A high-order positivity preserving method for the Vlasov ......method for the Vlasov-Poisson system...

39
Issues in Solving the Boltzmann Equation for Aerospace Applications ICERM, Providence, RI A high-order positivity preserving method for the Vlasov-Poisson system James A. Rossmanith 1 , David C. Seal 2 , Andrew J. Christlieb 2 1 Iowa State University 2 Michigan State University June 7 th , 2013

Transcript of A high-order positivity preserving method for the Vlasov ......method for the Vlasov-Poisson system...

  • Issues in Solving the Boltzmann Equation forAerospace ApplicationsICERM, Providence, RI

    A high-order positivity preservingmethod for the Vlasov-Poisson system

    James A. Rossmanith 1, David C. Seal 2,Andrew J. Christlieb 2

    1Iowa State University2Michigan State University

    June 7th, 2013

  • Outline

    Introduction

    Hybrid discontinous-Galerkin method

    Examples

    Other Extensions & Conclusions

  • Outline

    Introduction

    Hybrid discontinous-Galerkin method

    Examples

    Other Extensions & Conclusions

  • Vlasov-Poisson System: A Kinetic Plasma ModelWhat is a plasma?

    I ‘Fourth’ state of matter, and most abundant form of ordinary matter.Given enough energy, anything will turn into plasma.

    I Can think of plasma as an ionized gas or liquid. Therefore modelequations must respect E&M forces plus liquid/gas dynamics.

    Scientific and Engineering Applications of Plasma

    I Astrophysics (stars, solar corona/wind)I Nuclear experiments, tocamaks, stelleratorsI Lightning/Polar AuroraeI Flourescent lights, TVs, etc.

    Mathematical ModelsI Fluid Models (e.g. continuum equations in gas dynamics)I Kinetic Models - Computationally expensive.

  • Vlasov-Poisson System: A Collisionless Plasma

    I Probability distribution function (PDF):

    f(t,x,v) := probability of finding an electron at t & x, w/ vel. v

    I Boltzmann equation (non-dimensional units):

    ∂f

    ∂t+ v · ∇xf + a · ∇vf = C(f)

    Two species Vlasov-Poisson (Electrostics + C(f) ≡ 0)

    a = −∇φ, −∇2φ = ρ(t,x)− ρ0.

    I Some numerical challenges

    1. High dimensionality (3 + 3 + 1) - even worse for Boltzmann!2. Conservation of mass & total energy, positivity3. Complex geometries, boundary conditions.4. Small time steps due to v ∈ R3 or strong electric fields.

  • Eulerian schemesSelecting a scheme for Vlasov-Poisson

    I Popular “finite-X” methods:

    1. Finite-Difference2. Finite-Volume3. Finite-Element4. Discontinuous-Galerkin (high-order + unstructured grids)

    I Main advantage:1. Fast convergence2. Provable accuracy, load balancing for parallel computing.

    I Main disadvantage:

    1. Curse of dimensionality2. Courrant-Fredricks-Lewy (CFL) limits

    I M th-order discontinuous-Galerkin: ν ≈ 1/ (2M − 1).3. Diffusion (in velocity space) - bad!

    I Some recent results for Vlasov-Poisson:[Banks & Hittinger, ’10],[Heath, Gamba, Morrison, Michler ’11],[Cheng, Gamba, Morrison ’13], . . .

  • Particle-in-cell and semi-Lagrangian methodsSelecting a scheme for Vlasov-Poisson

    1. Particle in Cell 2. semi-Lagrangian1.

    I Discretize f with “macro-particles.”I Key difficulties: statistical noise ∼ O(1/

    √N).

    I [Birdsall & Langdon, 1985], [Hockney & Eastwood, 1989]2.

    I Main advantage: Remove CFL constraint, maintain mesh rep., . . .I Main disadvantage: Boundary conditions and unstructured grids?

    Mesh distortions from Lagrangian evolution + interpolation error.I [Parker & Hitchon, ’97], [Sonnendrücker et al. ’99],

    [Güçlü & Hitchon, ’12], . . .

