( ∑

T∈Th

h−2T ||η − Iη||20,T

)1/2

+( ∑

E∈ EIF S

h

hE || [[Cε(θh)n]] ||20,E

)1/2( ∑

E∈ EIF S

h

h−1E ||η − Iη||20,E

)1/2

+( ∑

E∈EH

h

hE || [[(Cε(θh)n) · n]] ||20,E

)1/2( ∑

E∈EH

h

h−1E ||(η − Iη) · n||20,E

)1/2

+( ∑

T∈Th

h2T (h2

T + t2)||div γh + g||20,T

)1/2( ∑

T∈Th

1

h2T (h2

T + t2)||v − I v||20,T

)1/2

+(∑

E∈EIF

h

hE(h2E + t2)|| [[γh · n]] ||20,E

)1/2(∑

E∈EIF

h

1

hE(h2E + t2)

||v − I v||20,E

)1/2].

Using Lemma 4.2, we get(4.28)

I ≤ C[( ∑

T∈Th

h2T ||div Cε(θh) + γh||

20,T

)1/2

+( ∑

E∈ EI

h∪EF

h∪ES

h

hE || [[Cε(θh)n]] ||20,E

)1/2

+( ∑

E∈ EH

h

hE || [[(Cε(θh)n) · n]] ||20,E

)1/2

+( ∑

T∈Th

h2T (h2

T + t2)||div γh + g||20,T

)1/2

+( ∑

E∈ EI

h∪EF

h

hE(h2E + t2)|| [[γh · n]] ||20,E

)1/2]|||(η, v)|||h.

On the other hand, since (θh, wh; γh) solves the higher-order discrete problem,

Page 13: A-PRIORI AND A-POSTERIORI ERROR ANALYSIS FOR ...REISSNER-MINDLIN PLATE ELEMENTS L. BEIRAO DA VEIGA˜ 1 , C. CHINOSI 2 , C. LOVADINA 3, ∗ and R. STENBERG 4 1 Dipartimento di Matematica,

THE FALK-TU FAMILY OF REISSNER-MINDLIN PLATE ELEMENTS 13

we have(4.29)

II = −(∇(wh − wh) − (θh − θh), τ ) + µ−1t2(γh − γh, τ )

= −(µ−1t2 γh − (∇wh − θh), τ

)

≤( ∑

T∈Th

1

h2T + t2

||µ−1t2 γh − (∇wh − θh)||20,T

)1/2( ∑

T∈Th

(h2T + t2)||τ ||20,T

)1/2.

As a consequence, from (4.23), (4.28), (4.29), using (4.22) and recalling defini-tions (4.2)–(4.4), a triangle inequality gives

(4.30)

|||(θh − θh, wh − wh)|||h + ||γh − γh||h

≤ C( ∑

T∈Th

(η2

T + h2T (h2

T + t2)||g − gh||20,T

))1/2

.

The ”Pitkaranta-Verfurth trick”, applied to γh − γh, gives (cf. (3.20))

(4.31) ||γh − γh||Θ′ ≤ C(||γh − γh||h + ||θh − θh||1

).

Combining (4.30) and (4.31) we get estimate (4.21). The proof is complete.

5 Numerical results

In the present section we numerically test the behavior of the error estimatorη given by (4.5). For comparison purposes, we will consider the true error

(5.1) eN = (|||(θ − θh, w − wh)|||2h + ‖γ − γh‖2h)1/2 ,

where the index N represents the number of degrees of freedom, and the normsin the right-hand side has been introduced in (3.4) and (3.6). The a-prioriconvergence result for the error eN has been proved in Section 2. For simplicity,we restrict our study to the lowest order element in the Falk-Tu family, i.e. tothe choice k = 1 in (2.10)-(2.12).

In the sequel we will consider both uniform and adaptively refined families ofmeshes, generated by using MATLAB c©. Given a starting coarse grid, a uniformmesh family is obtained by a classical triangle subdivision: a mesh refinement isgenerated by dividing all the elements into four sub-triangles using a standardedge bisection procedure.

The adaptively refined family is obtained starting from a coarse mesh, andadopting the following standard strategy:

(1) Calculate the local element error indicators ηi, i = 1, . . . ,M , where M is thenumber of elements in the mesh.(2) Mark for refinement the elements Tj such that

ηj ≥1

2max

i=1,...,Mηi , j = 1, . . . ,M .

