A new probabilistic power flow analysis method

9
182 IEEE Transactions on Power Systems, Vol. 5, No. 1, February 1990 A NEW PROBABILISTIC POWER PLOW AWiLYSIS METHOD A. P. Sakis Meliopoulos School of Electrical Engineering Georgia Institute of Technology Atlanta, Georgia 30332-0250 George J. Cokkinides Xing Yong Chao Department of Electrical Engineering School of Electrical Engineering University of South Carolina Georgia Institute of Technology Columbia, South Carolina 29208 Atlanta, Georgia 30332-0250 Abstract A simulation method of the composite power system is proposed for the purpose of evaluating the proba- bility distribution function of circuit flows and bus voltage magnitudes. The method consists of two steps. First, given the probabilistic electric load model, the probability distribution function of the total genera- tion of generation buses is computed. Second, circuit flows and bus voltage magnitudes are expressed as linear combinations of power injections at generation buses. This relationship allows the computation of the distribution functions of circuit flows and bus voltage magnitudes. The method incorporates major operating practices such as economic dispatch and nonlinearities resulting from the power flow equations. Validation of the method is performed via Monte Carlo simulation. Typical results are presented which illustrate that the proposed method matches very well results obtained with Monte Carlo simulations. Potential applications of the proposed method are: (1) composite power system relia- bility analysis and (2) iransmiasion loss evaluation. Key Words Power Flow Economic Dispatch Stochastic Load Model Probability Distribution Function (PDF) PDF of Circuit Flow PDF. of Bus Voltage Monte Carlo Simulation Introduction Traditional power flow analysis treats the electric load and the generating units of the system as deterministically known quantities. This is only true for a limited nmber of situations, for example, in a real time environment where the electric load and generation can be directly measured. In any other power flow application, however, there is uncertainty associated with the availability of generating units and the electric load. In many applications, such as reliability analysis of the composite (generation and transmission) power system and transmission loss evalu- ation, use of the traditional power flow formulation leads to an extremely large number of power flow cases for the purpose of capturing all the variances of the electric load and generation dispatch schedules. In these cases, it is appropriate to use methods which 89 SM 714-7 PWRS by the IEEE PozRr System Engineering Committee of the IEEE Power Engiileering Society for presentation a t the IEEE/PES 1989 Summer Meeting, Long Beach, California, July 9 - 14, 1989. made available for p r i n t i n g May 9, 1989. A paper recommended and approved Manuscript submitted September 1, 1988; directly treat the uncertainty. Methods of power flow analysis which recognize the uncertainty of the generation and electric load are referred to as probabilistic power flows. The first notion of probabilistic power flow appeared in the early 1970s. Borkowska, Allen et al. 114,151 have proposed a simplified probabilistic load flow. Two assumptions were introduced: (1) the electric power system is represented with a DC network model (thus, the reactive power flow is neglected), and (2) the real part of the bus electric loads are independent random variables. With these assumptions, a conventional deterministic power flow is solved first, assming net nodal loads equal to their mean values. This solution determines the operating point about which the load flow equations are subsequently linearized. Within this model, the generation dispatch procedure is modeled with an arbitrary function which allocates the variation of the total electric load to the specific generation buses. Since the variables of the nodal electric load are assumed independent, the probability density functions of the circuit flows can be computed with a series of convolutions. Later, this basic method has been extended to the AC network model [181. The assumption of independence of the nodal electric loads is unrealistic. Da Silva et al. pro- posed a linear dependence model of electric loads [191. Using a linearized power flow model, they proposed a method which combines Monte Carlo simulation and convolutions. Dopazo et al. [161 proposed a method which models the correlation between the load at any two buses. Their proposed method assumes that circuit flows and bus voltage magnitudes are Gaussian digtrib- uted and, thus, only the variance must be computed. Monte Carlo simulations indicate that it is unrealistic to assume Gaussian distributions of circuit flows and bus voltages. For this reason, Sauer and Heydt [20] have proposed the use of higher moments (third and fourth) for accurate representation of the probability distribution functions. An efficient method for treating the correlation among bus loads and the generat ion dispatch procedure has been proposed in [21]. The model assumes Gaussian distribution of bus loads and a linearized economic dispatch model. The circuit flows and bus voltages are expressed as a Linear combination of the bus loads only. The linearized equations are utilized to deter- mine the moments of probability density function of circuit flows and bus voltages. The inclusion of this model i n a reliability analysis method resulted in more accurate representation of the electric load at reduced computational requirements [211. While this approach models the economic redispatch of generating units due to electric load variations, it is based on the linear- ized power flow equations and the linearized economic dispatch model. As such, its applicability is limited. This paper presents a new approach for this model which addresses three important aspects: (1) the economic dispatch of generating units, (2) the effects of nonlinearities of the power system model, and (3) the uncertainty associated with the availability of generating units. Validation of the method via Monte Carlo simulation is also presented. 0885-8950/90/0200-0182/$01.00 @ 1990 IEEE

Transcript of A new probabilistic power flow analysis method

Page 1: A new probabilistic power flow analysis method

182 IEEE Transactions on Power Systems, Vol. 5, No. 1, February 1990

A NEW PROBABILISTIC POWER PLOW AWiLYSIS METHOD

A. P. Sakis Meliopoulos School of E l e c t r i c a l Engineering

Georgia I n s t i t u t e of Technology At l an ta , Georgia 30332-0250

George J. Cokkinides Xing Yong Chao Department of E l e c t r i c a l Engineering School of E l e c t r i c a l Engineering

Universi ty of South Carol ina Georgia I n s t i t u t e of Technology Columbia, South Carol ina 29208 At lan ta , Georgia 30332-0250

Abstract

A s imula t ion method of t h e composite power system is proposed fo r t he purpose of eva lua t ing the proba- b i l i t y d i s t r i b u t i o n func t ion of c i r c u i t flows and bus vo l t age magnitudes. The method c o n s i s t s of two s t e p s . F i r s t , g iven the p r o b a b i l i s t i c electric load model, t he p r o b a b i l i t y d i s t r i b u t i o n func t ion of t he t o t a l genera- t i o n of gene ra t ion buses i s computed. Second, c i r c u i t flows and bus vo l t age magnitudes a r e expressed a s l i n e a r combinations of power i n j e c t i o n s a t gene ra t ion buses. This r e l a t i o n s h i p allows the computation of t h e d i s t r i b u t i o n funct ions of c i r c u i t flows and bus vo l t age magnitudes. The method inco rpora t e s major ope ra t ing p r a c t i c e s such a s economic d i spa tch and n o n l i n e a r i t i e s r e s u l t i n g from the power flow equat ions. Val idat ion of t h e method i s performed v i a Monte Carlo s imulat ion. Typical r e s u l t s a r e presented which i l l u s t r a t e t h a t t he proposed method matches very well r e s u l t s obtained with Monte Carlo s imulat ions. P o t e n t i a l a p p l i c a t i o n s of t h e proposed method a re : (1) composite power system r e l i a - b i l i t y a n a l y s i s and (2) i ransmiasion loss eva lua t ion .