  • Outline

    Introduction

    Hybrid discontinous-Galerkin method

    Examples

    Other Extensions & Conclusions

  • Splitting Techniques for Vlasov-Poisson

    Semi-Lagrangian w/ Strang splitting for Vlasov:[Cheng & Knorr, 1976], [Besse & Sonnendrücker, ’03],[Qiu & Christlieb, ’09], . . .Split f,t + v · f,x +∇φ(t,x) · f,v = 0 into:

    1. ∆t2

    step on: f,t + v · f,x = 0

    2. Solve -∇2φ = ρn+12 − ρ0 and compute En+

    12 = −∇φ.

    3. ∆t step on: f,t + En+12 · f,v = 0.

    4. ∆t2

    step on: f,t + v · f,x = 0

    High-order Runge-Kutta Nyström splitting for V-P is an option.[Rossmanith & S, ’10], [Crouseilles et al, ’11], [S, ’12]

    Multi-D extensions of SLDG?I Natural extension =⇒ Cartesian.I Hybrid = Which method do we want to apply to sub-problems?

  • Hybrid SLDG (HSLDG) for Vlasov-Poisson

    Proposed hybrid DG scheme

    1. SLDG (Semi-Lagrangian DG) on velocity space: f,t +En+12 · f,v = 0.

    [Rossmanith & S, ’10], [Einkemmer & Ostermann, ’12],not [Restelli et al, ’06], [Qiu & Shu, ’11] (less efficient).

    I Removes CFL condition.

    2. RKDG (Runge-Kutta DG) on configuration space: f,t + v · f,x = 0.[Reed & Hill, 1976], [Cockburn & Shu, 90’s]

    I Unstructured grids and Boundary conditions.I Sub-cycle independent problems.

    I Disclosure: SLDG better for structured grids!

    Building blocksNeed to define how sub-problems are tackled.

  • Semi-Lagrangian DG (SLDG)

    Advection Equation: f,t + a f,v = 0

    1. Reconstruct. The original projection:

    F(k),ni :=

    1

    ∆v

    ∫Ciϕ

    (k)i (v)f(t

    n, v) dv; f(t, v) =∑i,k

    F(k)i (t)ϕ

    (k)i (v).

    2. Evolve. The evolution step is simply the exact solution:

    f(t, v) = f0(v − at); f0(v) = f(0, v).

    3. Average. This step requires the solution from step 2.

    F(k),n+1i :=

    1

    ∆v

    ∫Ciϕ

    (k)i (v)f(t

    n+1, v) dv

    =1

    ∆v

    ∫Ciϕ

    (k)i (v)f(t

    n, v − a(t− tn))) dv

  • 2D Semi-Lagrangian DGConstant coefficient advection: a.k.a. corner transport + high-order

    1. Forward (cell discontinuities) 2. Backward (quadrature points)

    Advection equation: f,t − E1 f,vx − E2f,vy = 0

    F(k),n+1i,j :=

    1∣∣Ti,j∣∣∫Ti,j

    ϕ(k)i,j (x, y) f

    h (tn+1, x, v) dx dv=

    1∣∣Ti,j∣∣4∑

    m=1

    ∫Tmi,j

    ϕ(k)i,j (x, y)f

    h (tn, x+ ∆tE1, v + ∆tE2) dx dvI Mass conservation (and stability!) come from exact integration

  • Hybrid DG: Reduction to sub-problemsNot trivial because basis functions depend on transverse variable

    1. Reconstruct: Start with a full 2N -dimensional solution:

    fh (tn,x,v)∣∣∣T 2Ni

    =∑k2

    F(k2)i (t

    n)ϕ(k2)2N (x,v)

    2. Project full solution onto to sub-problems (N -dimensional) by takingslices at quadrature points {v1,v2, . . .vMN }:

    fh (tn,x,vm)∣∣∣TNi

    =∑k

    F(k)N,i(t

    n)ϕ(k)N (x)

    3. Evolve (RKDG or SLDG) sub-problems:

    fh(tn+1,x,vm

    )∣∣∣TNi

    =∑k

    F(k)N,i(t

    n+1)ϕ(k)N (x)

    4. Integrate: Sub-problems integrated up to 2N -dimensional problem:

    fh(tn+1,x,v

    )∣∣∣T 2Ni

    =∑k2

    F(k2)i (t

    n+1)ϕ(k2)2N (x,v)

  • 1D-1V Example: f,t + v f,x = 0

    1. Full 2D-solution. 2. 1D-Problems (at quadrature points).

    3. Evolve lower-D problems (SLDC/RKDG) 4. Integrate up to full soln.

  • HSLDG for Vlasov-Poisson: Sub-Cycling

    Basic Idea: March sub-problems at their own pace

    I Many independent sub-Problems: f,t + vmf,x = 0. Global restriction:

    ∆t ≤ CFL ∆x|vmax|� CFL ∆x|vm|

    ∼ ∆tlocal

    I For each equation, define: ∆tlocal := ∆t/max{

    1,⌈|vm|∆tν∆x

    ⌉}.

