A necessary relation algebra for mereotopology

26
A necessary relation algebra for mereotopology Ivo Düntsch School of Information and Software Engineering University of Ulster Newtownabbey, BT 37 0QB, Northern Ireland [email protected] Gunther Schmidt, Michael Winter Department of Computer Science University of the Federal Armed Forces Munich 85577 Neubiberg, Germany {schmidt|thrash}@informatik.unibw-muenchen.de Abstract The standard model for mereotopological structures are Boolean subalgebras of the complete Boolean algebra of regular closed subsets of a nonempty connected regular T 0 topological space with an additional “contact relation” C defined by xCy x y / 0 A (possibly) more general class of models is provided by the Region Connection Calculus (RCC) of Randell et al. [34]. We show that the basic operations of the relational calculus on a “contact relation” generate at least 25 relations in any model of the RCC, and hence, in any standard model of mereotopology. It follows that the expressiveness of the RCC in relational logic is much greater than the original 8 RCC base relations might suggest. We also interpret these 25 relations in the the standard model of the collection of regular open sets in the two-dimensional Euclidean plane. 1 Introduction Mereotopology is an area of qualitative spatial reasoning (QSR) which aims at developing formalisms for reasoning about spatial entities [1, 12, 31, 32]. The structures used in mereotopology consist of three parts: 1. A relational (or mereological) part, 2. An algebraic part, 3. A topological part. Co-operation for this paper was supported by EU COST Action 274 “Theory and Applications of Relational Structures as Knowledge Instruments” (TARSKI), www.tarski.org Address from 2002: Department of Computer Science, Brock University, St. Catherines, Ontario, Canada, L2S 3AI

Transcript of A necessary relation algebra for mereotopology

Page 1: A necessary relation algebra for mereotopology

A necessaryrelationalgebrafor mereotopology�

Ivo DüntschSchoolof InformationandSoftwareEngineering†

Universityof Ulster

Newtownabbey, BT 37 0QB,NorthernIreland

[email protected]

GuntherSchmidt, MichaelWinterDepartmentof ComputerScience

Universityof theFederalArmedForcesMunich

85577Neubiberg, Germany

{schmidt|thrash}@informatik.unibw-muenchen.de

Abstract

The standardmodel for mereotopologicalstructuresare Booleansubalgebrasof the completeBooleanalgebraof regularclosedsubsetsof a nonemptyconnectedregularT0 topologicalspacewith anadditional“contactrelation”C definedby

xCy ��� x � y �� /0 �A (possibly)moregeneralclassof modelsis providedby theRegionConnectionCalculus(RCC)of Randellet al. [34]. We show that thebasicoperationsof therelationalcalculuson a “contactrelation”generateat least25relationsin any modelof theRCC,andhence,in any standardmodelof mereotopology. It followsthattheexpressivenessof theRCCin relationallogic is muchgreaterthantheoriginal 8 RCCbaserelationsmight suggest.We alsointerpretthese25 relationsin thethestandardmodelof thecollectionof regularopensetsin thetwo-dimensionalEuclideanplane.

1 Introduction

Mereotopologyis anareaof qualitative spatialreasoning(QSR)whichaimsatdevelopingformalisms

for reasoningaboutspatialentities[1, 12, 31, 32]. Thestructuresusedin mereotopologyconsistof

threeparts:

1. A relational(or mereological)part,

2. An algebraicpart,

3. A topologicalpart.�Co-operationfor thispaperwassupportedby EU COSTAction 274“TheoryandApplicationsof RelationalStructures

asKnowledgeInstruments”(TARSKI), www.tarski.org†Addressfrom 2002:Departmentof ComputerScience,BrockUniversity, St. Catherines,Ontario,Canada,L2S 3AI

Page 2: A necessary relation algebra for mereotopology

Thealgebraicpart is oftenan atomlessBooleanalgebra,or, moregenerally, an orthocomplemented

lattice,bothwithout smallestelement.

Dueto thepresenceof thebinaryrelations“part-of” and“contact”in therelationalpartof mereotopol-

ogy, compositionbasedreasoningwith binary relationshasbeenof interestto theQSRcommunity,

andtheexpressive power, consistency andcomplexity of relationalreasoninghasbecomean object

of study[2–4, 34]. Thefirst time that therelationalcalculushasbeenmentionedin (modern)spatial

reasoningwasin theinterpretationof the4-intersectionmatrix in [19], seealso[39].

It hasbeenknown for sometime,thattheexpressivenessof reasoningwith basicoperationsonbinary

relationsis equalto the expressive power of the threevariablefragmentof first order logic with at

mostbinaryrelations[see43, andthereferencestherein].Thus,it seemsworthwhileto usemethods

of relationalgebras,initiated by Tarski [42], to studycontactrelationsin their own right, andthen

exploretheirexpressive powerwith respectto topologicaldomains.

TheRegion ConnectionCalculus(RCC)wasintroducedasa formal structureto reasonaboutspatial

entitiesandthe relationshipsamongthem[34]. Its modelsarebasicallyatomlessBooleanalgebras

with anadditionalcontactrelationwhichsatisfiescertainaxioms.A standardmodelof theRCCis the

Booleanalgebraof regular opensetsof a regular connectedtopologicalspace,wheretwo suchsets

arein contact,if their boundariesintersect.However, thesearenot theonly RCCmodels.

Gotts[22] exploreshow muchtopologycanbedefinedby usingthefull first orderRCCformalism.

Our aim is similar: We areinterestedwhich relationscanbedefinedwith relationalgebralogic (i.e.

the threevariablefragmentof first orderlogic) in the algebraicsettingof the RCC, interpretedin a

topologicalcontext.

2 Relation algebras

Thecalculusof relationshasbeenan importantcomponentof thedevelopmentof logic andalgebra

sincethemiddleof thenineteenthcentury. Sincethemid-1970’s it hasbecomeclearthatthecalculus

of relationsis alsoa fundamentalconceptualandmethodologicaltool in computerscience.Some

examplesareprogramsemantics[7, 35, 36, 44], programspecification[5] andderivation[6], andlast

but not leastqualitative spatialreasoning.For adetailedoverview we invite thereaderto consult[9].

Let U bea nonemptyset.We denotethesetof all binaryrelationsonU , i.e., thepowersetof U U ,

by Rel U � . Weusuallyindicatethefact � x y��� R for R � Rel U � by xRy. Furthermore,wedefinefor

R S � Rel U �R � S

def��� � x y� : �� z � U � xRzSy �� Composition(2.1)

Rdef��� � x y� : yRx�� Converse(2.2)

xRdef���

y : xRy�� Imageof x underR(2.3)

Rydef���

x : xRy��� Inverseimageof y underR(2.4)

2

Page 3: A necessary relation algebra for mereotopology

Wealsolet 1� betheidentity relationonU , andV�

U U betheuniversalrelation.Thefull algebra

of binary relationsonU is thealgebraof type � 2 2 1 0 0 2 1 0�� Rel U �� ��� ��� ! " /0 V ��# ˘ 1� ���

Weshallusuallyidentify algebraswith theirbaseset.Everysubalgebraof Rel U � is calledanalgebra

of binary relations(BRA). If�Ri : i � I �%$ Rel U � , we let � � Ri : i � I �&� be the BRA generatedby�

Ri : i � I � .If an RA A is completeandatomic– in particular, if A is finite –, theneachnonzeroelementis a

sumof atoms,andrelationalcompositioncanbedescribedby a matrix,whoserows andcolumnsare

labelledby theatomsandanentry � P Q� is thesetof atomscontainedin P � Q. If 1� is anatomof A,

we omit columnandrow 1� .If ' �(�

Ri : i � I � is a partition of V suchthat ' is closedunderconverse,andeitherRi $ 1� or

Ri � 1� � /0 for all i � I , we definetheweakcomposition� w : ')"'+* 2, of ' asthemapping

Ri � w Rjdef���

S �-' : S �. Ri � Rj ��/� /0 ���(2.5)

Justasin thecaseof � , we candeterminecompositiontablesfor � w. Note thatRi � Rj $ Ri � w Rj ; if

equalityholdseverywhere,i.e. when � � � w, we call theweakcompositiontableextensional.