Page 14: A-PRIORI AND A-POSTERIORI ERROR ANALYSIS FOR ...REISSNER-MINDLIN PLATE ELEMENTS L. BEIRAO DA VEIGA˜ 1 , C. CHINOSI 2 , C. LOVADINA 3, ∗ and R. STENBERG 4 1 Dipartimento di Matematica,

14 L. BEIRAO DA VEIGA, C. CHINOSI, C. LOVADINA AND R. STENBERG

(3) Generate the refined mesh using a red-green-blue strategy, as shown forinstance in [41]. Essentially, each element marked for refinement is divided intofour subtriangles, and suitable additional subdivisions are performed in order toavoid hanging nodes and degenerate elements. Furthermore, at each adaptiverefinement step the mesh is jiggled by slightly adjusting the positions of thenodes, in order to increase the quality of the resulting grid.

As a preliminary test we consider a clamped homogeneous and isotropic squareplate problem, for which the analytical (regular) solution is available (see [21] forall the details). In Figure 5.1 we plot the error eN as a function of the numberof degrees of freedom N for a family of uniform meshes and for different valuesof the thickness t. Note that we clearly have N ∼ h−2. Therefore, due to theregularity of the solution and the results of Section 2, we expect a convergencerate of order O(h) ∼ O(N− 1

2 ) for all thickness choices. The numerical resultsfully agree with this theoretical prediction.

5.1 L-shaped plate with constant load

We consider an L-shaped plate, where the domain Ω is obtained carving outthe upper right quarter of a [−1, 1] × [−1, 1] square. The applied load is aconstant function g = 1 and the material constants are E = 10.92 and ν = 0.3.In Figure 5.2 we show the initial coarse mesh we have always used for both theuniform and the adaptive refinements. We focus on the following two cases.

5.1.1 Clamped corner case

The plate is clamped along the two edges forming the re-entrant corner, whileit is free on the other edges. The analytical solution to this problem is not known,therefore our tests will be restricted to the error indicator ηN . Nevertheless, onthe basis of the results for Kirchhoff plates found in [10] and [33], we expect thebest Sobolev regularity of the analytical rotation θ near the re-entrant cornerto be H3/2, while the deflection w is more regular. As a consequence, Propo-sition 3.3 and standard polynomial interpolation results suggest a convergencerate

(5.2) eN ∼ h1/2 ∼ N− 14

for uniformly refined meshes.In Figures 5.3 and 5.4 we plot the error estimator ηN as a function of N ,

for varying thicknesses, respectively for uniform and adaptively refined meshes.While the uniformly refined strategy exhibits a slow convergence rate as ex-pected, the adaptively refined procedure clearly displays better performances.In Figure 5.5 we plot a comparison between the two refinement strategies forthe choices t = 10−2 and t = 10−4; the superior performance of the adaptivelyrefined meshes, in terms of error versus degrees of freedom, can be noticed.

In Figure 5.6 we show two meshes obtained at different stages of refinement,for both the choices t = 10−2 and t = 10−4. Looking at the refined meshes,the error indicator succeeds in detecting the solution irregularity around there-entrant corner.

Page 15: A-PRIORI AND A-POSTERIORI ERROR ANALYSIS FOR ...REISSNER-MINDLIN PLATE ELEMENTS L. BEIRAO DA VEIGA˜ 1 , C. CHINOSI 2 , C. LOVADINA 3, ∗ and R. STENBERG 4 1 Dipartimento di Matematica,

THE FALK-TU FAMILY OF REISSNER-MINDLIN PLATE ELEMENTS 15

5.1.2 Free corner case

The plate is now free along the two edges forming the re-entrant corner, whileit is clamped on the other edges. Again, the analytical solution to this problemis not available, so that only the error estimator ηN is studied. However, fromthe Kirchhoff plate results of [10] and [33], we expect the best Sobolev regularityof the analytical rotation θ near the re-entrant corner to be H1.63, while the de-flection w is more regular. As a consequence, this case is slightly more favorablethan the provious one, from the the geometric singularity viewpoint.