Key Words

Power Flow Economic Dispatch S tochas t i c Load Model P robab i l i t y Di s t r ibu t ion Function (PDF) PDF of C i r c u i t Flow PDF. of Bus Voltage Monte Carlo Simulation

In t roduc t ion

T r a d i t i o n a l power flow a n a l y s i s t r e a t s t he e l e c t r i c load and the generat ing u n i t s of the system a s d e t e r m i n i s t i c a l l y known q u a n t i t i e s . This i s only t r u e fo r a l imi t ed nmber of s i t u a t i o n s , fo r example, i n a r e a l t ime environment where the e l e c t r i c load and gene ra t ion can be d i r e c t l y measured. In any o t h e r power flow app l i ca t ion , however, t h e r e i s unce r t a in ty a s soc ia t ed with t h e a v a i l a b i l i t y of gene ra t ing u n i t s and the e l e c t r i c load. In many a p p l i c a t i o n s , such a s r e l i a b i l i t y a n a l y s i s of t h e composite (gene ra t ion and t ransmission) power system and t ransmission loss evalu- a t i o n , use of t he t r a d i t i o n a l power flow formulat ion l eads t o an extremely l a r g e number of power flow cases fo r t he purpose of cap tu r ing a l l t he va r i ances of t he e l e c t r i c load and gene ra t ion d i spa tch schedules . In t hese cases , it i s appropr i a t e t o use methods which

89 SM 714-7 PWRS by the IEEE PozRr System Engineering Committee of the I E E E Power Engiileering Society for presentation a t the IEEE/PES 1989 Summer Meeting, Long Beach, California, July 9 - 14, 1989. made available for printing May 9, 1989.

A paper recommended and approved

Manuscript submitted September 1, 1988;

d i r e c t l y t r e a t the unce r t a in ty . Methods of power flow a n a l y s i s which recognize the unce r t a in ty o f t he gene ra t ion and e l e c t r i c load a r e r e f e r r e d t o a s p r o b a b i l i s t i c power flows.

The f i r s t no t ion of p r o b a b i l i s t i c power flow appeared i n the e a r l y 1970s. Borkowska, Allen e t a l . 114,151 have proposed a s impl i f i ed p r o b a b i l i s t i c load flow. Two assumptions were introduced: (1) t h e e l e c t r i c power system i s represented with a DC network model ( t h u s , t h e r e a c t i v e power flow i s neg lec t ed ) , and (2) the r e a l pa r t of t h e bus e l e c t r i c loads a r e independent random v a r i a b l e s . With these assumptions, a convent ional d e t e r m i n i s t i c power flow i s solved f i r s t , a s s m i n g net nodal loads equal t o t h e i r mean values . This s o l u t i o n determines t h e ope ra t ing point about which t h e load flow equat ions a r e subsequent ly l i n e a r i z e d . Within t h i s model, t h e gene ra t ion d i spa tch procedure i s modeled with an a r b i t r a r y func t ion which a l l o c a t e s the v a r i a t i o n of t h e t o t a l e l e c t r i c load t o the s p e c i f i c gene ra t ion buses. Since t h e v a r i a b l e s of t h e nodal e l e c t r i c load a r e assumed independent, t h e p r o b a b i l i t y dens i ty func t ions of t h e c i r c u i t flows can be computed with a series of convolut ions. La te r , t h i s bas i c method has been extended t o the AC network model [181.

The assumption of independence of t h e nodal e l e c t r i c loads i s u n r e a l i s t i c . Da S i l v a et a l . pro- posed a l i n e a r dependence model of e l e c t r i c loads [191. Using a l i n e a r i z e d power flow model, they proposed a method which combines Monte Carlo s imula t ion and convolut ions. Dopazo e t a l . [161 proposed a method which models t he c o r r e l a t i o n between the load a t any two buses. Their proposed method assumes t h a t c i r c u i t flows and bus vo l t age magnitudes a r e Gaussian d i g t r i b - uted and, thus, only the va r i ance must be computed. Monte Carlo s imulat ions i n d i c a t e t h a t it i s u n r e a l i s t i c t o assume Gaussian d i s t r i b u t i o n s of c i r c u i t flows and bus vo l t ages . For t h i s reason, Sauer and Heydt [ 2 0 ] have proposed the use of higher moments ( t h i r d and fou r th ) fo r accurate r e p r e s e n t a t i o n of t h e p r o b a b i l i t y d i s t r i b u t i o n funct ions.

An e f f i c i e n t method fo r t r e a t i n g t h e c o r r e l a t i o n among bus loads and the generat ion d i spa tch procedure has been proposed i n [21]. The model assumes Gaussian d i s t r i b u t i o n of bus loads and a l i n e a r i z e d economic d i spa tch model. The c i r c u i t flows and bus vo l t ages a r e expressed a s a Linear combination of t h e bus loads only. The l i n e a r i z e d equat ions a r e u t i l i z e d t o de t e r - mine t h e moments of p r o b a b i l i t y d e n s i t y func t ion of c i r c u i t flows and bus vo l t ages . The i n c l u s i o n of t h i s model i n a r e l i a b i l i t y a n a l y s i s method r e s u l t e d i n more accu ra t e r ep resen ta t ion of t h e e l e c t r i c load a t reduced computational requirements [211. While t h i s approach models t h e economic r ed i spa tch of gene ra t ing u n i t s due t o e l e c t r i c load v a r i a t i o n s , it i s based on t h e l i nea r - ized power flow equat ions and the l i n e a r i z e d economic d i spa tch model. As such, i t s a p p l i c a b i l i t y i s l imi t ed . This paper p re sen t s a new approach fo r t h i s model which addresses th ree important aspects : (1) t he economic d i spa tch of gene ra t ing u n i t s , ( 2 ) t h e e f f e c t s of n o n l i n e a r i t i e s of t he power system model, and ( 3 ) t he unce r t a in ty a s soc ia t ed with t h e a v a i l a b i l i t y of generat ing u n i t s . Val idat ion of t he method v i a Monte Carlo s imulat ion is a l s o presented.

0885-8950/90/0200-0182/$01.00 @ 1990 IEEE

Page 2: A new probabilistic power flow analysis method

183

The equat ions descr ib ing t h e e lectr ic load model for a system- with n buses a r e :

0 l ( B ) z ( t ) =

z ( t ) =

P ( t > =

Model Descr ip t ion

The proposed model provides p r o b a b i l i s t i c charac- t e r i z a t i o n s of c i r c u i t flows and bus v o l t a g e magnitudes f o r a g iven e lectr ic load and genera t ion system model, S p e c i f i c a l l y , consider a power system a s is i l l u s t r a t e d i n Fig. l a . The following assumptions a r e made:

( 1 ) A p r o b a b i l i s t i c e lectr ic load model i s given. ( 2 ) The genera t ing u n i t parameters and forced

( 3 ) The t ransmiss ion system is known. outage r a t e s a r e known.

Under these assumptions, it i s d e s i r e d t o compute the p r o b a b i l i t y d i s t r i b u t i o n func t ion o f c i r c u i t flow S and bus v o l t a g e magnitude V i f o r each c i r c u i t 11 an% bus i. Major opera t ing p r a c t i c e s , such a s economic d i s p a t c h , must be considered.