An abstractrelationalgebra(RA) is astructure

� A �01 324 ! 5 0 1 ��# ˘ 1� �of type � 2 2 1 0 0 2 1 0� whichsatisfiesfor all a b c � A

1. � A �01 324 ! 5 0 1� is aBooleanalgebra(BA). Its inducedorderingis denotedby 6 .

2. � A ��# ˘ 1� � is aninvolutedmonoid,i.e.

(a) � A ��# 1� � is asemigroupwith identity 1� ,(b) a ˘ � a 7 a � b� ˘ � b � a .

3. Thefollowing conditionsareequivalent: a � b�82 c � 0 a � c�82 b � 0 c � b �92 a � 0 �(2.6)

The properties(2.6) are sometimescalled the complement-free Schröder-equivalences. They are

equivalentto theSchröder-equivalencesintroducedby Schröderin [38]

a � b 6 c :<; a �7 b 6= c :<; c � b 6> a �(2.7)

EachBRA is anRA with theobviousoperations,but not viceversa[29].

3

Page 4: A necessary relation algebra for mereotopology

An RA A is calledintegral if andonly if

a � b�

0 :<; a�

0 or b�

0(2.8)

for all a b � A. It is well known [25] that

A is integral if andonly if 1� is anatomof theBooleanpartof A.

Thelogic of RAs is a fragmentof first orderlogic, andthefollowing fundamentalresultis dueto A.

Tarski[43]:

Theorem 2.1. If�Ri : i � I �?$ Rel U � , then � � Ri : i � I �&� is thesetof all binary relationsonU which

aredefinablein the(languageof the)relationalstructure � U � Ri : i � I �&� byfirstorder formulasusing

at mostthreevariables.

If a b areelementsof aRA A, we definetheright residualof a andb by

a @ bdef� % a �A b���(2.9)

a @ b is thelargestrelationc suchthata � c 6 b.

Analogously, we definethe left residuala B b of a andb as

a B bdef� %C a � b ���(2.10)

a B b is the largestrelationd suchthat d � b 6 a. The symmetricquotientsyq a b� of a and b is

definedby

syq a b� def� a @ b�92D a B b � � % a �A b�92E %C a � b���(2.11)

In a BRA theresidualsandthesymmetricquotientof R andScanbecharacterisedby

R @ S�F� � x y� : Rx $ Sy �� (2.12)

R B S�F� � x y� : yS $ xR�� (2.13)

syq R S� �F� � x y� : Rx�

Sy ���(2.14)

Thefollowing propertiesof theresidualwill beneededlater:

Lemma 2.2. [15, 33] In everyRAthefollowingholds:

1. c @ c is reflexiveandtransitive.

2. If c is reflexiveandsymmetric,then c @ c� ˘ �A c @ c�G6 c.

4

Page 5: A necessary relation algebra for mereotopology

In aBRA, thereis anelegantwayto characteriseasubsetof theuniverseU . To thisend,associatethe

relation

mdef��� � x y� : x � U y � M �

with thesubsetM $ U . It is easyto seethatmsatisfiesm�

V � mwhereV is thegreatestrelationover

theuniverseU . A relationmwhichsatisfiesm�

V � m is calledavector. Analogously, aone-element

subsetor anelementof U maybedescribedby avectorwhich is univalentm � m $ 1� ; theserelations

arecalledpoints.

Given an orderingP, i.e., a reflexive, transitive andantisymmetricrelation,onemay be interested

in lower boundslbP m� of subsetscharacterisedby a vectorm. This vector is given by lbP m� def� % m �H P˘ � � m @ P˘ � P B m� ˘. Analogously, ubP m� def� % m �H P� � m @ P is the vectorof

upperboundsof m. Lastbut not least,therelationsglbP m� def� lbP m�I� ubP lbP m�3� andlubP m� def�ubP m�J� lbP ubP m�3� areeitheremptyor a point, describingthegreatestlower boundandthe least

upperbound,if they exist, respectively. More detailsaboutthe relationaldescriptionof orderings,

extremalelementsandtheir propertiesmaybefoundin [37].

For propertiesof relationalgebrasnot mentionedhere,we refer the readerto [10, 24, 37], andfor

Booleanalgebrasto [26].

3 Mereology

Mereology, the studyof “part-of” relations,wasgiven a formal framework by Lesniewski [27, 28]

as part of his programmeto establisha paradox-freefoundationof Mathematics.Clarke [11] has

generalisedLesniewski’s classicalmereologyby takinga “contact” relationC asthebasicstructural

element.TheaxiomswhichC needsto fulfil are

C is reflexive andsymmetric,(3.1)

Cx�

Cy impliesx�

y�(3.2)

It wasshown in [15] thattheextensionalityaxiom(3.2)maybereplacedby

C @ C is antisymmetric(3.3)

i.e.

syq C C �K$ 1� �(3.4)

The term “mereology”hasnowadaysbecome(almost)synonymouswith thestudyof “part-of” and

“contact” relationsin QSR.

If C is a contactrelationwe set

Pdef�

C @ C partof(3.5)

PPdef�

P �. 1� � properpartof(3.6)

5

Page 6: A necessary relation algebra for mereotopology

Lemma2.2and(3.3)tell usthatP is apartialorderwhichweshallcall thepart of relation(of C). We

alsowrite x 6 y insteadof xPy. PP is calledtheproperpart of relation.

Wenow definetheadditionalrelations

Odef�

P˘ � P overlap(3.7)

POdef�

O �L - P � P � partialoverlap(3.8)

ECdef�

C �. O externalcontact(3.9)

TPPdef�

PP �M EC � EC � tangentialproperpart(3.10)

NTPPdef�

PP �. TPP non–tangentialproperpart(3.11)

DCdef� C disconnected(3.12)

DRdef� O discrete�(3.13)

Given a contactrelationC, we will usethe definitions(3.5) – (3.13)of the relationsthroughoutthe

remainderof thepaper. An exampleof suchrelationsis givenin Figure1. Thedomainis thesetof all

nonemptycloseddisksin theEuclideanplane,andxCy :<; x � y /� /0.

Figure1: Circle relations

DC

EC

PO

NT

PP

TP

P

Mereologicalstructuresalsohaveanalgebraicpart: If C is acontactrelationonU and /0 NO X P U Q x RU , thenx is calledthe fusionof X, writtenas∑X, ifSUT

y R U VXW xCy Y<Z S\[z R X V yCz]�^(3.14)

A modelof mereology is a structure _ U Q C Q ∑ ` , whereC is a contactrelation,andthe fusion∑ exists

for all nonemptyX P U . If

C O O Q(3.15)

then _ U Q C Q ∑ ` is a modelof classicalmereology, since“contact” C is definableby “part of” P as

C O P˘ a P.

Note that the definition of a modelof mereologyis not first order;a weakmodelof mereology is a

structure_ U Q C Qcb ` , whereC is acontactrelation,andfor all x Q y R U , thefusionx b y exists.