In Figures 5.7 and 5.8 we plot the error estimator ηN as a function of N , forvarying thicknesses, respectively for uniform and adaptively refined meshes. InFigure 5.9 we plot a comparison between the two refinement strategies for thechoices t = 10−2 and t = 10−4. The procedures give analogous results: thiscan be probably explained by noticing that also the uniform refinements exhibitthe optimal O(N−1/2) convergence rate. In Figure 5.10 we show two meshesobtained at different stages of refinement, for both the choices t = 10−2 andt = 10−4.

5.2 Semi-infinite plate: a boundary layer test

Boundary layers are an important issue in Reissner-Mindlin plate analysis,see for instance [3, 23, 35, 6, 20]. We consider the bending problem of a semi-infinite plate introduced in [2]. The midsurface and the boundary of the plate,respectively, are described by the sets

(5.3) Ω = (x, y) ∈ R2|y > 0 and Γ = (x, y) ∈ R

2|y = 0 .

The plate is assumed to be free on the boundary Γ and subjected to a cosinetype transverse loading g = cos x

2(1+ν) . Our choice for the thickness and material

parameters are t = 10−2, ν = 0.3, E = 1. The analytical x-periodic solutionof this problem is given in [2] and not reported here. Such a solution presentsa boundary layer generated by the free edge Γ. Therefore, the present problemcan be used to analyze both the effectivity of our estimator and its ability todetect the error arising from the edge effects.

We solve the problem with the lowest-order Falk-Tu element on the subdomainD = (0, π/2)× (0, 3π/2); along the boundaries x = 0, x = π/2 and x = 3π/2 weimpose the Dirichlet boundary conditions resulting from the exact solution. InFigure 5.11 we show the initial coarse mesh we have used for both the uniformand the adaptive refinements.

Figure 5.12 displays the convergence history of the error and of the errorestimator on the subdomain Db = (x, y) ∈ D|y ∈ (0, π/2), for both theuniform and the adaptive refinement strategies. The two considered quantitiesexhibit a similar behaviour, as it can be deduced also by Figure 5.13, whichreports the effectivity index corresponding to the adaptive meshes. Furthermore,in Figure 5.14 we show two meshes obtained at different stages of adaptiverefinement.

Finally, in Figures 5.15 and 5.16 we plot the local error and the error estimatordistribution, element by element on the subdomain Db previously introduced.

Page 16: A-PRIORI AND A-POSTERIORI ERROR ANALYSIS FOR ...REISSNER-MINDLIN PLATE ELEMENTS L. BEIRAO DA VEIGA˜ 1 , C. CHINOSI 2 , C. LOVADINA 3, ∗ and R. STENBERG 4 1 Dipartimento di Matematica,

16 L. BEIRAO DA VEIGA, C. CHINOSI, C. LOVADINA AND R. STENBERG

Two uniform meshes are here considered, corresponding to a coarse and a finegrid, respectively. In both cases the presence of the layer causes higher localerrors near the free boundary, as it can be appreciated in the above indicatedplots. The figures show that also the error estimator attains higher values inthe elements near the free boundary, and its distribution pattern is very similarto the one of the true error. As a consequence, this test confirms that the errorindicator is able to detect boundary layers.

REFERENCES

1. D.N. Arnold and R.S. Falk, A uniformly accurate finite element method for theReissner-Mindlin plate, SIAM J. Numer. Anal. 26 (1989), pp. 1276–1290.

2. D.N. Arnold and R.S. Falk, Edge effects in the Reissner-Mindlin plate theory, inA.K. Noor, T. Belytschko, and J.C. Simo, editors, Analytical and ComputationalModels of Shells, pages 71–90, New York (1989), ASME.

3. D.N. Arnold and R.S. Falk, Asymptotic analysis of the boundary layer for theReissner-Mindlin plate model, SIAM J. Numer. Anal. 27 (1996), pp. 486–514.

4. F. Auricchio and C. Lovadina, Partial selective reduced integration schemes andkinematically linked interpolations for plate bending problems, Math. Models Meth-ods Appl. Sci. 9 (1999), pp. 693–722.

5. F. Auricchio and C. Lovadina, Analysis of kinematic linked interpolation methodsfor Reissner-Mindlin plate problems, Comput. Methods Appl. Mech. Engrg. 190

(2001), pp. 2465–2482.

