A Non-Local Transport Equation modelling Dislocations...

13
A Non-Local Transport Equation modelling Dislocations Dynamics Amin Ghorbel, Cermics-ENPC CANUM 2006 A joint work with Régis Monneau http://cermics.enpc.fr/ghorbel Amin Ghorbel, Cermics-ENPC A Non-Local Transport Equation and Dislocations Dynamics 1/ 13

Transcript of A Non-Local Transport Equation modelling Dislocations...

Page 1: A Non-Local Transport Equation modelling Dislocations Dynamicscermics.enpc.fr/~ghorbel/canum2006_ghorbel.pdf · Amin Ghorbel, Cermics-ENPC A Non-Local Transport Equation and Dislocations

A Non-Local Transport Equation modellingDislocations Dynamics

Amin Ghorbel, Cermics-ENPC

CANUM 2006

A joint work with Régis Monneau

http://cermics.enpc.fr/∼ghorbel

Amin Ghorbel, Cermics-ENPC A Non-Local Transport Equation and Dislocations Dynamics 1/ 13

Page 2: A Non-Local Transport Equation modelling Dislocations Dynamicscermics.enpc.fr/~ghorbel/canum2006_ghorbel.pdf · Amin Ghorbel, Cermics-ENPC A Non-Local Transport Equation and Dislocations

Outline

1 Presentation of the Physical Model

2 First Main Result

3 Main Ideas for Proof of the First Result

4 Error Estimate

5 Numerical Simulations

6 Conclusion and Perspectives

Amin Ghorbel, Cermics-ENPC A Non-Local Transport Equation and Dislocations Dynamics 2/ 13

Page 3: A Non-Local Transport Equation modelling Dislocations Dynamicscermics.enpc.fr/~ghorbel/canum2006_ghorbel.pdf · Amin Ghorbel, Cermics-ENPC A Non-Local Transport Equation and Dislocations

Presentation of the Physical Model

Dislocations are lines defects in a crystal material (Hirth & Lothe, 1992).

123456

0

to the positions of dislocations

glide plane

P=6 dislocations lines

x

the jumps of E(u) correspond

E(u)

y

x

Figure: Representation of dislocations with the function E(u)

Amin Ghorbel, Cermics-ENPC A Non-Local Transport Equation and Dislocations Dynamics 3/ 13

Page 4: A Non-Local Transport Equation modelling Dislocations Dynamicscermics.enpc.fr/~ghorbel/canum2006_ghorbel.pdf · Amin Ghorbel, Cermics-ENPC A Non-Local Transport Equation and Dislocations

Presentation of the Physical Model

8>>>>><>>>>>:

∂u

∂t(x , t) = c[u](x , t)

∂u

∂x(x , t) in R× (0, +∞)

c[u](x , t) = cext(x) +

ZR

c0(x ′)E`(u(x − x ′, t)

´dx ′

u(x , 0) = u0(x) in R

(1)

where E is the floor function.

Dislocations move with a non-local velocity c[u]. It is the sum of two terms:

cext represents the exterior stress created by obstacles (such as precipitates,other defects, . . . ).

The second term is non-local and represents the elastic interior stress created byall the dislocations in the material.

Amin Ghorbel, Cermics-ENPC A Non-Local Transport Equation and Dislocations Dynamics 4/ 13

Page 5: A Non-Local Transport Equation modelling Dislocations Dynamicscermics.enpc.fr/~ghorbel/canum2006_ghorbel.pdf · Amin Ghorbel, Cermics-ENPC A Non-Local Transport Equation and Dislocations

First Main Result

We make the following assumptions for the exterior stress cext and the kernel c0:8><>:cext ∈ W 1,∞(R) such that cext(x + 1) = cext(x) in R,

c0 ∈ C∞0 (R) such that c0(x) = c0(−x) andZ

Rc0(x) dx = 0 .

(2)

We consider the initial condition u0 ∈ Lip(R) such that for x ∈ R

u0(x + 1) = u0(x) + P and 0 < b0 ≤∂u0

∂x≤ B0 < +∞ a.e. (3)

with b0 and B0 some constants and P ∈ N \ {0}. A natural case to study the solutionsof (1) is the continuous viscosity solutions (Barles, 1994).

Theorem 1

Under Assumptions (2) and (3), there exists a unique continuous viscosity solutionu ∈ W 1,∞

loc (R× (0, +∞)) of (1) such that

u(x + 1, t) = u(x , t) + P ∀(x , t) ∈ R× (0, +∞). (4)

Amin Ghorbel, Cermics-ENPC A Non-Local Transport Equation and Dislocations Dynamics 5/ 13

Page 6: A Non-Local Transport Equation modelling Dislocations Dynamicscermics.enpc.fr/~ghorbel/canum2006_ghorbel.pdf · Amin Ghorbel, Cermics-ENPC A Non-Local Transport Equation and Dislocations

Main Ideas for Proof of Theorem 1

We prove the previous theorem in two steps.1 First, we prove the result for a short time (Alvarez and al., 2005; Ghorbel and al.,

2005) using a fixed point theorem.Given T > 0 and a function v satisfying (4), we consider the function w = φ(v)satisfying (4), solution of

∂w

∂t(x , t) = c[v ](x , t)

∂w

∂x(x , t) in R× (0, T ). (5)

For T chosen sufficiently small, we prove that the map φ is a contraction in a wellchosen space.