6

Page 7: A necessary relation algebra for mereotopology

Givenamodelof mereology� U C ∑ � , onecandefineadditionaloperationsonU asfollows [11]:

1� ∑ �

x : xCx � Universalelement(3.16)

xd � ∑ �y : y C C � x � Complement(3.17)

∏X� ∑ �

z : zPxfor all x � X � Product(3.18)

Observe that d and∏ arepartialoperations- for example,1d doesnotexists,andneitherdoes∏ � x y �if xDCy -, and that they requirecompletenessof fusion. Biacino and Gerla [8] have shown that

the modelsof mereologyareexactly the completeorthocomplementedlatticeswith the 0 element

removed,and

xCy :L; x /6> y

Modelsof classicalmereologyarisefrom completeBooleanalgebrasB with the0 elementremoved

asshown in [41]; hereP is theBooleanorder.

4 The Region Connection Calculus

TheRegion ConnectionCalculus(RCC)wasintroducedin [34] asa tool for reasoningaboutspatial

phenomena,andhassincereceived someprominence.It usesa contactrelationC which fulfils the

conditions(3.1)and(3.2).

A modelfor theRCCconsistsof abasesetU�

R � N, whereR N aredisjoint,adistinguished1 � R,

aunaryoperationd : R0 * R0, whereR0def�

R e � 1 � , abinaryoperation0 : R R * R, anotherbinary

operation2 : R R * R � N, andabinaryrelationC onR. In orderto avoid trivialities,weassumethatfUf&g

2.

TheRCCaxiomsareasfollows:

RCC1. Uh x � R� xCx

RCC2. Uh x y � R�Ei xCy� ; yCxj

RCC3. Uh x � R� xC1

RCC4. Uh x � R y � R0 � ,(a) xCyd :<;lk xNTPPy

(b) xOyd :<;mk xPy

RCC5. Uh x y z � R�Ei xC y 0 z�n:<; xCy or xCzjRCC6. Uh x y z � R�Ei xC y 2 z�o:L;p�� w � R�E wPyandwPzandxCw�\jRCC7. Uh x y � R�Ei4 x 2 y��� R :<; xOyjRCC8. If xPyandyPx, thenx

�y.

7

Page 8: A necessary relation algebra for mereotopology

We shall in the sequelassumewithout loss of generalitythat N�q� 0 � . Axioms RCC 1, RCC 2,

RCC5 andRCC8 show that � R C �0"� is a weakmodelof mereology. It is, however, not a modelof

mereologyin the senseof Section3, sinceit hasa differentdefinition of complement:In the RCC

models,eachproperregion x is connectedto its complementxd , which is impossiblein modelsof

mereology. It wasshown in [14] and[40] thatthealgebraicpartof anRCCmodel,i.e. U 324 �01 d � , is

a Booleanalgebra.EachatomlessBooleanalgebracanbemadeinto anRCCmodelby definingan

appropriatecontactrelation[13].

Notice,thatsomeof theaxiomsabove maybewritten in a relationalgebraicmannerasfollows:

RCC1’. 1�J$ C

RCC2’. C˘ $ C

RCC8’. syq C C �K$ 1� .In theoriginal RCC,therelations

1� TPP TPP NTPP NTPP PO EC DC(4.1)

wereconsideredbaserelationsin asystemcalled r 8. Somewhatearlier, EgenhoferandFranzosa[16]

arriveatasimilarsetof relationsby purelytopologicalconsiderations.Seeingthatthelargestelement

1 is RA – definablefrom C, it wasnotedin [15] thatinvestigationof theRCCcanberestrictedto the

setU�

R �L � 1 � , andthatEC andPO split into thedisjoint non–emptyrelations

ECDdef� % PP � PP � PP � PP�� (4.2)

ECNdef�

EC �. ECD (4.3)

PONdef�

# �M PP � PP�#�M PP � PP �� (4.4)

PODdef�

# �M PP � PP�#�. % PP � PP �� (4.5)

where#� % P � P � is theincomparabilityrelation.It is nothardto seethat

xECDy :<; x�

yds xECNy :<; xECy andx 0 y /� 1 xPONy :<; x#y x 2 y /� 0 x 0 y /� 1 xPODy :<; x#y x 2 y /� 0 x 0 y

� 1 In thesequel,we shallregard

1� TPP TPP NTPP NTPP PON POD ECN ECD DC(4.6)

asdefinedabove asthebasicrelationsin termsof which otherrelationswill bedefinedbelow. The

systeminducedby theserelationswill becalled r 10. Theweakcompositionof r 10 is givenin Table

1; it is worth pointing out that the tabledoesnot have an extensionalinterpretation,i.e. thereis no

8

Page 9: A necessary relation algebra for mereotopology

RA whosecompositionis given by Table1. The reasonfor this is that the table is not associative:

Considerfor example,

TPP � NTPP �I� POD�

TPP 0 NTPP 0 PON 0 POD/� TPP 0 NTPP 0 PON 0 POD 0 ECN 0 ECD�TPP �t NTPP � POD���

Nevertheless,the baserelationsarethe atomsof a semi-associative relationalgebrain the senseof

Maddux[30].

UsingtherelationECD, anotherRCCaxiomcanbewritten in algebraicform asfollows:

RCC4’. (a) C � ECD� NTPP

(b) O � ECD� P

LetV bethegreatestrelationover R. Notice,thattheproperty

lub u Cv C w R�#� V�

R � V(4.7)

forcesthealgebraicpartof aRCCmodeloverR to beacompleteBA withoutaleastelementsincefor

everynonemptyvectorm theleastupperboundlub u Cv C w m� is alsononempty. Underthisassumption,

thegreatestelement1 is characterizedby therelationlub u Cv C w V � . Furthermore,if we require

lub u Cv C w R�I� C�

R � C for all relationsR(4.8)

thenthe relationalgebraiccounterpartsof theremainingaxiomsRCC3, RCC5, RCC6 andRCC7

areprovable.

Lemma 4.1. For all nonemptyvectors m wehavethefollowing:

RCC 3’: lub u Cv C w V �#� C�

V,

RCC 5’: lub u Cv C w m�I� C�

m � C,

RCC 6’: glb u Cv C w m�I� C�

lb u Cv C w m�I� C,

RCC 7’: glb u Cv C w m��/� /0 :<; lb u Cv C w m��/� /0.

Proof. RCC3’ andRCC5’ follow from 4.8. Notice,thatwehave

�x&� glb u Cv C w m� � lub u Cv C w lb u Cv C w m�3���A proof maybefoundin [37]. RCC6’ andRCC7’ follow from �x&� and4.8resp.4.7.

Notice,thattheinclusion y in 4.8canbeproven.

9

Page 10: A necessary relation algebra for mereotopology

Tabl

e1:

The

z 10w

eakc

ompo

sitio

ntab

le

{ wT

PP

TP

PN

TP

PN

TP

PP

ON

PO

DE

CN

EC

DD

C

TP

PT

PP,

NT

PP

1’,

TP

P,T

PP

,P

ON

,EC

N,D

CN

TP

PT

PP

,N

TP

P,

PO

N,E

CN

,DC

TP

P,N

TP

P,P

ON

,EC

N,D

CT

PP,

NT

PP,

PO

N,

PO

D,

EC

N,E

CD

EC

N,D

CE

CN

DC

TP

P1’

,T

PP,

TP

P,

PO

N,P

OD

TP

P,N

TP

PT

PP,

NT

PP,

PO

N,P

OD

NT

PP

TP

P,

NT

PP

,P

ON

,PO

DP

OD

TP

P,

NT

PP

,P

ON

,P

OD

,E

CN

,EC

D

PO

DT

PP

,N

TP

P,

PO

N,E

CN

,DC

NT

PP

NT

PP

TP

P,N

TP

P,P

ON

,EC

N,D

CN

TP

P1’