6. L. Beirao da Veiga, Finite element methods for a modified Reissner-Mindlin freeplate model, SIAM J. Numer. Anal. 42 (2004), pp. 1572-1591.

7. L. Beirao da Veiga, J. Niiranen and R. Stenberg A posteriori error estimates forthe plate bending Morley element, Numer. Math. 106 (2007), pp 165-179.

8. L. Beirao da Veiga, J. Niiranen and R. Stenberg A family of C0 finite elements for

Kirchhoff plates I: theoretical analysis, SIAM J. Numer. Anal. 45 (2007), pp 2047-2071.

9. L. Beirao da Veiga, J. Niiranen and R. Stenberg A family of C0 finite elements

for Kirchhoff plates II: numerical tests, Comput. Methods Appl. Mech. Engrg. 197

(2008), pp 1850-1864.

10. H. Blum and R. Rannacher, On the boundary value problem of the biharmonic op-erator on domains with angular corners, Math. Meth. Appl. Sci. 2 (1980), pp. 556–581.

11. D. Braess and R. Verfurth A posteriori error estimators for the Raviart-Thomaselement, SIAM J. Numer. Anal. 33 (1996), pp. 2431–2444.

12. F. Brezzi, K.J. Bathe and M. Fortin, Mixed-interpolated elements for Reissner-Mindlin plates, Internat. J. Numer. Methods Engrg. 28 (1989), pp. 1787–1801.

13. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer, NewYork, 1991.

14. F. Brezzi, M. Fortin and R. Stenberg, Error analysis of mixed-interpolated elementsfor Reissner-Mindlin plates, Math. Models Methods Appl. Sci. 1 (1991), pp. 125–151.

15. C. Carstensen, Residual-based a posteriori error estimate for a nonconformingReissner–Mindlin plate finite element, SIAM J. Numer. Anal. 39 (2002), pp. 2034–2044.

Page 17: A-PRIORI AND A-POSTERIORI ERROR ANALYSIS FOR ...REISSNER-MINDLIN PLATE ELEMENTS L. BEIRAO DA VEIGA˜ 1 , C. CHINOSI 2 , C. LOVADINA 3, ∗ and R. STENBERG 4 1 Dipartimento di Matematica,

THE FALK-TU FAMILY OF REISSNER-MINDLIN PLATE ELEMENTS 17

16. C. Carstensen and J. Hu, A posteriori error analysis for conforming MITC elementsfor Reissner-Mindlin Plate, Math. Comp. 77 (2008), pp. 611–632.

17. C. Carstensen and J. Schoberl, Residual-based a posteriori error estimate for amixed Reissner–Mindlin plate finite element, Numer.Math. 103 (2006), pp. 225-250.

18. D. Chapelle and R. Stenberg, An optimal low-order locking-free finite elementmethod for Reissner-Mindlin plates, Math. Models and Methods in Appl. Sci., 8

(1998), pp. 407–430.

19. D. Chapelle and R. Stenberg Stabilized finite element formulations for shells in abending dominated state, SIAM J. Numer. Anal. 36 (1999), pp. 32–73.

20. C. Chinosi, PSRI elements for the Reissner–Mindlin free plate, Comp. & Struct.,83 (2005), pp. 2559–2572.

21. C. Chinosi and C. Lovadina, Numerical analysis of some mixed finite element meth-ods for Reissner-Mindlin plates,, Comput. Mechanics, 16 (1995), pp. 36–44.

22. P.G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland,1978.

23. P. Destuynder and M. Salaun, Mathematical Analysis of Thin Plate Models,Springer-Verlag, Berlin, 1996.

24. R. Duran and E. Liberman, On mixed finite-element methods for the Reissner-Mindlin plate model, Math. Comp. 58 (1992), pp. 561–573.

25. R.S. Falk and T. Tu, Locking-free finite elements for the Reissner-Mindlin plate,Math. Comp., 69 (2000), pp. 911–928.

26. E. Liberman, A posteriori error estimator for a mixed finite element method forReissner-Mindlin plate, Math. Comp. 70 (2000), pp. 1383–1396.

27. C. Lovadina, A new class of mixed finite element methods for Reissner-Mindlinplates, SIAM J. Numer. Anal. 33 (1996), pp. 2457–2467.