The s t a t e d o b j e c t i v e i s achieved with a two s t e p model. In t h e f i r s t s t e p , t h e e l e c t r i c load and genera t ing system model is used t o c h a r a c t e r i z e t h e power i n j e c t i o n s , Y, a t the system buses a s random v a r i a b l e s . This i s i l l u s t r a t e d i n Fig. lb. The random v a r i a b l e s , Y, a r e i n genera l c o r r e l a t e d . Subsequently, a p r o b a b i l i s t i c power flow provides t h e p r o b a b i l i t y d i s t r i b u t i o n f u n c t i o n of S V i from the p r o b a b i l i s t i c model of t h e i n j e c t i o n s Y. "

POWER SYSTEM

SLi

Figure 1. Schematic Representation of an Electric Power System.

The P r o b a b i l i s t i c Electric Load Model

The e lectr ic load model provides a p r o b a b i l i s t i c d e s c r i p t i o n of system bus loads and allows modeling of conforming or nonconforming bus loads. The assumptions of t h e p r o b a b i l i s t i c e l e c t r i c load model a re : (1) Bus e l e c t r i c loads a r e t y p i c a l l y s t r o n g l y c o r r e l a t e d . It i s , t h e r e f o r e , reasonable t o assume t h a t they a r e generated a s a l i n e a r combination of a small number o f independent s t o c h a s t i c processes . (2) The power f a c t o r of t h e e l e c t r i c load a t a s p e c i f i c bus i s c o n s t a n t .

S i ( t ) =

is an m-vector processes is an n r v e c t o r processes i s an nrvec tor processes i s an n-vector power)

of independent white no ise

of s t a t i o n a r y s t o c h a s t i c

of nonst a t ionary s t o c h a s t i c

of bus e l e c t r i c loads ( r e a l

a r e vec tor func t ions of a r b i t r a r y polynomials i s t h e backward opera tor is a cons tan t n x 1 v e c t o r i s an n x m mat r ix i s t h e complex e lectr ic load a t bus i i s a cons tan t f o r bus i; i t i s dependent upon t h e power f a c t o r of t h e load a t bus i.

The model descr ibed with Eqs. (1) and (2) (ARIMA model) h a s been e x t e n s i v e l y used t o r e p r e s e n t t h e e lectr ic load. For example, see References [ 2 4 , 2 5 1 . It is well known t h a t it i s capable of r e p r e s e n t i n g t h e periodic- i t i e s a s w e l l as t h e nons ta t ionary proper ty o f t h e e l e c t r i c load. The innovat ion introduced here i s t h e l i n e a r model A which t r a n s l a t e s t h e low order nonsta- t i o n a r y s t o c h a s t i c process v e c t o r v ( t ) i n t o the vec tor P ( t ) of t h e bus e lectr ic loads. The number of independent processes v ( t ) , m, For a system with conforming bus one. The t o t a l e lectr ic load i s bus loads :

Above equat ion provides t h e

is i n genera l low. loads , m i s equal t o t h e summation of a l l

m

t o t a l e l e c t r i c load, I I ( t ) , a t t i m e t a s a f u n c t i o n o f t h e s t o c h a s t i c process a r r a y v ( t ) . The model has been s t r u c t u r e d i n such a way t h a t t h e s t o c h a s t i c processes v ( t ) a r e normalized, i .e . t h e y assume v a l u e s i n t h e i n t e r v a l ( 0 , l ) . For p r o b a b i l i s t i c power flow a p p l i c a t i o n s , it i s necessary t o c h a r a c t e r i z e the t o t a l e lectr ic load a t a s p e c i f i e d f u t u r e t i m e or a t a s p e c i f i e d f u t u r e i n t e r v a l ( f o r example, one week, one month, one year i n t e r v a l ) . For a s p e c i f i e d t i m e i n t e r v a l , T, which s h a l l be r e f e r r e d t o a s t h e s imula t ion t i m e , t h e s t o c h a s t i c processes v ( t ) and E ( t ) a r e rep laced wi th random v a r i a b l e s V and L. Then Eq. (5) becomes

m L = a + 1 aiVi

O j = 1

The s t a t i s t i c s o f t h e random ' v a r i a b l e s V can be obtained from the ARIMA model (1) and ( 2 ) . From t h e known s t a t i s t i c s o f V, t h e p r o b a b i l i t y d i s t r i b u t i o n func t ion , P (E) of L, a r e computed. The complementary d i s t r i b u t i o k func t ion , L o ( l l ) , o f t h e t o t a l load is def ined with

L ( 1 ) = 1.0 - FL(II) = Pr[L > I I ]

The complementary d i s t r i b u t i o n func t ion , Lo(II), depends on m independent random v a r i a b l e s v i , i = 1,2 , . . . ,m. It should be poin ted out t h a t t h i s model

Page 3: A new probabilistic power flow analysis method

184

i s a g e n e r a l i z a t i o n of the load d u r a t i o n curve used i n genera t ion system r e l i a b i l i t y ana lys i s . Observe t h a t f o r m = 1, above model i s e x a c t l y t h e load d u r a t i o n curve. S p e c i f i c a l l y , when m = 1, the d i s t r i b u t i o n func t ion , Lo@), i s a func t ion of one random v a r i a b l e only , vi , i . e .

In t h i s case the d i s t r i b u t i o n func t ion , L (I) versus I ( o r v i ) can be p l o t t e d y i e l d i n g the l%ad d u r a t i o n curve. A t y p i c a l func t ion , L (I), i n t h i s case i s i l l u s t r a t e d in Fig. 2.

I , - a + a v 0 1 1

I block 1. unit i

Figure 2. Illustration for the Computation of Unit Probability Distribution Function.

Generation System Model

A genera t ing u n i t , i, of c a p a c i t y c i MW is modeled with a set of c a p a c i t y s t a t e s , each s t a t e with a spec i - f i e d p r o b a b i l i t y . The p t o b a b i l i t y d e n s i t y f u n c t i o n of t h i s model is expressed with

mi

fx i (Xi) = k=O 1 PikG(Xi - di k)

where

mi i s t h e number of c a p a c i t y s t a t e s ( inc luding

dik a r e the c a p a c i t i e s o f t h e states (note , zero and f u l l c a p a c i t y of the u n i t )

dio = 0.0 and dimi = c i ) .

For m i = 1, t h i s model is t h e w e l l known up and down model. For c l a r i t y of presenta t ion , t h e method i s d iscussed i n terms of t h e up and down model of a uni t . Unit outages a r e independent. In a d d i t i o n t o t h i s model, each u n i t i s descr ibed with a product ion cos t func t ion versus uni t output . This func t ion can be a quadra t ic func t ion or a piecewise l i n e a r funct ion.

Generation System Simulation

The problem of genera t ion system s imula t ion is def ined a s follows. Given the p r o b a b i l i s t i c e l e c t r i c load model for the time period under cons idera t ion and a l ist o f a v a i l a b l e genera t ing u n i t s , s imula te t h e o p e r a t i o n of t h e system i n order t o compute the p r o b a b i l i t y d i s t r i b u t i o n func t ions o f the bus power i n j e c t i o n s and t h e i r c o r r e l a t i o n s . The process should account for the e f f e c t s of economic schedul ing func- t i o n s wi th in the time period considered and the random forced outages of the u n i t s .