,T

PP,

TP

P,

NT

PP,

NT

PP

,P

ON

,EC

N,D

C

TP

P,N

TP

P,P

ON

,EC

N,D

CT

PP,

NT

PP,

PO

N,

PO

D,

EC

N,E

CD

,DC

DC

DC

DC

NT

PP

TP

P,

NT

PP

,P

ON

,PO

DN

TP

P1’

,T

PP,

TP

P,

NT

PP,

NT

PP

,P

ON

,PO

D

NT

PP

TP

P,

NT

PP

,P

ON

,PO

DP

OD

TP

P,

NT

PP

,P

ON

,PO

DP

OD

TP

P,

NT

PP

,P

ON

,P

OD

,E

CN

,EC

D,D

CP

ON

TP

P,N

TP

P,P

ON

,PO

DT

PP

,N

TP

P,

PO

N,E

CN

,DC

TP

P,N

TP

P,P

ON

,PO

DT

PP

,N

TP

P,

PO

N,E

CN

,DC

1’,

TP

P,T

PP

,N

TP

P,N

TP

P,

PO

N,

PO

D,

EC

N,E

CD

,DC

TP

P,N

TP

P,P

ON

,PO

DT

PP

,N

TP

P,

PO

N,E

CN

,DC

PO

NT

PP

,N

TP

P,

PO

N,E

CN

,DC

PO

DP

OD

TP

P,

NT

PP

,P

ON

,P

OD

,E

CN

,EC

D

PO

DT

PP

,N

TP

P,

PO

N,

PO

D,

EC

N,E

CD

,DC

TP

P,

NT

PP

,P

ON

,PO

D1’

,T

PP,

TP

P,

NT

PP,

NT

PP

,P

ON

,PO

D

TP

P,N

TP

PT

PP

,NT

PP

NT

PP

EC

NT

PP,

NT

PP,

PO

N,

PO

D,

EC

N,E

CD

EC

N,D

CT

PP,

NT

PP,

PO

N,P

OD

DC

TP

P,N

TP

P,P

ON

,EC

N,D

CT

PP,

NT

PP

1’,

TP

P,T

PP

,P

ON

,EC

N,D

CT

PP

TP

P,

NT

PP

,P

ON

,EC

N,D

C

EC

DP

OD

EC

NP

OD

DC

PO

NT

PP,

NT

PP

TP

P1’

NT

PP

DC

TP

P,N

TP

P,P

ON

,EC

N,D

CD

CT

PP,

NT

PP,

PO

N,

PO

D,

EC

N,E

CD

,DC

DC

TP

P,N

TP

P,P

ON

,EC

N,D

CN

TP

PT

PP,

NT

PP,

PO

N,E

CN

,DC

NT

PP

1’,

TP

P,T

PP

,N

TP

P,N

TP

P,

PO

N,E

CN

,C

10

Page 11: A necessary relation algebra for mereotopology

5 Basic relational properties

In this section,we shallcollectsomepropertiesof therelationslistedin (4.6), which follow from the

RCC axioms. Thesewill be usedin the next sectionfor the definition of the relationalgebra. We

commencewith severalbasicconnectionswhichwerealreadyprovedin [15].

Lemma 5.1. 1. 1�J$ NTPP � NTPP,i.e. for all z there is somex with xNTPPz.

2. ECN�

TPP � ECD, i.e. xECNz :<; xTPPzd .3. If xDCz, thenxTPP x 0 z� .4. xNTPPzandyNTPPz :L; x 0 y� NTPPz.

5. If xNTPPz,then xd 2 z� TPPz.

Oursecondlemmadealswith compositionsof P DC TPP andNTPP.

Lemma 5.2. 1. DC � P˘ $ DC, i.e. xDCy andz 6 y imply xDCz.

2. NTPP�

ECD � NTPP � ECD, i.e. xNTPPy :<; yd NTPPxd .3. P � NTPP 6 NTPP, i.e. x 6 y andyNTPPzimplyxNTPPz.

4. NTPP � TPP�

NTPP.

5. NTPP � P�

NTPP.

6. TPP � NTPP�

NTPP.

7. 1� 6 NTPP � NTPP , i.e. for all x there is somezwith xNTPPz.

Proof. 1. Considerthefollowing computation:

DC � P˘ $ DC :<;| C �7 %C C˘ � C �G$= C by definitionof DC andP:<;| C˘ � C $= C˘ � C � by 2.7

2. Considerthefollowing computation:

NTPP� % C � ECD � by RCC4’a�

ECD �7 % ECD � C �#� ECD sinceECD is abijection�ECD �7 % C � ECD � ˘ � ECD sinceC andECD aresymmetric�ECD � NTPP � ECD � by RCC4’a

3. Let xPyNTPPz, andassumethat k xNTPPz. ThenwehavexCzd and k yCzd by RCC4a.It follows

thatxCzd DCy holds,i.e.x C˘ �} C � y andhencek xPyby thedefinitionof P. But this is acontradiction.

11

Page 12: A necessary relation algebra for mereotopology

4. “ $ ”: Weprove thestrongerassumption

�x&� NTPP � P $ NTPP�Let xNTPPyPzand assumethat k xNTPPz. Then we have xCzd by RCC 4a. On the other hand,

xNTPPy impliesxDCyd by RCC4a. Sincey 6 z andthereforezd 6 yd holdswe concludexDCzd by

1, acontradiction.

“ y ”: Let xNTPPz. With 5.1(1)choosesomewNTPP xd 2 z� , andsety�

wd 2 z. Thenwehave

wNTPP xd 2 z� � ; wNTPPxd by �x&� andxd 2 z 6 xd� ; xNTPPwd by 5.2(2)� ; xDCw by RCC4a� ; xDCw andxDCzd by xNTPPzandRCC4a� ; xDC w 0 zd � by RCC5� ; xNTPP w 0 zd � d by RCC4a� ; xNTPPy� Definitionof y

Furthermore,wNTPP xd 2 z� implieswNTPPz, andby 5.1(5)we gety� wd 2 z� TPPz.

5. “ $ ” wasalreadyshown in 4. �x&� and“ y ” follows from 4.

6. “ $ ”: This follows from 3.

“ y ”: Let xNTPPz. With 5.1(1)choosesomeyNTPP xd 2 z� . Then5.givesusyNTPPzandyNTTPxd .Using5.1(4)andRCC4aweget x 0 y� NTPPzandyDCx. TogetherweconcludexTPP x 0 y� NTPPz

by 5.1(3).

7. Let x � U . By Lemma5.1(1),thereis somey � U suchthatyNTPPxd , andby 2 above,xNTPPyd .Ournext lemmaexhibitssomenew arithmeticalpropertiesinvolving thealgebraicoperations.

Lemma 5.3. 1. xNTPPyandxNTPPz :<; xNTPPy 2 z.

2. ECD � DC�

NTPP , i.e. xd DCz :<; zNTPPx.

3. PON � ECD�

PON, i.e. xPONz :<; xPONzd .4. TPP � ECD

�POD �. % ECD � NTPP� .

5. xECN � TPPz :<; xECN xd 2 z� TPPz.

6. If x#z thenxTPP � TPPz :<; xTPP x 2 z� TPPz.

7. If x 2 z /� 0 thenx ~ TPP � TPP� z :<; x 2 z� NTPPxor x 2 z� NTPPz�12

Page 13: A necessary relation algebra for mereotopology

8. If x#z thenxTPP � TPPz :<; xTPP x 0 z� TPPz.

9. If yNTPP x 0 z� andyDCz thenyNTPPx.

Proof. 1. This follows from 5.1(4)and5.2(2).