28. C. Lovadina, Analysis of a mixed finite element method for the Reissner-Mindlinplate problems, Comput. Methods Appl. Mech. Engrg. 163 (1998), pp. 71–85.

29. C. Lovadina and R. Stenberg, A posteriori error analysis of the Linked InterpolationTechnique for plate bending problems, SIAM J. Numer. Anal. 43 (2005), pp. 2227–2249.

30. M. Lyly, On the connection between some linear triangular Reissner-Mindlin platebending elements, Numer. Math. 85 (2000), pp. 77–107.

31. M. Lyly, J. Niiranen and R. Stenberg, A refined error analysis of MITC plateelements, Math. Models Methods Appl. Sci. 16 (2006), pp 967–977.

32. M. Lyly and R. Stenberg, Stabilized finite element methods for Reissner-Mindlinplates, Forschungsbericht 4, Universitat Innsbruck, Institut fur Mathematik undGeometrie, (1999).

33. H. Melzer and R. Rannacher, Spannungskonzentrationen in Eckpunkten der vertikalbelasteten Kirchhoffschen Platte, Bauingenieur 55 (1980), pp. 181–189.

34. J. Pitkaranta, Boundary subspaces for the finite element method with Lagrangemultipliers, Numer. Math. 33 (1979), pp. 273–289.

35. J. Pitkaranta and M. Suri, Design principles and error analysis for reduced-shearplate-bending finite elements, 75 (1996), pp. 223–266.

36. R. Stenberg, A new finite element formulation for the plate bending problem, inAsymptotic Methods for Elastic Structures, eds. P.G. Ciarlet, L. Trabuchoand J. Viano, Walter de Gruyter & Co.,

Page 18: A-PRIORI AND A-POSTERIORI ERROR ANALYSIS FOR ...REISSNER-MINDLIN PLATE ELEMENTS L. BEIRAO DA VEIGA˜ 1 , C. CHINOSI 2 , C. LOVADINA 3, ∗ and R. STENBERG 4 1 Dipartimento di Matematica,

18 L. BEIRAO DA VEIGA, C. CHINOSI, C. LOVADINA AND R. STENBERG

37. R.L. Taylor and F. Auricchio, Linked interpolation for Reissner-Mindlin plate el-ements: Part II– A simple triangle, Int. J. Numer. Methods Eng. 36 (1993),pp. 3057–3066.

38. A. Tessler and T.J.R. Hughes, A three-node Mindlin plate element with improvedtransverse shear, Comput. Methods Appl. Mech. Engrg. 50 (1985), pp. 71–101.

39. R. Verfurth, Error estimates for a finite element approximation of the Stokes prob-lem, RAIRO Anal. Numer. 18 (1984), pp. 175–182.

40. R. Verfurth, A posteriori error estimation and adaptive mesh-refinement techniques,J. Comput. Appl. Math. 50 (1994), pp. 67–83.

41. R. Verfurth, A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, Teubner Verlag and J. Wiley, Stuttgart, 1996.

42. R. Verfurth, Robust a posteriori error estimators for singularly perturbed reaction-diffusion equations, Numer.Math. 78 (1998), pp. 479–493.

102

103

104

105

10−4

10−3

10−2

Number of degrees of freedom: N

Con

verg

ence

of t

he T

rue

Err

or e

N

21

t=1.e−2t=1.e−3t=1.e−4

Figure 5.1: Square plate: convergence of the error for uniform refinements,t = 10−2

÷ 10−4

Page 19: A-PRIORI AND A-POSTERIORI ERROR ANALYSIS FOR ...REISSNER-MINDLIN PLATE ELEMENTS L. BEIRAO DA VEIGA˜ 1 , C. CHINOSI 2 , C. LOVADINA 3, ∗ and R. STENBERG 4 1 Dipartimento di Matematica,

THE FALK-TU FAMILY OF REISSNER-MINDLIN PLATE ELEMENTS 19

Figure 5.2: L-shaped plate: initial mesh.