Given the load and genera t ion models, t h e followir& product ion q u a n t i t i e s can be computed with t h e c l a s s i c a l p r o b a b i l i s t i c method [l]:

P r o b a b i l i t y of o p e r a t i o n of u n i t i: Pr[Unit i i n o p e r a t i o n ] = Pr[Unit i Output > 01. Expected value of produced energy from the u n i t . Expected value of c o s t o f o p e r a t i o n of u n i t i.

Refinements o f t h i s method have been developed over the years . The ref inements can be c l a s s i f i e d i n t o two groups. In t h e f i r s t group, t h e o b j e c t i v e of t h e ref inements is t o speed up t h e computerized procedure of the s imula t ion method. Very f a s t procedures have been developed based on t h e cumulant method [6-8, 10-131. In t h e second group, t h e o b j e c t i v e is t o improve the s imula t ion method of opera t ing p r a c t i c e s such as economic d i s p a t c h , maintenance, e t c . Procedures f o r s imula t ing incremental loading of u n i t s based on economic c r i t e r i a have been developed [3-5,9]. A l l t h e s e ref inements can be incorporated i n the proposed p r o b a b i l i s t i c power flow. For c l a r i t y o f presenta t ion , we s h a l l use t h e method descr ibed i n Ref. [91 t o present the p r o b a b i l i s t i c power flow. This method is b r i e f l y descr ibed a s follows. Consider n u n i t s o f t h e system opera t ing a t l e v e l s x1,x2,...,xn. I f un i t k is not i n opera t ion , then obviously Xk W i l l equa l 0 . Since t h e r e is a f i n i t e p r o b a b i l i t y t h a t any u n i t can be forced out , t h e output of u n i t i, x i , can be considered t o be a random v a r i a b l e with p r o b a b i l i t y of u n a v a i l a b i l i t y equal t o pi. We w r i t e

(7 )

&(Xi = 0) = qi (8)

where Xi i s a random v a r i a b l e represent ing the genera t ion of u n i t i. Assume t h a t t h e electric load equals I. For t h i s condi t ion , t h e apparent load Ia w i l l be

L a = & - x 1 - x2 - ... - xn

Since I , x , . . . D x a r e not d e t e r m i n i s t i c a l l y known, t h e above equlation “can be rep laced with i t s equiva len t equat ion i n terms of t h e corresponding random v a r i a b l e s

(9)

La = L - X I - x* - ... - xn ( 1 0 )

where L is a random v a r i a b l e represent ing the e l e c t r i c load and Xi i s a random v a r i a b l e represent ing the output of un i t i. Since the p r o b a b i l i t y d i s t r i b u t i o n func t ions of t h e random v a r i a b l e s L, XI,...DKn a r e known and s i n c e these random v a r i a b l e s a re independent, t h e p r o b a b i l i t y d i s t r i b u t i o n func t ion o f t h e random v a r i a b l e La i s computed wi th a series of convolut ions.

I f we assume t h a t I > 0 ( t h a t is, load exceeds genera t ion) , then anothera u n i t should be brought i n t o o p e r a t i o n or one o r more o f t h e opera t ing u n i t s should i n c r e a s e t h e i r output . Assume t h a t un i t i is opera t ing a t xi and t h a t it is s e l e c t e d according t o a c r i t e r i o n t o respond t o any i n c r e a s e s i n the load. When the c r i t e r i o n is s e l e c t e d t o be the incremental product ion c o s t of t h e u n i t , then the descr ibed procedure s imula tes t h e economic d i s p a t c h p r a c t i c e . I n genera l , i f I > 0, t h e output of u n i t i w i l l increase from x i t o .“i + Ax., where Ax. is a small increment (1-5 MW). We s h a l l r g f e r t o this’ increment a s the block Ax.. It i s noted t h a t i f xi = 0, t h e increment Ax, may’not be small . In t h i s c a s e , u n i t i will be &ought i n t o opera t ion a t a l e v e l a t l e a s t equal t o minimum al lowable opera t ing l e v e l . With the descr ibed formulat ion and a p p l i c a t i o n o f b a s i c p r o b a b i l i t y theory , t h e expected energy t o be produced and cos t of opera t ion and requi red f u e l a r e computed as fol lows:

Page 4: A new probabilistic power flow analysis method

185

Step 1: Compute the p r o b a b i l i t y d i s t r i b u t i o n func t ion of random v a r i a b l e

L' = L + x . a i

L e t it be FL1(z). I f x i = 0, s k i p t h i s s t e p and assume FL, (z) = FL (2). (Note t h a t t h i s s t e p r e q u i r e s a deconvoluti8n.)

Step 2: Compute

x . +Ax 1 1

E(Axi) = (l-qi)T I ( l - F L I ( z ) ) d z z=x.

x . +Ax

+ (l-qi)T I ' - dfl:) ( l-FL(z))dz

i z=x

where

6(x i ) = 1 i f x . = 0 , & ( x i ) = 0 i f x . # 0

f ( z ) = production cos t func t ion o f u n i t i T = s imula t ion t i m e period ( i n hours) E ( A X ~ ) = expected energy t o be produced from

Axl

(11)

(12)

block

i ' C(Axi) = extec ted cos t of opera t ion of b lock Ax

P r o b a b i l i t y D i s t r i b u t i o n Function of Unit Output

This func t ion for u n i t i is defined with:

Pr[Xi < a ] = F (a) (13)

It i s computed by cons ider ing t h e c o n t r i b u t i o n s from i n d i v i d u a l blocks o f t h e u n i t i. A s an example, consider t h e loading of block j of u n i t i. Assume t h a t t h i s block i s loaded i n such an order t h a t it "sees" t h e equiva len t load E . The complementary p r o b a b i l i t y d i s t r i b u t i o n functior? o f t h e equiva len t load a i s i l l u s t r a t e d i n Fig. 2 (dot ted curve). The p r o b a b i f i t y d i s t r i b u t i o n func t ion of X. i s computed a s follows. Consider the following i d e n t i t y :

Gi

Pr[X. < a] = Pr[Xi a lEi ]Pr [Ei ]

- where Ei 1 s t h e event t h a t u n i t i i s a v a i l a b l e . t h e complimentary event of Ei. equation f o r block j of u n i t i y i e l d s

E . i s Appl ica t ion o f ahove

where a., a r e the l i m i t s of b lock j , u n i t i, and p , = PrfE.:i+l Equation (14) provides t h e c o n t r i b u t i o n 0) block ' j of uni t i t o t h e p r o b a b i l i t y d i s t r i b u t i o n func t ion o f u n i t i.