2. Considerthefollowing computation:

x ECD � DC � z :L; xd DCz:L; zDCxd by RCC2:L; zNTPPx� by RCC4a:L; xNTPP z�3. “

� ; ”: SupposexPONz. Thenthedefinitionof PON implies

x � z (5.1)

z � x (5.2)

x 2 z /� 0 (5.3)

x 0 z /� 1 �(5.4)

Wehave to prove (5.1)-(5.4) for zd insteadof z. Considerthefollowing computation:

zd 6 x� ; x 0 z

gzd 0 z

�1 contradicting(5.4)

x 6 zd � ; x 2 z 6 zd 2 z � 0 contradicting(5.3) x 2 zd � 0

� ; x 6 z contradicting(5.1) x 0 zd � 1

� ; z 6 x contradicting(5.2)�“ : � ” is shown analogously.

4. “ $ ”: First,we show TPP � ECD $ POD. Supposezd TPPx. Then,we have

x � z sincex 6 z implieszd 6 xd , acontradiction

z � x sincez 6 x is acontradiction

x 2 z /� /0 sincex 2 z � /0 impliesx 6 zd , a contradiction

x 0 z�

1 sincezd 6 x

andhencexPODz. Furthermore,considerthefollowing computation:

TPP � ECD � ECD � NTPP�TPP � ECD � ECD � ECD � NTPP � ECD by 5.2(2)� TPP � NTPP �I� ECD sinceECD is abijection� 0

13

Page 14: A necessary relation algebra for mereotopology

whichshows TPP � ECD $> % ECD � NTPP� .“ y ”: SupposexPODzand xd NTPPz. Then we concludezd�� x sincex 0 z

�1 and x 2 z /� /0.

Furthermore,we have zd TPPxbecausezd NTPPx impliesxd NTPPzby 5.2(2),acontradiction.

5. Weonly have to show “� ; ”. Let xECNyTPPz. Firstwe have

xECNy :<; yECNx symmetryof ECN:<; yTPPxd by 5.1(2)� ; y 6 xd 2 z� sinceyTPPz

AssumexNTPP x 0 zd � . Thenwe conclude

xNTPP x 0 zd �o:L; xDC xd 2 z� by RCC4a� ; xDCy by 5.2(1):L; xNTPPyd � by RCC4a

But xECNy givesus xTPPyd by 5.1(2),a contradiction.Sincex 6 x 0 zd we conludexTPP x 0 zd �and using 5.1(2) againxECN xd 2 z� . Assumexd 2 zNTPPz. Then we aim at yNTPPz by 5.2(3),

contradictingyTPPz. Sincexd 2 z 6 zwe get xd 2 z� TPPz.

6. Again,we only have to show “� ; ”. Let xTPP yTPPz. Thenwe have y 6 x 2 z. Sincex#z we have x 2 z� PPx. Assume x 2 z� NTPPx. WeconcludeyNTPPxby 5.2(3),acontradiction.

7. “ � ; ”: Let x 2 z � 0. Supposew.l.o.g that x 2 y� TPPx holds. The hypothesisx � TPP � TPP� zimpliesthatfor all y,

yTPPx� ; y TPPz�

Thus, x 2 z�8 TPPzandhence x 2 z� NTPPzsincex 2 z 6 z.

“ : � ”: Supposew.l.o.g. that x 2 z� NTPPzholds.Furthermore,assumethatwehavexTPP yTPPzfor

somey � U . Thenwe gety 6 x 2 zandby 5.2(3)yNTPPz, a contradiction.

8. Similarly to 6.

9. Considerthefollowing computation:

yNTPP x 0 z� andyDCz :<;| xd 2 zd � NTPPyd andzNTPPyd by 5.2(2)andRCC4a:<;| xd�2 yd�0 z� NTPPyd by 5.1(4):<; yNTPP zd�2E x 0 z�3� by 5.2(2):<; yNTPP zd�2 x�� ; yNTPPx by 5.2(5)

whichfinishestheproof.

Thelastlemmadealswith somenew relationalgebraicpropertiesof therelationslistedin (4.6).

14

Page 15: A necessary relation algebra for mereotopology

Lemma 5.4. 1. ECN � TPP � ECD�

TPP � TPP .

2. ECN � TPP� ˘ � ECD�

TPP � TPP.

3. TPP � TPP � ECD�

ECN � TPP.

4. TPP � TPP � ECD� ECN � TPP� .

5. - ECN � TPP�#� ECD� % TPP � TPP � .

6. - ECN � TPP� ˘ � ECD� % TPP � TPP� .

7. - TPP � TPP �#� ECD� % ECN � TPP� .

8. - TPP � TPP�#� ECD� % ECN � TPP� .

Proof. 1. Considerthefollowing computation:

ECN � TPP � ECD�

TPP � ECD � ECN by 5.1(2)�TPP �A ECN � ECD � ˘ sinceECN andECD aresymmetric�TPP �A TPP � ECD � ECD � ˘ by 5.1(2)�TPP � TPP � sinceECD is abijection

2. Considerthefollowing computation:

ECN � TPP� ˘ � ECD�

TPP � ECN � ECD sinceECN is symmetric�TPP � TPP � ECD � ECD by 5.1(2)�TPP � TPP� sinceECD is abijection

3.-8.Follow from 1. and2. sinceECD is abijection.

6 A necessary relation algebra

We arenow readyto describethe relationalgebra� which is a subalgebraof every BRA generated

by thecontactrelationof any RCCmodel. Notethat in this section,“composition”meansrelational

compositionproper, andnot theweakcompositionof (2.5).

Therelationswearegoingto considerareshown in Table2. Thedefinitionsof therelationsPONYB,

PONZ andPODZgive riseto somesimplequestionsansweredby thenext lemma.

Lemma 6.1. 1. PONZ $ TPP � TPP .

2. PONYB $ TPP � TPP.

15

Page 16: A necessary relation algebra for mereotopology

Table2: Atomsof �1�TPPA � TPP �%� ECN � TPP�TPPA˘ � TPP �%� ECN � TPP� ˘TPPB � TPP �"��� ECN � TPP�TPPB � TPP �"��� ECN � TPP� ˘NTPP

NTPPPONXA1 � PON �"� ECN � TPP���"� ECN � TPP� ˘ �%� TPP � TPP ���%� TPP � TPP�PONXA2 � PON �"� ECN � TPP���"� ECN � TPP� ˘ �%� TPP � TPP ���"��� TPP � TPP�PONXB1 � PON �"� ECN � TPP���"� ECN � TPP� ˘ �"��� TPP � TPP ���"� TPP � TPP�PONXB2 � PON �"� ECN � TPP���"� ECN � TPP� ˘ �"��� TPP � TPP ���5��� TPP � TPP�PONYA1 � PON �5��� ECN � TPP���"� ECN � TPP� ˘ �"� TPP � TPP ���"� TPP � TPP�PONYA2 � PON �5��� ECN � TPP���"� ECN � TPP� ˘ �"� TPP � TPP ���5��� TPP � TPP�PONYA1 � PON �"� ECN � TPP���5��� ECN � TPP� ˘ �"� TPP � TPP ���"� TPP � TPP�PONYA2 � PON �"� ECN � TPP���5��� ECN � TPP� ˘ �"� TPP � TPP ���5��� TPP � TPP�PONYB � PON �5��� ECN � TPP���"� ECN � TPP� ˘ �5��� TPP � TPP �PONYB˘ � PON �"� ECN � TPP���5��� ECN � TPP� ˘ �5��� TPP � TPP �PONZ � PON �5��� ECN � TPP���5��� ECN � TPP� ˘PODYA � POD �5��� ECD � NTPP���"� TPP � TPP�PODYB � POD �5��� ECD � NTPP���5��� TPP � TPP�PODZ � ECD � NTPPECNA � ECN �"� TPP � TPP �ECNB � ECN �5��� TPP � TPP �ECDDC

3. PONZ $ TPP � TPP.

4. PODZ $ POD.

5. PODZ $ TPP � TPP.

Proof. 1. Let xPONZz and assumex C % TPP � TPP �3� z. SincexPONz implies x#z we may apply

5.3(8)andconcludex TPP x 0 z� or z TPP x 0 z� . Assumew.l.o.g. thatx TPP x 0 z� holds.