102

103

104

105

100

101

102

Number of degrees of freedom: N

Con

verg

ence

of t

he E

rror

Est

imat

or η

N

41

t=1.e−2t=1.e−3t=1.e−4

Figure 5.3: L-shaped plate, clamped corner: convergence of the error estimator foruniform refinements, t = 10−2

÷ 10−4

Page 20: A-PRIORI AND A-POSTERIORI ERROR ANALYSIS FOR ...REISSNER-MINDLIN PLATE ELEMENTS L. BEIRAO DA VEIGA˜ 1 , C. CHINOSI 2 , C. LOVADINA 3, ∗ and R. STENBERG 4 1 Dipartimento di Matematica,

20 L. BEIRAO DA VEIGA, C. CHINOSI, C. LOVADINA AND R. STENBERG

102

103

104

105

10−1

100

101

102

Number of degrees of freedom: N

Con

verg

ence

of t

he E

rror

Est

imat

or η

N

2 1

t=1.e−2t=1.e−3t=1.e−4

Figure 5.4: L-shaped plate, clamped corner: convergence of the error estimator foradaptive refinements, t = 10−2

÷ 10−4

Page 21: A-PRIORI AND A-POSTERIORI ERROR ANALYSIS FOR ...REISSNER-MINDLIN PLATE ELEMENTS L. BEIRAO DA VEIGA˜ 1 , C. CHINOSI 2 , C. LOVADINA 3, ∗ and R. STENBERG 4 1 Dipartimento di Matematica,

THE FALK-TU FAMILY OF REISSNER-MINDLIN PLATE ELEMENTS 21

102

103

104

105

10−1

100

101

102

Number of degrees of freedom: N

Err

or E

stim

ator

ηN

14

2

1

t=10−4 adaptive

t=10−4 uniform

t=10−2 adaptive

t=10−2 uniform

Figure 5.5: L-shaped plate, clamped corner: convergence of the error estimator foruniform and adaptive refinements, t = 10−2 (solid line) and t = 10−4 (dashed line)

Page 22: A-PRIORI AND A-POSTERIORI ERROR ANALYSIS FOR ...REISSNER-MINDLIN PLATE ELEMENTS L. BEIRAO DA VEIGA˜ 1 , C. CHINOSI 2 , C. LOVADINA 3, ∗ and R. STENBERG 4 1 Dipartimento di Matematica,

22 L. BEIRAO DA VEIGA, C. CHINOSI, C. LOVADINA AND R. STENBERG

(a) (b)

(c) (d)

Figure 5.6: L-shaped plate, clamped corner: (a)-(b) seventh refinement step N=6261,and eleventh refinement step N=31796, for t = 10−2; (c)-(d) seventh refinement stepN=4923, and eleventh refinement step N=13069, for t = 10−4

Page 23: A-PRIORI AND A-POSTERIORI ERROR ANALYSIS FOR ...REISSNER-MINDLIN PLATE ELEMENTS L. BEIRAO DA VEIGA˜ 1 , C. CHINOSI 2 , C. LOVADINA 3, ∗ and R. STENBERG 4 1 Dipartimento di Matematica,

THE FALK-TU FAMILY OF REISSNER-MINDLIN PLATE ELEMENTS 23

102

103

104

105

10−1

100

101

Number of degrees of freedom: N

Con

verg

ence

of t

he E

rror

Est

imat

or η

N

21

t=1.e−2t=1.e−3t=1.e−4

Figure 5.7: L-shaped plate, free corner: convergence of the error estimator for uniformrefinements, t = 10−2

÷ 10−4

Page 24: A-PRIORI AND A-POSTERIORI ERROR ANALYSIS FOR ...REISSNER-MINDLIN PLATE ELEMENTS L. BEIRAO DA VEIGA˜ 1 , C. CHINOSI 2 , C. LOVADINA 3, ∗ and R. STENBERG 4 1 Dipartimento di Matematica,

24 L. BEIRAO DA VEIGA, C. CHINOSI, C. LOVADINA AND R. STENBERG

102

103

104

105

10−1

100

101

Number of degrees of freedom: N

Con

verg

ence

of t

he E

rror

Est

imat

or η

N

21

t=1.e−2t=1.e−3t=1.e−4

Figure 5.8: L-shaped plate, free corner: convergence of the error estimator for adaptiverefinements, t = 10−2