  • Outline

    Introduction

    Hybrid discontinous-Galerkin method

    Examples

    Other Extensions & Conclusions

  • Example: Forced Vlasov-Poisson Test ProblemI Method of Manufactured Solutions produces a source term:

    f,t + vf,x + E(t, x)f,v = ψ(t, x, v), E,x =

    ∫ ∞−∞

    f(t, x, v) dv −√π.

    I Choose the exact solution: f(t, x, v) = {2− cos (2x− 2πt)} e−14

    (4v−1)2 .

    I New Hybrid Operators:

    Sub-cycled RKDG on Problem A: f,t + v f,x = ψ(t, x, v),SLDG on Problem B: f,t + E(t, x) f,v = 0,

    Mesh HSL2 Error log2(Ratio) HSL4 Error log2(Ratio)102 5.193× 10−1 – 1.085× 100 –202 1.432× 10−1 1.858 2.725× 10−1 1.993402 1.640× 10−2 3.126 1.652× 10−2 4.044802 3.438× 10−3 2.255 7.058× 10−4 4.5481602 8.333× 10−4 2.045 3.421× 10−5 4.3673202 2.068× 10−4 2.011 1.953× 10−6 4.1316402 5.161× 10−5 2.003 1.197× 10−7 4.028

  • Example: Landau Damping with HSLDG

    Initial Conditions:

    f(t = 0, x, v) =(

    1 + α cos(kx)) 1√

    2πe−

    v2

    2

    Weak Landau Strong Landau

    0 10 20 30 40 50 6010

    −8

    10−7

    10−6

    10−5

    10−4

    10−3

    10−2

    10−1

    0 10 20 30 40 50 6010

    −4

    10−3

    10−2

    10−1

    100

    101

    α = 0.01 α = 0.5

  • Plasma Sheath Simulation (1D-1V) with HSLDGInitial conditions (in dimensional quantitites):

    f̃(0, x̃, ṽ) = f̃0(ṽ) =ρ̃0√

    2πmkθ̃0exp

    (−mṽ

    2

    2kθ̃0

    ), x̃ ∈ [0, L].

    Boundary conditions:

    f̃(t, x̃ = 0, ṽ) = 0, f̃(t, x̃ = L, ṽ) = f̃0(ṽ),

    φ̃(t, x̃ = 0) = 0, φ̃x̃(t, x̃ = L) = 0.

    1 eV electrons, 0.1m domain, density ρ̃0 = 9.10938188× 10−18 kgm .

  • Plasma Sheath Simulation (1D-1V) with HSLDG

    (sheath-movie.mp4)

    Lavf52.93.0

    sheath-movie.mp4Media File (video/mp4)

  • Plasma Sheath Simulation (1D-1V) with HSLDG

  • Plasma Sheath Simulation (1D-1V) with HSLDG

    0 0.02 0.04 0.06 0.08 0.10

    2.5

    5

    7.5

    10

    12.5x 10

    12n

    e(t,x) at t = 3.0269e−06

    0 0.02 0.04 0.06 0.08 0.1−800

    −600

    −400

    −200

    0

    200

    400

    600

    800

    E(t,x) at t = 3.0269e−06

    Number density Electric field

  • Plasma Sheath Simulation (2D-2V) with HSLDG

    I Initial conditions: constant density, ρ̃0 = 9.10938188× 10−18 kgm2 .

    I Boundary conditions: f̃(t̃, ‖x̃‖ = L, ṽ) = 0, φ̃(t̃, ‖x̃‖ = L) = 0.

    −0.1 −0.05 0 0.05 0.1−0.1

    −0.08

    −0.06

    −0.04

    −0.02

    0

    0.02

    0.04

    0.06

    0.08

    0.1

    rho(t,x,y) at t = 0 [DoGPack]

    0 0.02 0.04 0.06 0.08 0.10

    2.5

    5

    7.5

    10

    12.5x 10

    12n

    e(t,r) at t = 0 [DoGPack]

    1 eV electrons,(π · 0.12

    )m2 domain.