2 Secondly, we repeat this short time result on a sequence of time intervals oflengths Tn decreasing to zero, such that

Xn∈N

Tn = +∞.

Amin Ghorbel, Cermics-ENPC A Non-Local Transport Equation and Dislocations Dynamics 6/ 13

Page 7: A Non-Local Transport Equation modelling Dislocations Dynamicscermics.enpc.fr/~ghorbel/canum2006_ghorbel.pdf · Amin Ghorbel, Cermics-ENPC A Non-Local Transport Equation and Dislocations

Error Estimate

Given a mesh size ∆x , ∆t and a lattice Id = {(i∆x , n∆t); i ∈ Z, n ∈ N}, (xi , tn)denotes the node (i∆x , n∆t) and vn = (vn

i )i the values of the numericalapproximation of the continuous solution u(xi , tn).

v0i = u0(xi ), vn+1

i = vni + ∆t ci (v

n)×

8>>><>>>:vn

i+1 − vni

∆xif ci (vn) ≥ 0

vni − vn

i−1

∆xif ci (vn) < 0

(6)

We choose ∆x =1

K, K ∈ N \ {0} because of the 1-periodicity in space. We denote

cexti = cext(xi ) which satisfies cext

i+K = cexti . The discrete velocity is

ci (vn) = cext

i +Xl∈Z

c0l E(vn

i−l )∆x (7)

where

c0i =

1

∆x

ZIi

c0(x) dx and Ii =

»xi −

∆x

2, xi +

∆x

2

–. (8)

Amin Ghorbel, Cermics-ENPC A Non-Local Transport Equation and Dislocations Dynamics 7/ 13

Page 8: A Non-Local Transport Equation modelling Dislocations Dynamicscermics.enpc.fr/~ghorbel/canum2006_ghorbel.pdf · Amin Ghorbel, Cermics-ENPC A Non-Local Transport Equation and Dislocations

Error estimate

We assume the CFL (Courant, Friedrichs, Levy) condition. Then

Theorem 2

there exists two constants T , C > 0 such that

supi∈Z

˛̨u(i∆x , n∆t)− vn

i

˛̨≤ C

√∆x for all n ≤

T

∆t.

Main Idea of Proof of Theorem 2

We apply the technical reasoning of Alvarez and al., 2005.

Amin Ghorbel, Cermics-ENPC A Non-Local Transport Equation and Dislocations Dynamics 8/ 13

Page 9: A Non-Local Transport Equation modelling Dislocations Dynamicscermics.enpc.fr/~ghorbel/canum2006_ghorbel.pdf · Amin Ghorbel, Cermics-ENPC A Non-Local Transport Equation and Dislocations

Numerical Simulations

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

-0.4 -0.2 0 0.2 0.4

t

x

Figure: Linear: ∆x = 0.01, ∆t = 2.438 10−3

Amin Ghorbel, Cermics-ENPC A Non-Local Transport Equation and Dislocations Dynamics 9/ 13

Page 10: A Non-Local Transport Equation modelling Dislocations Dynamicscermics.enpc.fr/~ghorbel/canum2006_ghorbel.pdf · Amin Ghorbel, Cermics-ENPC A Non-Local Transport Equation and Dislocations

Dynamics of several dislocations through obstacles

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

-0.4 -0.2 0 0.2 0.4

t

x

Figure: Trapping: ∆x = 0.01, ∆t = 1.239 10−3

Amin Ghorbel, Cermics-ENPC A Non-Local Transport Equation and Dislocations Dynamics 10/ 13

Page 11: A Non-Local Transport Equation modelling Dislocations Dynamicscermics.enpc.fr/~ghorbel/canum2006_ghorbel.pdf · Amin Ghorbel, Cermics-ENPC A Non-Local Transport Equation and Dislocations

Dynamics of several dislocations through obstacles

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

-0.4 -0.2 0 0.2 0.4

t

x

Figure: Pile-Up: ∆x = 0.01, ∆t = 1.102 10−3

Amin Ghorbel, Cermics-ENPC A Non-Local Transport Equation and Dislocations Dynamics 11/ 13

Page 12: A Non-Local Transport Equation modelling Dislocations Dynamicscermics.enpc.fr/~ghorbel/canum2006_ghorbel.pdf · Amin Ghorbel, Cermics-ENPC A Non-Local Transport Equation and Dislocations

Dynamics of several dislocations through obstacles

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

-0.4 -0.2 0 0.2 0.4

t

x

Figure: Pile-Up: ∆x = 0.01, ∆t = 1.10219 10−3

Amin Ghorbel, Cermics-ENPC A Non-Local Transport Equation and Dislocations Dynamics 12/ 13

Page 13: A Non-Local Transport Equation modelling Dislocations Dynamicscermics.enpc.fr/~ghorbel/canum2006_ghorbel.pdf · Amin Ghorbel, Cermics-ENPC A Non-Local Transport Equation and Dislocations

Conclusion and Perspectives

Homogenization of a large number of dislocations through obstacles.

Friction of dislocations.

Homogenization of walls of dislocations.Joint works with P. Hoch (CEA) and R. Monneau (Cermics).

Amin Ghorbel, Cermics-ENPC A Non-Local Transport Equation and Dislocations Dynamics 13/ 13