Sincex � x 0 zwe concludexNTPP x 0 z� . Furthermore,we have

xNTPP x 0 z� � ; xDC x 0 z�Cd by RCC4a� ; xTPP x 0 xd 2 zd � by 5.1(3):<; xTPP x 0 zd �� ; xECN xd�2 z�� by 5.1(2)

contradictingx C - ECN � TPP�3� zby 5.3(5).

16

Page 17: A necessary relation algebra for mereotopology

2. We will show that PONYB �� % TPP � TPP�3��� ECD� /0. This implies PONYB �� % TPP �

TPP� � /0 sinceECD is abijection,andfinally, PONYB $ TPP � TPP. Thepropertyabove is proved

by

PONYB �L - TPP � TPP�3�I� ECD�PONYB � ECD �. % TPP � TPP�I� ECD sinceECD is abijection�PONYB � ECD �. % ECN � TPP� ˘ by 5.4(8)�PON � ECD �M ECN � TPP� ˘ � ECD�. % ECN � TPP�I� ECD �. % TPP � TPP �I� ECD�. % ECN � TPP� ˘ sinceECD is abijection�PON �M TPP � TPP�I�. % TPP � TPP ��. % ECN � TPP�I�L - ECN � TPP� ˘ by 5.4(5)-(7) and5.3(7)�PONZ �M TPP � TPP�I�. % TPP � TPP �� /0 � by 1

3. Similarly to 2.,we show PONZ �. % TPP � TPP �3�#� ECD� /0. Thispropertyis provedby

PONZ �L - TPP � TPP �3�I� ECD�PONZ � ECD �L - TPP � TPP �I� ECD sinceECD is abijection�PONZ � ECD �L - ECN � TPP� by 5.4(7)�PON � ECD �L - ECN � TPP�I� ECD�L - ECN � TPP� ˘ � ECD �. % ECN � TPP� sinceECD is abijection�PON �. % TPP � TPP �#�. % ECN � TPP��L - TPP � TPP� by 5.4(5),(2)and5.3(7)$ PONYB �. % TPP � TPP�� /0 � by 2

4. Supposexd NTPPzwhich impliesxd 6 z. Obviously, wehave

x � z z � x x 2 z /� 0 x 0 z�

1 andhencexPODz.

5. Again,supposexd NTPPzwhich impliesx 2 z /� 0. Now, assumex 2 zNTPPx. Thenwe conclude

x 2 z� NTPPx :<; xd NTPP xd 0 zd � by 5.2(2):<; xd NTPPxd by 5.3(9)sincexd DCzd :L; xd NTPPz

a contradiction.Analogously, it follows that x 2 z� NTPPzis impossible.Togetherwe have xTPPx 2zTPPzandhencePODZ $ TPP � TPP.

17

Page 18: A necessary relation algebra for mereotopology

Wenow stateourmainresult.

Theorem 6.2. Theset ' of relationsgivenin Table2 togetherwith theextensionalinterpretationof

their weakcompositiontable(Table4) is thesetof atomsof a relationalgebra � .

Proof. Following [23] we have to show:

1. Therelationsarepairwisedisjoint, theirunionisU U .

2. ' is closedundertakingconverses,andeitherR $ 1� or R � 1� � /0 for all R �-' .

3. Eachrelationis non-empty.

4. Thecompositionof any two of themis aunionof elementsof ' .

1. Lemma6.1givesus

TPPA TPPB is apartitionof TPP ECNA ECNB is apartitionof ECN

PONXA1 – PONZ is apartitionof PON PODYA PODYB PODZ is apartitionof POD

whichproves1.

2. This is obviousfrom thedefinitions.

3. We shall indicateelementsof U which arein the relationsof Table4.6. Notice, thatwe have the

following:

(a) TPPA � ECD�

ECNA.

(b) TPPB � ECD�

ECNB.

(c) TPPA˘ � ECD�

PODYA.

(d) TPPB � ECD�

PODYB.

(e) PONXA1 � ECD�

PONXA1.

(f) PONXA2 � ECD�

PONYA1 .

(g) PONXB1 � ECD�

PONYA1.

(h) PONXB2 � ECD�

PONZ.

(i) PONYA1 � ECD�

PONXB1.

(j) PONYA2 � ECD�

PONYB .

18

Page 19: A necessary relation algebra for mereotopology

Theseequalitiesarea consequenceof 5.1(2),5.3(3),(4)and5.4. Therefore,it is sufficient to show

thattherelationsTPPA TPPB PONXA1 PONXA2 PONXB1 PONXB2,PONYA1andPONYA2are

non-empty. To thisend,wewill useaconfigurationgivenby theFigure2; this is only anindicationin

a familiarmodel.Firstof all, wewantto show thatthisconfigurationemergesin everymodelof RCC

with U /� /0. Note,thatby 5.1(1)suchmodelis necessarilyinfinite.

Let 1 /� s � U begiven.Furthermore,using5.1(1)let tNTPPsd andwNTPP s 0 t � d . Thenwe have

sDCt by RCC4a

sDCw by RCC4aand5.2(1)

tDCw by RCC4aand5.2(1)

s 0 t 0 w � 1 � since s 0 t �I0 w� 1 ; w

g s 0 t � d , acontradiction

Again, using 5.1(1) let aNTPPs bNTPPa dNTPPt and cNTPP ad 2 s� . Sincead 2 s 6 s we have

cNTPPsby 5.2(5).Furthermore,cNTPP ad 2 s� impliescDC a 0 sd � , andhencecDCa by 5.2(1).

The requiredelementsand their propertiesare listed in Table3 on the following page. Proofsare

straightforwardandleft to thereader. Using5.3(6),(7)and(9), we concludeourassumption.

4. We have generateda compositiontable,andhave checked that Table4 on page21 representsa

relationalgebra.Bothweredonewith aprogramwritten in thefunctionallanguageGOFER.Observe

thatunlike theweakcompositionof Table1 for the r 10 structures,thecompositionin Table4 gives

compositionof relationalgebraswhich is associative.

To endupwith acompactdescription,wehavecodedthesetsof atomsby thefollowing 5 5-matrix.

1� TPPA TPPA˘ TPPB TPPB

NTPP NTPP PONXA1 PONXA2 PONXB1

PONXB2 PONYA1 PONYA2 PONYA1 PONYA2

PONYB PONYB˘ PONZ PODYA PODYB

PODZ ECNA ECNB ECD DC

Now, Table4 shouldbe readasfollows. Theweakcompositionof PODYB andPODYA is

, i.e. equalto unionof therelations

TPPA TPPB TPPB PONXA1 PONXB1 PONYA1 PONYA1 PONYB PONYB˘ PONZ PODZ�

Thiscompletestheproof.