P r o b a b i l i t y D i s t r i b u t i o n Function of Generation Bus Power

For t h e p r o b a b i l i s t i c power flow a n a l y s i s , of i n t e r e s t i s the p r o b a b i l i t y d i s t r i b u t i o n f u n c t i o n of t h e t o t a l genera t ion a t a bus. Consider genera t ion bus k which comprises t h e set o f genera t ing u n i t s M(k). The t o t a l g e n e r a t i o n i s denoted with the random var i -

Yk = 1 x . (15) a b l e Yk. Thus,

icM(k) '

(16) F ( y ) = Pr[Yk < yl 'k

where Fy ( y ) i s t h e p r o b a b i l i t y d i s t r i b u t i o n func t ion

o f t h e v a r i a b l e Yk. It i s computed by summing up t h e c o n t r i b u t i o n s from a l l genera t ion blocks belonging t o u n i t s o f bus k. For t h i s purpose, consider t h e block j o f u n i t i which i s connected t o bus k. The contribu- t i o n of t h i s block depends on t h e a v a i l a b i l i t y of t h e genera t ing u n i t s o f bus k a l r e a d y loaded. For purposes of expla in ing t h e p e r t i n e n t equat ions , t h e following d e f i n i t i o n s a r e introduced:

k

M Set of genera t ing u n i t s p a r t i a l l y or f u l l y loaded

M' Subset of M comprising the genera t ing u n i t s not

M" Subset o f M comprising t h e genera t ing u n i t s

M(k) S e t of genera t ing u n i t s connected t o bus k La = L - 1 X Equivalent load "seen" by the u n i t s

before block j , u n i t i

connected t o genera t ion bus k

connected t o g e n e r a t i o n bus k, excluding u n i t i

U E M ' of genera t ion bus k

Ea An event defined as a s p e c i f i c combination of a v a i l a b l e / u n a v a i l a b l e u n i t s i n the set M". Each event E corresponds t o genera t ion z a t bus k equal t o a

2 = 1 x UEM"

Using t h e introduced n o t a t i o n , t h e c o n t r i b u t i o n of block j of u n i t i t o the func t ion Fyk(y) is computed with:

Note t h a t :

Pr[ ( 1

Pr[Ea] = Pr[ 1

Xu+Xi<y) IEaEi] = FL (z-) UEM" a

Xu = 21 UEM"

i Pr[Ei] = p

Upon mathematical manipulation and rep lac ing the summation with i n t e g r a t i o n y i e l d s :

Y- min(y z + a )

z=o a* a Pr[Yk<y] = pi I dF(z) dFL ( a )

min(y, z ) + qi f dF(z) , dFL (1 )

z=o a =O a

where:

F(z) is t h e cumulative p r o b a b i l i t y func t ion o f

U& MI'

t h e v a r i a b l e z = 1 Xu.

Equation (18) provides t h e c o n t r i b u t i o n o f block j , u n i t i, o f bus k t o t h e p r o b a b i l i t y d i s t r i b u t i o n func t ion of Yk. The i n t e g r a l (18) is computed for each b lock o f a l l u n i t s connected t o bus k. Upon

Page 5: A new probabilistic power flow analysis method

186

completion, t h e p r o b a b i l i t y d i s t r i b u t i o n func t ion of t he t o t a l gene ra t ion Yk a t bus k is known.

P r o b a b i l i s t i c Power F l o w Analysis

The s imula t ion method descr ibed so f a r provides t h e d e s c r i p t i o n of power i n j e c t i o n s t o system buses. Given t h i s in format ion , it is d e s i r a b l e t o compute the p r o b a b i l i t y d i s t r i b u t i o n o f c i r c u i t f lows o r bus vo l t age magnitudes. For t h i s purpose, a power flow s o l u t i o n i s obtained assuming the power i n j e c t i o n a t t h e system buses is equal t o t h e expected va lues of power i n j e c t i o n s at t h e va r ious buses. The expected va lues o f power i n j e c t i o n s a r e computed from the ca l cu la t ed d i s t r i b u t i o n s def ined with Eq. (16). Subsequently, a l i nea r i zed model of c i r c u i t flows and bus vo l t ages is developed i n terms of power i n j e c t i o n s a t gene ra t ion buses. This l i nea r i zed model inc ludes the e f f e c t s of e l e c t r i c load v a r i a t i o n s ince e l e c t r i c load changes a r e absorbed by gebe ra t ion changes. Thus, i n genera l , a c i r c u i t flow o r a bus vo l t age magnitude, which i s represented with a random v a r i a b l e U, i s expressed a s a l i n e a r combination of t he power in j ec - t i o n s Y a t the system genera t ion buses:

(19)

where: '

a = Known cons tan t c o e f f i c i e n t s Y k = Power i n j e c t i o n a t t he k th gene ra t ion bus

Yk = Expected va lue of power i n j e c t i o n at the

The p r o b a b i l i t y d i s t r i b u t i o n of t h e randan v a r i a b l e W is computed from the known p r o b a b i l i s t i c models of t h e power i n j e c t i o n s Yk. As a mat te r of f a c t , t he power i n j e c t i o n s Yk are expressed as the sum of un i t output a t bus k , y ie ld ing:

- k th gene ra t ion bus.

where: M(k) is t h e set of u n i t s connected t o bus k

X i

Xi

is t h e output of un i t i is the expected va lue of un i t i output .

- The p r o b a b i l i t y d i s t r i b u t i o n func t ion of t h e random v a r i a b l e W is computed a s a by-product of t he simula- t i o n procedure descr ibed i n t h e previous sec t ion . S p e c i f i c a l l y , f o r each loading of a block of a u n i t , t h e c o n t r i b u t i o n t o the p robab i l i t y dens i ty func t ion of t he v a r i a b l e W is computed. Consider, fo r example, t h e loading of b lock j , u n i t i i l l u s t r a t e d i n Fig. 2. Denote t h i s event as follows:

E2 = [ loading of b lock j , un i t i ]

The p r o b a b i l i t y of t h e event E2 equa l s dpji i l l u s t r a t e d i n Fin. 2.

The loading of block j , un i t i con t r ibu te s t o the var i - ab l e W by an amount equal t o a x a . < x. < a where ak. i s def ined with Eq. (l'5)i'ana a.,ia.+lj% def ined i n Fig. 2. The p r o b a b i l i t y of t h i J codt r ibu- t i o n i s equal t o pidpji, where pi is the p r o b a b i l i t y of a v a i l a b i l i t y of un i t i and d p j i is depic ted i n Fig. 2. In add i t ion , block j , un i t i con t r ibu te s zero t o t h e v a r i a b l e W with p r o b a b i l i t y 1-pi. The computation of t h e con t r ibu t ions t o the probab il it y d i s t r i b u t i o n func t ion of t he v a r i a b l e W is performed r ecu r s ive ly i n p a r a l l e l with the s imula t ion method descr ibed e a r l i e r .

In summary, t h e p r o b a b i l i s t i c power flow c o n s i s t s of so lv ing a usual power flow problem assuming t h a t t h e power i n j e c t i o n s a t t he system buses a r e the expected

va lues yk. Subsequently, c i r c u i t flows and bus vo l t age magnitudes a r e expressed a s a l i n e a r combination of t he power in j ec t ions . The l i n e a r i z a t i o n r e q u i r e s one forward and back s u b s t i t u t i o n [231.

Hand1 ing of Net work Non1 inea r i t ies

The proposed method has been extended t o account f o r n o n l i n e a r i t i e s r e s u l t i n g from the power system network model. For t h i s purpose, t he system e l e c t r i c load is p a r t i t i o n e d i n t o a number of segments. As an example, cons ider the independent random v a r i a b l e v1 Of t h e e l e c t r i c load model. Assming t h a t 5 = 3, t h e following events may be def ined

Ci = {0.33(i-l) < V1 < 0.33i} , i = 1,2,3

Each of t h e above events r e p r e s e n t s a range of e l e c t r i c load g iven by Eq. ( 5 ) . On t h e o the r hand, each of t h e above events has a p r o b a b i l i t y of occurrence:

Now t h e method descr ibed i n t h i s paper i s app l i ed c o n d i t i o n a l l y upon each event C; and the r e s u l t s added. Note t h a t f o r each event Ci, a d i f f e r e n t network oper- a t i n g cond i t ion w i l l be used f o r l i n e a r i z a t i o n , The o v e r a l l procedure i s i l l u s t r a t e d i n Fig. 3. In t h i s way, n o n l i n e a r i t i e s r e s u l t i n g from network models a r e taken i n t o account.

