A Micro-power EEG Acquisition SoC with Integrated Seizure

22
A Micro-power EEG Acquisition SoC with Integrated Seizure Detection Processor for Continuous Patient Monitoring Naveen Verma, Ali Shoeb, John Guttag, and Anantha Chandrakasan Massachusetts Institute of Technology 2009 Symposium on VLSI Circuits

Transcript of A Micro-power EEG Acquisition SoC with Integrated Seizure

A Micro-power EEG Acquisition SoC with Integrated Seizure Detection Processor for

Continuous Patient Monitoring

Naveen Verma, Ali Shoeb, John Guttag, and Anantha Chandrakasan

Massachusetts Institute of Technology

2009 Symposium on VLSI Circuits

Epilepsy

Electrical Onset:• Abnormal EEG observed at scalp

Clinical Onset:• Convulsions causemuscle artifacts

On-scalp Field Potentials (EEG):

Clinical onset

Electrical onset

~7.5sec

Outline

• Seizure detection algorithm

• Patient monitoring system approach

• Sensing and processing hardware– Instrumentation amplifier– ADC– Feature extraction processor

• System tests

Need for Patient-Specific Learning

Interictalburst

Patient A:

Combine spectral and (patient-specific) spatial information for high specificity

Seizure 1 onset

Excited channels

Need for Patient-Specific LearningPatient A:

Algorithm must learn patient’s seizure andbackground activity

Seizure 2 onset

Seizure 1 onset

Excited channels

Excited channels

Patient-Specific Detection Algorithm

Feature Vector

Test vector

non-seizure training vectors

seizure training vectors

SVM Classification

Support vector machine (SVM) is trained to determine optimal patient-specific decision boundary

Latency:• Specific: 6.77 ± 3.0 sec• Non-sp.: 30.1 ±1 5 sec

Specificity:• Specific: 0.3 ± 0.7 /hr• Non-sp.: 2.0 ± 5.3 /hr

Sensitivity:• Specific: 0.93• Non-sp.: 0.66

Algorithm Validation

010

2030

4050

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0

2

4

6

1 3 5 7 9 11 13 15

00.20.40.60.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Patient specific detectorNon-specific detector [Wilson’04]

Late

ncy

(sec

)Fa

lse

Ala

rms/

Hou

rSe

nsiti

vity

Patient Number

60

40

20

0

6

4201

0.6

0.2

Patient test results (Boston Children’s Hospital, 536 hours):

[Shoeb, EMBC’07]

System Approach- Wireless EEG

1808 µWTotal1733 µWRadio (CC2550)

3 µWADCs (12b, 11kS/s)72 µWInst. amps

Wireless EEG Power

Recording cables are unsafe during patient convulsions,but for wireless EEG, radio power dominates

18 Channel recording:

• Start-up: 4.8 µW• Active: 43.2kb/s*40nJ/b• Idle-mode: 0.46µW

Instrumentation amplifier

12b ADC

Rad

io I/

F

Local Feature Vector Extraction

120 µW1808 µWTotal43 µW1733 µWRadio (CC2550)2.1 µW--Digital processing3 µW3 µWADCs (12b, 11kS/s)

72 µW72 µWInst. ampsLocal feature extraction Wireless EEG

Local feature extraction reduces data rate by 43x, total system power by 14x

Inst. Amp Architecture/Needs1) Electrode offset (EO)

differential-mode2) Signal reference, 60Hz

common-mode3) 1/f noise, etc.

Chopper-stabilized LNA(gain: 40dB)

2-pole LPF(gain: 20dB)

Single-differential converter (gain: 12dB)

>10MΩ

Chopper LNA

1) Passive EO rejection enables low VDD2) Modulator at virtual ground does not load electrodes

FCHOP

RHP

IN+

IN-CIN

CFB

AC coupling passively

rejects offset

Electrode signal causes no

voltage swing at virtual ground

Chopper LNA

CIN

IN- IN+

CIN

FCHOP

M

RINT

RHP

IN+

IN-CIN

CFB

CINT

IOS,CHOP

Input modulator causes SC conductance

(→ IOS,CHOP)

GM-C Servo loop provides chopping offset current to avoid saturation through RHP

IOS,CHOP

X

Chopper LNA Op-Amp

Op-amp achieves good noise-efficiency:1) Low VDD (<1V)→ EO rejected by AC coupling2) Current of 1st diff. stage dominates→ high CL stability

Demodulate before dominant-pole:

Chopping does not limit BW

[Denison, ISSCC’07]

Inst. Amp. Measurements

10-1 100 101 102 10310-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

130nV/√Hz

Frequency (Hz)

V/√H

z

10-1 100 101 102 1030

10

20

30

40

50

60

70

Frequency (Hz)

Gai

n (d

B)

Output Response Noise (input referred)

• LNA power: 3.5µW • RIN: 700MΩ• CMRR: 60dB • Noise: 1.3µVrms (0.5-100Hz)

Passive differential

S/H

12b SAR ADC1VVDD

10.55bENOB65.3dBSNDR

0.68LSBINL250pJEnergy/Conv.

100kS/sMax. Fs.

[Verma, ISSCC’06]

12b SAR ADC uses-Three stage pre-amp comparator-Fully differential architecture

EEG Spectral Analysis

ω20Hz

[Gotman, EEG & ClinicalNeurophis.’81]

Need for Spectral Resolution:

0

0.2

0.4

0.6

0.8

1

2 4 6 8Number of Filters

Sens

itivi

ty

2 Filters 8 Filters

( 1117 hrs, 30 patients)

Feature Extraction Processor

48th order FIR

46th order FIR

0

-20

-40

-60 105 15 20 25 30Frequency (Hz)

Mag

nitu

de (d

B)

Modulated Filter Bank:3Hz Bandwidth

-25dB Stop-band

BPF1 (fc=0Hz) Σ I•IΣ I•IΣ I•IΣ I•IΣ I•IΣ I•IΣ I•I

BPF2 (fc=3Hz)BPF3 (fc=6Hz)BPF4 (fc=9Hz)BPF5 (fc=12Hz)BPF6 (fc=15Hz)BPF7 (fc=18Hz)

ADC Samples

(12b, 600Hz)

Feature-Vector

(112b, serial)

Feature Extraction Processor

Inst. Amp.

ADC

2.5mm

2.5m

m

Seizure Detection SoC

180nm, 5M2P CMOS Prototype

Performance Summary

9µJTotal energy per feature-vector0.5HzFeature vector computation rate234nJDigital energy per feature-vector65dBADC SNDR

0.68/0.66LSBADC INL/DNL100kS/sADC max. sampling rate250pJADC energy per conversion

12bADC resolution>60dBI-amp CMRR

>1VI-amp electrode offset tolerance

1.3µVrmsI-amp noise (input referred, 0.5Hz-100Hz)

>700MΩI-amp input impedance3.5µWI-amp LNA power

1VSupply voltage

EEG Recordings

Lab recording performed by on-chip inst. amp and ADC using commercial Ag/AgCl electrodes

5 10 15 200

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5 x 104FFT of Occipital Recordings

Mag

nitu

de

Frequency (Hz)

Eyes Closed

Eyes Open

Feature Vector Classification

System trained to detect relaxed eyes-closed (alpha) state: <2.5sec latency observed

Conclusions

• Patient-specific learning improves seizure detection

• General importance of spectral and spatial features can be exploited to compress EEG data

• Low-power EEG acquisition requires targeted rejection mechanisms in instrumentation amp

Acknowledgements: Funding by Intel Foundation Ph.DFellowship Program and MIT CICS. IC fabrication by NSC