÷ 10−4

Page 25: A-PRIORI AND A-POSTERIORI ERROR ANALYSIS FOR ...REISSNER-MINDLIN PLATE ELEMENTS L. BEIRAO DA VEIGA˜ 1 , C. CHINOSI 2 , C. LOVADINA 3, ∗ and R. STENBERG 4 1 Dipartimento di Matematica,

THE FALK-TU FAMILY OF REISSNER-MINDLIN PLATE ELEMENTS 25

102

103

104

105

10−1

100

101

Number of degrees of freedom: N

Err

or E

stim

ator

ηN

21

t=10−4 adaptive

t=10−4 uniform

t=10−2 adaptive

t=10−2 uniform

Figure 5.9: L-shaped plate, free corner: convergence of the error estimator for uniformand adaptive refinements, t = 10−2 (solid line) and t = 10−4 (dashed line)

Page 26: A-PRIORI AND A-POSTERIORI ERROR ANALYSIS FOR ...REISSNER-MINDLIN PLATE ELEMENTS L. BEIRAO DA VEIGA˜ 1 , C. CHINOSI 2 , C. LOVADINA 3, ∗ and R. STENBERG 4 1 Dipartimento di Matematica,

26 L. BEIRAO DA VEIGA, C. CHINOSI, C. LOVADINA AND R. STENBERG

(a) (b)

(c) (d)

Figure 5.10: L-shaped plate, free corner: (a)-(b) seventh refinement step N=4902,and eleventh refinement step N=28489, for t = 10−2; (c)-(d) seventh refinement stepN=4526, and eleventh refinement step N=19404, for t = 10−4

Page 27: A-PRIORI AND A-POSTERIORI ERROR ANALYSIS FOR ...REISSNER-MINDLIN PLATE ELEMENTS L. BEIRAO DA VEIGA˜ 1 , C. CHINOSI 2 , C. LOVADINA 3, ∗ and R. STENBERG 4 1 Dipartimento di Matematica,

THE FALK-TU FAMILY OF REISSNER-MINDLIN PLATE ELEMENTS 27

Figure 5.11: Semi-infinite plate: initial mesh

102

103

104

105

10−1

100

101

102

Number of degrees of freedom: N

Con

verg

ence

of t

he L

ocal

Tru

e E

rror

eN

and

Loc

al E

rror

Est

imat

or η

N

21

eN

adaptive

eN

uniform

ηN

adaptive

ηN

uniform

Figure 5.12: Semi-infinite plate: convergence of the local error and of the local errorestimator, for uniform and adaptive refinements

Page 28: A-PRIORI AND A-POSTERIORI ERROR ANALYSIS FOR ...REISSNER-MINDLIN PLATE ELEMENTS L. BEIRAO DA VEIGA˜ 1 , C. CHINOSI 2 , C. LOVADINA 3, ∗ and R. STENBERG 4 1 Dipartimento di Matematica,

28 L. BEIRAO DA VEIGA, C. CHINOSI, C. LOVADINA AND R. STENBERG

102

103

104

105

10−1

100

101

102

Number of degrees of freedom: N

Effe

ctiv

ity In

dex

= η

N/e

N

Figure 5.13: Semi-infinite plate: effectivity index for adaptive refinements

(a) (b)

Figure 5.14: Semi-infinite plate: criss-cross mesh: seventh refinement step: N=9262,tenth refinement step: N=27526

Page 29: A-PRIORI AND A-POSTERIORI ERROR ANALYSIS FOR ...REISSNER-MINDLIN PLATE ELEMENTS L. BEIRAO DA VEIGA˜ 1 , C. CHINOSI 2 , C. LOVADINA 3, ∗ and R. STENBERG 4 1 Dipartimento di Matematica,

THE FALK-TU FAMILY OF REISSNER-MINDLIN PLATE ELEMENTS 29

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.60

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

local true error: eT h

T=0.19635

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.60

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

local error estimator: ηT h

T=0.19635

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Figure 5.15: Semi-infinite plate, coarse mesh: local error and local residual distributionon a subdomain near the free boundary

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.60

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

local true error: eT h

T=0.098175

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.60

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

local error estimator: ηT h

T=0.098175

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Figure 5.16: Semi-infinite plate, fine mesh: local error and local residual distributionon a subdomain near the free boundary