Monte Car lo Simulation

Va l ida t ion o f t h e proposed method wi th a c t u a l system measurements i s very d i f f i c u l t i f not impossible. A v i a b l e v a l i d a t i o n method is by means of Monte Car lo s imula t ion . The Monte Carlo s imula t ion i s based on e x a c t l y t h e same models of e l e c t r i c load , genera t ion , and t ransmiss ion system as t h e proposed method. In t h i s way, t h e r e s u l t s of t h e Monte Carlo method a r e d i r e c t l y comparable t o t h e r e s u l t s of t h e proposed method. Note t h a t i n t h e Monte Car lo method, t h e number of t r i a l s must be l a r g e f o r meaningful r e s u l t s . This requirement h inde r s t he a p p l i c a b i l i t y of t he Monte Car lo method t o l a r g e s c a l e power systems. For t h i s reason , t h e v a l i d a t i o n procedure has been l imi t ed t o small s i z e power systems.

The Monte Car lo s imula t ion has been appl ied t o the 24 bus LEEE R e l i a b i l i t y Test System [22 ] . Tests have been performed t o determine t h e number of t r i a l s requi red f o r meaningful r e s u l t s . The tests cons i s t ed of i nc reas ing the number of t r i a l s while observing the r e s u l t s . It has been observed t h a t when t h e number of t r i a l s exceeded 5,000, no apprec iab le changes occur t o t h e r e s u l t s . Based on these observa t ions , a l l subsequent Monte Car lo s imula t ions were performed with 10,000 t r i a l s .

Example Resul t s

The 24 bus IEEE R e l i a b i l i t y Test System (RTS) 1221 has been used a s the example system. No c i r c u i t outages were assumed. Generating un i t da t a ( c a p a c i t i e s and forced outage r a t e s ) and e l e c t r i c load v a r i a t i o n s were assumed t o be those def ined i n Ref. [221. Generating un i t cos t da t a were modified. S p e c i f i c a l l y , quadra t i c cos t c o e f f i c i e n t s were def ined a s i l l u s t r a t e d i n Table 1. The purpose of t h e modi f ica t ion was t o accentua te the e f f e c t s o f t h e economic d i spa tch process.

The s imula t ion of t h i s system fo r a period of one year has been considered. For s impl i c i ty , un i t maintenance has been neglec ted . The electric load s p e c i f i e d fo r t h e RTS i n Ref, 1221 i s a conforming

Page 6: A new probabilistic power flow analysis method

187

I I Select Number of Load Levels (Events C i ) b i = O

i = i + l < I Assume Load Level i

Compute Probabili ty of Event C i , pCl I P e r f o r m Generation Simulation.

Compute Expected Unit Output Level. Compute Bus Expected Generation

.Apply t o the Power Network - Expected Electric Load - Expected Bus Generation

.Solve Power Flow Problem Compute Quant i t ies of In te res t - Linearize Quant i t i t es of In te res t with respec t t o Bus Generation

1 Compute Probabili ty Density Funct ion

of Quant i t ies of In te res t . (Conditional Upon Event C )

1

I Compute Probabili ty Density Funct ion I of Q u a n t i t i e s of In te res t

Figure 3. Flow Chart of the Proposed Probabilistic Power Fbw Method.

load represented with a s i n g l e independent v a r i a b l e . The parameters of the e l e c t r i c load model for a study period o f one year have been computed a s follows: F i r s t , t h e hour ly chronologica l load d a t a were cons t ruc ted from the information proviced i n Ref. [221. These d a t a a r e described with the equation:

11 = 965.82 + 1884.3 v (MW)

where v i s a v a r i a b l e assuming va lues between 0 and 1. Using above equat ion , t h e chronological load d a t a 11 were transformed i n t o chronological d a t a of the v a r i a b l e v. From these d a t a , t h e p r o b a b i l i t y d i s t r i b u t i o n func t ion of t h e v a r i a b l e v i s computed. Subsequently, the t o t a l e l e c t r i c load i s d i s t r i b u t e d t o system buses (conforming load) , y ie ld ing the following model of bus r e a l power:

P1 P2 P3 P4 P5 P6 P7 P8 P9 PI0 P13 P14 PI5 PI6 PI8 P19 P20

37 33 61 25 24 46 42 58 59 66 90 66

107 34

113 61 43

+

71 64

119 49 47 90 83

113 116 129 175 128 209 66

220 120 85

V

In a d d i t i o n , the complex power a t a bus of t h e RTS system i s :

Si = P . + j0.2Pi

Table 1. Generating Unit Data

Cost C o e f f i c i e n t s Unit S ize # of Units F.O.R. - a b c

12 20 50 76

100 155 I97 350 400

0.02 0.10 0.01 0.02 0.04 0.04 0.05 0.08 0.12

14 1 0

87 98

124 113 180 229

32.0 45.0

0. I 16.0 26.0 13.0 24.0 24.0

7.0

0.01 0.001 0.011 0.02 0.01 0.015 0.01 0.014 0.016

P r o b a b i l i t y d i s t r i b u t i o n func t ions o f c i r c u i t flows and bus v o l t a g e magnitudes have been computed with the proposed method and with Monte Carlo s imula t ion . Figures 4 and 5 i l l u s t r a t e t y p i c a l r e s u l t s . F igure 4 inc ludes the p r o b a b i l i t y d i s t r i - b u t i o n of a c i r c u i t flow and a bus v o l t a g e magnitude computed using a s i n g l e segment r e p r e s e n t a t i o n of t h e e l e c t r i c load. Note t h a t the c i r c u i t flow matches reasonably well the Monte Carlo r e s u l t s , while t h e bus vol tage magnitude shows s u b s t a n t i a l d e v i a t i o n s from Monte Carlo r e s u l t s . The d i f f e r e n c e s a r e a t t r i b u t e d t o t h e n o n l i n e a r i t i e s of t h e power flow equat ions . F igure 5 i l l u s t r a t e s t h e d i s t r i b u t i o n s of flow and v o l t a g e magnitude f o r the same c i r c u i t and bus a s i n Fig. 4. The r e s u l t s of Fig. 5 were obtained by using a t h r e e segment r e p r e s e n t a t i o n of t h e e l e c t r i c load a s it has been d iscussed e a r l i e r , applying t h e method f o r each load segment s e p a r a t e l y , and adding the r e s u l t s . Note t h a t these d i s t r i b u t i o n s match the Monte Carlo r e s u l t s much b e t t e r . In genera l , r e p r e s e n t i n g t h e e l e c t r i c load with more segments w i l l provide b e t t e r r e s u l t s . However, it should be observed t h a t the amount of computation is propor t iona l t o the number of segments. Using t h r e e segments provides a good compromise between accuracy and speed. A l l the simula- t i o n r e s u l t s presented i n Figs. 4 and 5 have been obtained with a s t e p s i z e of 5 MW for the incremental economic d ispa tch .