19

Page 20: A necessary relation algebra for mereotopology

Fig

ure

2:sD

Ct� sDC

w

� tDCw

� s� t

� w

� 1

� aNTP

Ps� bNT

PPa

� cNTP

Ps� cDC

a

� dNTP

Pt

a

b

c

d

s

tw

Tabl

e3:

Ele

men

ts

Rel

atio

nx

zx

� zx

� zx

� � zx

� z�T

PPA

a

� � ss

� ta

� tT

PP

Bs

s

� tt

PO

NX

A1

a

� td

� sa

� ds

� ta

� � sd

� � tP

ON

XA

2a

� � sa

� c

� tc

s

� ta

� ta

� � c� � sP

ON

XB

1a

� � s� ba

� cb

� cs

b� � a

a

� c

� � sP

ON

XB

2a

� � sa

� cc

sa

a

� � c� � sP

ON

YA

1s

� ta

� � s� wa

� � ss

� t� ww

c

� tP

ON

YA

2s

a

� ta

s� t

ta

� � sR

elat

ion

xTP

P

� x

� z

�� x

� z

� TP

Pz

xTP

P

� x

� z�� x

� z� TP

Pz

xEC

N

� x

� � z�� x� � z� T

PP

zzE

CN

� x

� z��� x

� z�� TP

Px

TP

PA+

+

TP

PB

-+

PO

NX

A1

++

++

++

++

PO

NX

A2

++

-+

++

++

PO

NX

B1

+-

++

++

++

PO

NX

B2

+-

-+

++

++

PO

NY

A1

++

++

-+

++

PO

NY

A2

++

-+

-+

++

20

Page 21: A necessary relation algebra for mereotopology

Table4: Thecompositiontableof �

6.1 Topological properties

Supposethat � X τ � is atopologicalspace.If x $ X, wedenotetheclosureof x by cl x� , andits interior

by int x� . The fringe or boundaryFr x� of x is the setcl x�9�� int x� . x is calledregular open,if

x�

int cl x�3� . It is well known that thecollectionRO X � of regularopensetsis a completeBoolean

21

Page 22: A necessary relation algebra for mereotopology

algebraundersetinclusionwherefor v w � RO X � ,v 0 w

�int cl v � w�3�� (6.1)

v 2 w � v � w (6.2)

vd � int C v���(6.3)

Thespace� X τ � is calledregular or T3 space,if distinctpointscanbeseparatedby disjointopensets,

andif for eacha � X andeachclosedsetx notcontaininga, therearedisjoint opensetsw v suchthat

a � w x $ v. � X τ � is calledconnectedif theonly open-closed(clopen)setsareX and /0.

For propertiesof topologicalspacesnotmentionedhere,we invite thereaderto consult[20].

As shown in [21], astandardRCCmodelis thecompleteBooleanalgebraRO X � of regularopensets

of a connectedregulartopologicalspace� X τ � , wherefor x y � RO X �xCy

def:<; cl x�I� cl y�H/� /0 �(6.4)

Theorem6.3 gives the topologicalpropertiesof the baserelationsand the building blocks of the

others,from which thepropertiesof theatomscaneasilybederived.

Theorem 6.3. Let B bean atomlesssubalgebra of RO X � andC betheconnectionrelationof (6.4)definedonU

�B �L � /0 X � . Furthermore, let x y z � U x /� y. Then,

xTPPy ��� x � y� Fr � x�&� Fr � y�}�� /0(6.5)

xNTPPy ��� cl � x��� y(6.6)

xPONy ��� x �� y� y �� x � x � y �� /0 � cl � x��� cl � y�G�� X(6.7)

xPODy ��� x �� y� y �� x � x � y �� /0 � cl � x��� cl � y� � X(6.8)

xECNy ��� x � y � /0 � cl � x�&� cl � y�K�� /0 � cl � x�&� cl � y�K�� X(6.9)

xECDy ��� x � y � /0 � cl � x�&� cl � y�K�� /0 � cl � x�&� cl � y� � X(6.10)

xDCy ��� cl � x��� cl � y� � /0(6.11)

xECN � TPPy ��� Fr � x��� Fr ��� x � z�o�� /0 � Fr � z��� Fr ��� x � z�o�� /0 � cl � x�&� cl � y�K�� X(6.12)

xTPP � TPPy ��� Fr � x��� Fr � int � cl � x � z�\�\�}�� /0 � Fr � z��� Fr � int � cl � x � z�\���}�� /0(6.13)

xTPP � TPPy ��� Fr � x��� Fr � x � z�o�� /0 � Fr � z��� Fr � x � z�n�� /0(6.14)

xECD � NTPPy ��� x � y � X �(6.15)

Proof. All equivalencesarestraightforwardapplicationsof thedefinitionsof theBooleanoperations

givenin (6.1)– (6.3)onpage22,andthepropertiesof therelationsgivenin Lemma5.1.

Wewould like to closethissectionwith anRCCmodelwhichhasdifferentpropertiesthantheoneon

thefull algebraRO X � . Let K bethecollectionof setsof theform

K a b� �� ¢¡ � p �<£ 2 : a � f p f � b�� if 0 /� a �

p �<£ : f p f � b �� if a� 0 �

22

Page 23: A necessary relation algebra for mereotopology

wherea �¤£¥ b �¤£~� � ∞ � , andfpfis the Euclidiandistanceof p �¤£ 2 to 0 0� ). We alsoextend

theorderingof £ andseta � ∞ for all a �.£ . Let B bethesetof all finite unionsof elementsof K

including /0. ThenB is asubalgebraof RO ¦£ 2 � , generatedby theopendiskswith centreat theorigin;

by a resultof [13], � B C � is amodelof theRCC,whereC is definedby (6.4).

Now, considerx � K 0 1� . Wewantto show thatthereis noy � U�

B e � £ 2 /0 � with xTPPAy. Every

elementy of U with xTPPy is of theform x � � K a b� : 1 � a � . Since x 2 y �§� K a b� : 1 ¨ a � and�K a b� : 1 � a � is disconnectedto x, we concludethatxTPPBy. It follows that theBRA generated

by C on this domainis not integral. On the other hand,it is not hard to seethat in RO ¦£A� , 1� $TPPA � TPPA , sothissituationcannothappenthere.

7 Summary and Outlook

Wehaveshown thateachrelationalgebrageneratedby thecontactrelationof anRCCmodelcontains

anintegral algebra� with 25 atomsasa subalgebra.Thus,theexpressivenessof theRCCaxiomsin

the3-variablefragmentof first orderlogic is muchgreaterthantheoriginal eightRCCbaserelations

(which are,basically, thepossiblerelationsof a pair of circles)might suggest.We have alsogivena

topologicalinterpretationof theatomsof � .

We have not yet founda representationof � , andtheproblemis openasto whetherthereis anRCC

modelwith � asits associatedBRA. In particular, we do not know, if � is theBRA generatedby C

on astandardmodelRO X � .All RCCmodelsthatwe know fulfil

NTPP $ NTPP � NTPP (7.1)

andthequestionremains,whetherthis is alwaystrue.

It seemsalsoworthwhileto comparetheexpressivity of RA logic with thatof the9-intersectionmodel

of EgenhoferandHerring[17], which is basedonly on topologicalproperties.

Anotherpromisingareaof researchis to considertheexpressive power of relationalstructuresmore

generalthanBRAs, for example,those,in which theassociativity of thecompositionis relaxed[30].

EgenhoferandRodríguez[18] have givenaspatialinterpretationof suchastructure.

Acknowledgement

We would like to thanktheanonymousrefereesfor their helpful comments,andThomasMoormann

for spottinganerrorin Lemma5.3.

23

Page 24: A necessary relation algebra for mereotopology

References

[1] Asher, N. andVieu, L. (1995). Towarda geometryof commonsense:A semanticsanda com-

pleteaxiomatizationof mereotopology. In Mellish, C., editor, IJCAI 95, Proceedingsof the14th

InternationalJoint Conferenceon Artificial Intelligence.