Evalua t ion of Method E f f i c i e n c y

The proposed method c o n s i s t s o f t h r e e b a s i c computational procedures: (1) genera t ion system s imula t ion method, ( 2 ) s tandard power flow s o l u t i o n , and (3) l i n e a r i z a t i o n of q u a n t i t i e s of i n t e r e s t such a s bus vol tage magnitude, c i r c u i t flows, etc.

Page 7: A new probabilistic power flow analysis method

188

Monte Carlo Simulation

240 300 360 420 480 540 600

Flow in MVA 1.00

0.75

.- 2 - 0.50

D e a

0.25

0.00

---- Monte Carlo Simulation /’

Proposed Method /

I -

I I 1 I I 0.94 0.96 0.98 1.00 1.02 1.04 1.06

Voltage in pu

Figure 4. Probability Distribution Functions Using a Single Segment Load Model. (a) Circuit 14-16 Flow (b) Bus 6 Voltage

The performance of s tandard power flow algori thms I S well known and w i l l not be discussed here . The l i n e a r i z a t i o n procedure i s based on the c o s t a t e method presented i n Ref. [231. The performance of t h i s method has been well documented i n [231. S p e c i f i c a l l y , t h e computations required fo r t he l i n e a r i z a t i o n of a s p e c i f i c quan t i ty of i n t e r e s t ( fo r example, a c i r c u i t flow) a r e approximately equal t o t h a t of a forward and back s u b s t i t u t i o n with the t a b l e of f a c t o r s of t h e Jacobian ma t r ix of a s tandard Newton-Raphson power flow. To complete the performance eva lua t ion of t h e proposed method, i t i s s u f f i c i e n t t o provide d a t a on the performance of t h e gene ra t ion system s imula t ion method. The execu t ion t i m e of t h e gene ra t ion system s imula t ion method depends on two main parameters: (1) number of u n i t s and ( 2 ) s t e p s i z e fo r s imula t ing the incremental economic d i spa tch . Execution t imes of t he method versus s t e p s i z e and pa rame t r i ca l ly with the number of u n i t s i s given i n Fig. 6. The r e s u l t s have been obtained with two systems: (1) a 32 u n i t system ( the I E E E R e l i a b i l i t y Test System) and ( 2 ) a 62 u n i t , 4198 MW peak load system. The r e s u l t s has been obtained on an IBM PS /2 Model 80, 20 MHz.

Conclusions

A new p r o b a b i l i s t i c power flow a n a l y s i s method is proposed, capable of computing p r o b a b i l i t y d i s t r i b u t i o n func t ions of c i r c u i t flows and bus vo l t age magnitudes. The method i s based on a d e s c r i p t i o n of bus power i n j e c t i o n s a s random v a r i a b l e s . The computation of t h e

1.00

0.75

Monte Carlo Simulation Proposed Method

240 300 360 420 480 540 600

Flow in MVA 1.00

0.75

.- 2 - 0.50

D e n

0.25

0.00

/--- Monte Carlo Simulation i ----

- Proposed Method

I I I I I I 4 0.96 0.98 1.00 1.02 1.04 1.06

Voltage in pu

Figure 5. Probability Distribution Functions Using a Three Segment Load Model (a) Circuit 14-16 Flow (b) Bus 6 Voltage

300

200

t - 100 d 8 I 2 0 c

E 30 F c 20 .- c 3

8 x 10. w

62 Units, 4198 MW Peak Load

Peak Load (IEEE RTS)

tT I I I I 1 2.5 5.0 7.5 10.0 15.0 20.0

Step Size (MW) - Figure 6. Execution Tine of the Generation System

Simulation Method. (IBM PS/2 Model 80, 20 MHz)

Page 8: A new probabilistic power flow analysis method

s t a t i s t i c s of t h e bus power i n j e c t i o n t a k e s i n t o c o n s i d e r a t i o n t h e major opera t ing p r a c t i c e s of power systems such a s economic d ispa tch . Subsequently, c i r c u i t flows and bus vol tage magnitudes a r e expressed a s a l i n e a r combination of bus power i n j e c t i o n s . Their s t a t i s t i c s a r e computed from t h e s t a t i s t i c s o f t h e power i n j e c t i o n s . The proposed method has been v a l i d a t e d v i a Monte Carlo s imula t ion .

The computational requirements of t h e method a r e moderate. S p e c i f i c a l l y , they a r e comparable t o t h e sum of usual power flow a n a l y s i s and p r o b a b i l i s t i c production c o s t i n g [ l l .

The implementation o f t h e method i s s t r a i g h t - forward. As a mat te r of f a c t i t can be implemented with appropr ia te modi f ica t ions of a power flow algorithm and a p r o b a b i l i s t i c production c o s t i n g algorithm. P o t e n t i a l a p p l i c a t i o n s of t h e method a r e (1) r e l i a b i l i t y a n a l y s i s of power systems, and ( 2 ) t ransmiss ion loss evalua t ion .

Acknowledgements

The au thors g r a t e f u l l y acknowledge the National Science Foundation for the support of the work repor ted i n t h i s paper (Grant No. ECS-8715364).

References

H. Baleriaux, E. Jamoulle, Fr. Linard De Guertechin, "Simulation de 1' e x p l i o t a t i o n d' un parc de machines thermiques de production d ' e l e c t r i c i t e couples a des s t a t i o n s de pompage," Revue E ( e d i t i o n SRBE), vo l . 5, no. 7, pp. 3-24, 1967. R. R. Booth, "Power System Simulation Methods Based on P r o b a b i l i t y Analysis," IEEE Transac t ions on Power Apparatus and Systems, vo l . PAS-91, pp. 62-69, JanuaryIFebruary 1972. M.A. Saner et a l . . "A new genera t ion production - - cos t program t o recognize forced outages," Trans. Power App. Syst. , vo l . PAS-91, pp. 2114- '2124, SeptemberIOctober 1972. M.A. Sager, A . J . Wood, "Power system production c o s t calculations-Samule s t u d i e s recognizing - forced outages," I E E E Trans. Power App. Sys t . , vo l . PAS-92, pp. 154-158, January/February 1973. J. Zahavi, J. Vardi, B. Avi-Itzhak, "Operating c o s t c a l c u l a t i o n of an e l e c t r i c power genera t ing system under incremental loading procedure," I E E E Trans. Power App. Sys t . , vo l . PAS-96, pp. T85r 2 92. Januar v/Febr uarv 1 9 77. N. S. Rau, P. Toy, K. F. Schenk, "Expected Energy Production Costs by the Method of Moments," I E E E Trans. on Power Apparatus and Systems, vo l . 99, no. 5, pp. 1908-1915, September/October 1980. J. P. Stemel, R. T. Jenkins , R. A. Babb, W. D. Bayless, "Production Costing Using the Cumulant Method of Representing the Equivalent Load Curve," I E E E Trans. on Power Apparatus and Systems, vo l . PAS-99, no. 5, pp. 1947-1956, September/ Oc t ob er 1 980. J. P. Stremel, " S e n s i t i v i t y Study of t h e Cumulant Method of Calcu la t ing Generation System R e l i a b i l i t y , " I E E E Trans. on Power Apparatus and Systems, vo l . PAS-100, no. 2, pp. 771 -778, February 198 1. A.P. Meliopoulos, "Computer aided i n s t r u c t i o n o f energy source u t i l i z a t i o n problems," IEEE Trans. on Education, vo l . E-24, no. 3, pp. 204-209, August 1981.