[2] Bennett,B. (1997). Logical representationsfor automatedreasoningaboutspatialrelationships.

Doctoraldissertation,Schoolof ComputerStudies,Universityof Leeds.

[3] Bennett,B. (1998).Determiningconsistency of topologicalrelations.Constraints, 3:213–225.

[4] Bennett,B., Isli, A., andCohn,A. (1997). Whendoesa compositiontableprovide a complete

andtractableproofprocedurefor arelationalconstraintlanguage?In IJCAI 97,Proceedingsof the

Workshopof SpatialReasoning.

[5] Berghammer, R.,Gritzner, T., andSchmidt,G. (1993).Prototypingrelationalspecificationsusing

higher-orderobjects. In Heering,J.,Meinke, K., Mvller, B., andNipkow, T., editors,Proc. Inter-

nationalWorkshopon Higher Order Algebra, Logic andTermRewriting (HOA ’93), LNCS 816,

pages56–75.Springer.

[6] Berghammer, R. andKarger, B. (1997).Algorithmsfrom relationalspecifications.in [9].

[7] Berghammer, R. andZierer, H. (1986). Relationalagebraicsemanticsof deterministicandnon-

deterministicprograms.Theoret.Comp.Sci., 43:123–147.

[8] Biacino,L. andGerla,G. (1991). Connectionstructures.Notre DameJournal of Formal Logic,

32:242–247.

[9] Brink, C., Kahl, W., andSchmidt,G., editors(1997). RelationalMethodsin ComputerScience.

Advancesin ComputingScience.Springer.

[10] Chin, L. and Tarski, A. (1951). Distributive and modular laws in the arithmeticof relation

algebras.University of California Publicationsin Mathematics, 1:341–384.

[11] Clarke, B. L. (1981). A calculusof individualsbasedon ‘connection’. Notre DameJournal of

Formal Logic, 22:204–218.

[12] Cohn, A. G. (1997). Qualitative spatial representationand reasoningtechniques. Research

report,Schoolof ComputerStudies,Universityof Leeds.

[13] Düntsch,I. (2000).Contactrelationalgebras.In Orłowska,E.andSzałas,A., editors,Relational

Methodsin ComputerScienceApplications, pages113–134,Berlin. Springer–Verlag.

[14] Düntsch,I., Wang,H., andMcCloskey, S. (1999). Relationalgebrasin qualitative spatialrea-

soning.FundamentaInformaticae, 39:229–248.

[15] Düntsch,I., Wang,H., andMcCloskey, S. (2001). A relationalgebraicapproachto theRegion

ConnectionCalculus.Theoretical ComputerScience, 255:63–83.

24

Page 25: A necessary relation algebra for mereotopology

[16] Egenhofer, M. andFranzosa,R. (1991). Point–settopologicalspatialrelations. International

Journalof GeographicInformationSystems, 5(2):161–174.

[17] Egenhofer, M. andHerring, J. (1991). Categorizing binary topologicalrelationshipsbetween

regions, lines andpoints in geographicdatabases.Tech.report,Departmentof Surveying Engi-

neering,Universityof Maine.

[18] Egenhofer, M. andRodríguez,A. (1999). Relationalgebrasover containersandsurfaces:An

ontologicalstudyof a roomspace.SpatialCognition andComputation. To appear.

[19] Egenhofer, M. andSharma,J.(1992).Topologicalconsistency. In Fifth InternationalSymposium

on SpatialData Handling, Charleston,SC.

[20] Engelking,R. (1977). General Topology. Monografiematematyczne.PolishScientificPubl.,

Warszawa.

[21] Gotts,N. M. (1996a).An axiomaticapproachto topologyfor spatialinformationsystems.Re-

searchReport96.25,Schoolof ComputerStudies,Universityof Leeds.

[22] Gotts,N. M. (1996b). Topologyfrom a singleprimitive relation: Defining topologicalprop-

ertiesandrelationsin termsof connection.ResearchReport96.23,Schoolof ComputerStudies,

Universityof Leeds.

[23] Jónsson,B. (1984).Maximalalgebrasof binaryrelations.Contemporary Mathematics, 33:299–

307.

[24] Jónsson,B. (1991). The theoryof binary relations. In Andréka,H., Monk, J. D., andNémeti,

I., editors,Algebraic Logic, volume54 of ColloquiaMathematicaSocietatisJánosBolyai, pages

245–292.NorthHolland,Amsterdam.

[25] Jónsson,B. andTarski, A. (1952). Booleanalgebraswith operatorsII. AmericanJournal of

Mathematics, 74:127–162.

[26] Koppelberg, S.(1989).General Theoryof BooleanAlgebras, volume1 of HandbookonBoolean

Algebras. North Holland.

[27] Lesniewski, S. (1927– 1931).O podstawachmatematyki.Przeglad Filozoficzny, 30–34.

[28] Lesniewski, S. (1983).On thefoundationof mathematics.Topoi, 2:7–52.

[29] Lyndon,R. C. (1950). The representationof relationalalgebras.Annalsof Mathematics(2),

51:707–729.

[30] Maddux,R. (1982). Somevarietiescontainingrelationalgebras.Transactionsof theAmerican

MathematicalSociety, 272:501–526.

[31] Pratt,I. andSchoop,D. (1998). A completeaxiomsystemfor polygonalmereotopologyof the

realplane.Journal of PhilosophicalLogic, 27(6):621–658.

25

Page 26: A necessary relation algebra for mereotopology

[32] Pratt, I. andSchoop,D. (2000). Expressivity in polygonal,planemereotopology. Journal of

SymbolicLogic, 65(2):822–838.

[33] Pratt,V. (1990). Dynamicalgebrasasa well behaved fragmentof relationalgebras.Dept of

ComputerScience,Stanford.

[34] Randell,D. A., Cohn,A. G., andCui, Z. (1992).Computingtransitivity tables:A challengefor

automatedtheoremprovers.In Kapur, D., editor, Proceedingsof the11thInternationalConference

onAutomatedDeduction(CADE-11), volume607of LNAI, pages786–790,SaratogaSprings,NY.

Springer.

[35] Schmidt,G. (1981a).ProgramsaspartialgraphI: Flow equivalenceandcorrectness.Theoret.

Comp.Sci., 15:1–25.

[36] Schmidt,G. (1981b).ProgramsaspartialgraphsII: Recursion.Theoretical ComputerScience,

15(2):159–179.

[37] Schmidt,G. andStröhlein,T. (1989). Relationenund Graphen. Springer. Englishversion:

Relationsand Graphs.DiscreteMathematicsfor ComputerScientists,EATCS Monographson

Comp.Sci.,Springer(1993).

[38] Schröder, E. (1895).Algebra derLogik, volume3. Teubner, Leipzig.

[39] Smith,T. P. andPark, K. K. (1992). An algebraicapproachto spatialreasoning.International

Journalof GeographicalInforation Systems, 6:177–192.

[40] Stell,J. (1997).Personalcommunication,October30,1997.

[41] Tarski,A. (1935). Zur Grundlegungder Boole’schenAlgebra,I. FundamentaMathematicae,

24:177–198.

[42] Tarski,A. (1941).On thecalculusof relations.Journalof SymbolicLogic, 6:73–89.

[43] Tarski,A. andGivant,S. (1987). A formalizationof settheorywithoutvariables, volume41 of

ColloquiumPublications. Amer. Math.Soc.,Providence.

[44] Winter, M. (1998). StrukturtheorieheterogenerRelationenalgebren mit Anwendungauf Nicht-

determinismusin Programmiersprachen. DissertationsverlagNG, KopierladenGmbH.

26