191

201

189

K. F. Schenk, R. B. Misra, S. Vassos, "A New Method f o r the Evalua t ion of Expected Energy Generation and Loss of Load Probabi l i ty , " IEEE Trans. on Power Apparatus and Systems, vo l . PAS- 103. no. 2. UD. 294-303. February 1984.

~ . _ H. Duran, "On Improving t h e Convergence and Accuracy of the Cumulant Method of Calcu la t ing R e l i a b i l i t y and Production Cost ,If I E E E Trans. on Power Systems, vo l . PWRS-1, no. 3, pp. 121-126, August 1986. L. A. Sanabria, T. S. Dil lon , "An Error Correc- t i o n Algorithm for S tochas t ic Production Costing," I E E E Trans. on Power Systems, v o l . 3, no. 1, pp. 94-100, February 1988. G. Gross, N. V. Garapic, B. McNutt, "The Mixture of Normals Anproximat ion Technique for Equivlent .. Load Duration Curves," I E E E Trans. on Power Systems, vol. 3, no. 2, pp. 368-374, May 1988. B. Borkowska, " P r o b a b i l i s t i c load flow,'' IEEE Trans. on Power Apparatus and Systems, vo l . PAS-93, no. 3, pp. 752-759, May/June 1974. R.N. Allan, B. Borkowska, C.H. Grigg, "Probabil- i s t i c a n a l y s i s of power flows," Proc. of the I E E , vo l . 121, no. 12, pp. 1551-1556, December 1974. J.F. Dopaso, O.A. K l i t i n , A.M. Sasson, "Stochas t ic load flows," I E E E Trans. on Power Apparatus and Systems, vo l . PAS-94, no. 2 , DD. 299-309. MarchIAuril 1975. L L

R.N. Allan, C.H. Grigg, D.A. Newey, R.F. Simmons, " P r o b a b i l i s t i c power flow techniques extended and appl ied t o opera t iona l d e c i s i o n making," Proc. of t h e I E E , v o l . 123, no. 12, pp. 1317-1324, December 1976. R.N. Al lan , M.R.G. Al-Shakarchl, " P r o b a b i l i s t l c techniques i n AC load flow a n a l y s i s , " Proc. of t h e I E E , vo l . 124, no. 2, pp. 154-160, February 1977. A.M. Leite da S i l v a , V.L. A r i e n t i , R.N. Al lan , " P r o b a b i l i s t i c load flow cons ider ing dependence ~~

between input nodal powers," I E E E Trans. on Power Apparatus and Systems, v o l . PAS-103, no. 6, up. 1524-1530, June 1984. ._ P.W. Sauer, G.T. Heydt, "A genera l ized s t o c h a s t i c power flow algorithm," Paper A78-544-9, presented a t the 1978 IEEE/PES Summer Meeting, J u l y 1978. A.P. Meliopoulos, A.G. B a k i r t z i s , R. Kovacs, "Power system r e l i a b i l i t y e v a l u a t i o n using s tochas t ic - load flows," f E E E Trans. on Power Apparatus and Systems, v o l . PAS-103, no. 5, pp. 1084-1091, May 1984. ..

I E E E Committee Report , " I E E E R e l i a b i l i t y Test System," I E E E Trans. on Power Apparatus and Systems, vo l . PAS-98, pp. 2047-2054, 1979. A. P. MeliODoulOs. G. Contaxis. R. R. Kovacs, N . D. Reppen, N. Balu, "Power System Remedial Action Methodology," I E E E Trans. on Power Systems, vo l . PWRS-3, no. 2, pp. 500-509, May 1988. Comparative Models f o r E l e c t r i c a l Load Forecas t ing , Edited by Bunn and Farmer, John Wiley 6 Sons, 1985. S. Vemuri, W.L. Huang, and D . J . Nelson, "On-Line Algorithmis for Forecas t ing Hourly Loads of an E l e c t r i c U t i l i t y , " IEEE Trans. on Power Apparatus and Systems, vo l . PAS-100, no. 8, pp. 3775-3784, August 1981.

Page 9: A new probabilistic power flow analysis method

190

Biosketches

A. P. Sakis Meliopoulos, (M '76, SM '83) was born i n K a t e r i n i , Greece, i n 1949. He rece ived the M.E. and E.E. diploma from the National Technical Univers i ty of Athens, Greece, i n 1972; the M.S.E.E. and Ph.D. degrees from the Georgia I n s t i t u t e of Technology i n 1974 and 1976, r e s p e c t i v e l y . In 1971, he worked for Western E l e c t r i c i n A t l a n t a , Georgia. In 1976, he jo ined t h e f a c u l t y of E l e c t r i c a l Engineering, Georgia I n s t i t u t e o f Technology, where he is p r e s e n t l y an Associate Professor . He i s

a c t i v e i n teaching and research i n the general a r e a s of modeling, a n a l y s i s , and cont ro l of power systems. He has made s i g n i f i c a n t c o n t r i b u t i o n s t o power system grounding, harmonics, and r e l i a b i l i t y assessment of power systems. He is the author of the book, Power Systems Grounding and Trans ien ts Marcel Dekker, June )ph, Numerical Solu t ion Methods of Algebraic Equations, EPRI monograph series. DK. Meliopoulos i s a member of the Hel len ic Socie ty of Profess iona l Engineers and the Sigma X i .

George Cokkinides (IEEE member 1985) was born i n Athens, Greece, i n 1955. He obtained t h e B.S. , M.S., and Ph.D. degrees a t the Georgia I n s t i - t u t e of Technology i n 1978, 1980, and 1985, r e s p e c t i v e l y . From 1983 t o 1985, he was a research engineer a t the Georgia Tech Research I n s t i t u t e . Since 1985, he has been with the Univers i ty of South Caro l ina a s an Ass is tan t Professor

o f E l e c t r i c a l Engineering. His r e s e a r c h i n t e r e s t s inc lude power system modeling and s imula t ion , power e l e c t r o n i c s a p p l i c a t i o n s , power system harmonics, and measurement ins t rumenta t ion . DK. Cokkinides i s a member of the I E E E Power Engineering Socie ty and the Sigma X i .

Xing Yong Chao (IEEE s tudent member 1988) was born i n Nanjing, China, i n 1960. He received the B.S. degree from Shandong Poly technica l Univers i ty , China, i n 1982, and t h e M.S. degree from Nanjing Automation Research I n s t i t u t e of Minis t ry of Water Resources and E l e c t r i c Power of China i n 1985. From 1985 t o 1987, he was a r e s e a r c h engineer a t Nanjing Automation Research I n s t i t u t e .

Curren t ly , he i s pursuing h i s Ph.D. degree a t the Georgia I n s t i t u t e of Technology. H i s r esearch i n t e r e s t s inc lude power system r e l i a b i l i t y assessment, power system r e l a y i n g , and computer a p p l i c a t i o n s i n power systems.