  • Plasma Sheath Simulation (2D-2V) with HSLDG

    −0.1 −0.05 0 0.05 0.1−0.1

    −0.08

    −0.06

    −0.04

    −0.02

    0

    0.02

    0.04

    0.06

    0.08

    0.1

    rho(t,x,y) at t = 4.4843e−08 [DoGPack]

    0 0.02 0.04 0.06 0.08 0.10

    2.5

    5

    7.5

    10

    12.5x 10

    12n

    e(t,r) at t = 4.4843e−08 [DoGPack]

  • Plasma Sheath Simulation (2D-2V) with HSLDG

    −0.1 −0.05 0 0.05 0.1−0.1

    −0.08

    −0.06

    −0.04

    −0.02

    0

    0.02

    0.04

    0.06

    0.08

    0.1

    rho(t,x,y) at t = 6.7265e−08 [DoGPack]

    0 0.02 0.04 0.06 0.08 0.10

    2.5

    5

    7.5

    10

    12.5x 10

    12n

    e(t,r) at t = 6.7265e−08 [DoGPack]

  • Plasma Sheath Simulation (2D-2V) with HSLDG

    −0.1 −0.05 0 0.05 0.1−0.1

    −0.08

    −0.06

    −0.04

    −0.02

    0

    0.02

    0.04

    0.06

    0.08

    0.1

    rho(t,x,y) at t = 1.1211e−07 [DoGPack]

    0 0.02 0.04 0.06 0.08 0.10

    2.5

    5

    7.5

    10

    12.5x 10

    12n

    e(t,r) at t = 1.1211e−07 [DoGPack]

  • Plasma Sheath Simulation (2D-2V) with HSLDG

    −0.1 −0.05 0 0.05 0.1−0.1

    −0.08

    −0.06

    −0.04

    −0.02

    0

    0.02

    0.04

    0.06

    0.08

    0.1

    rho(t,x,y) at t = 2.2422e−07 [DoGPack]

    0 0.02 0.04 0.06 0.08 0.10

    2.5

    5

    7.5

    10

    12.5x 10

    12n

    e(t,r) at t = 2.2422e−07 [DoGPack]

  • Plasma Sheath Simulation (2D-2V) with HSLDG

    −0.1 −0.05 0 0.05 0.1−0.1

    −0.08

    −0.06

    −0.04

    −0.02

    0

    0.02

    0.04

    0.06

    0.08

    0.1

    rho(t,x,y) at t = 5.6054e−07 [DoGPack]

    0 0.02 0.04 0.06 0.08 0.10

    2.5

    5

    7.5

    10

    12.5x 10

    12n

    e(t,r) at t = 5.6054e−07 [DoGPack]

  • Plasma Sheath Simulation (2D-2V) with HSLDG

    −0.1 −0.05 0 0.05 0.1−0.1

    −0.08

    −0.06

    −0.04

    −0.02

    0

    0.02

    0.04

    0.06

    0.08

    0.1

    rho(t,x,y) at t = 6.7265e−07 [DoGPack]

    0 0.02 0.04 0.06 0.08 0.10

    2.5

    5

    7.5

    10

    12.5x 10

    12n

    e(t,r) at t = 6.7265e−07 [DoGPack]

  • Plasma Sheath Simulation (2D-2V) with HSLDGCross sections of velocity space

    −0.2 −0.1 0 0.1 0.2

    −0.2

    −0.15

    −0.1

    −0.05

    0

    0.05

    0.1

    0.15

    0.2

    f(t,vx,vy) at t = 0 [DoGPack]

    0

    50

    100

    150

    200

    250

    300

    −0.2 −0.1 0 0.1 0.2

    −0.2

    −0.15

    −0.1

    −0.05

    0

    0.05

    0.1

    0.15

    0.2

    f(t,vx,vy) at t = 0 [DoGPack]

    −25

    −20

    −15

    −10

    −5

    0

    5

    10

    15

    20

    25

  • Plasma Sheath Simulation (2D-2V) with HSLDGCross section of velocity space

    −0.2 −0.1 0 0.1 0.2

    −0.2

    −0.15

    −0.1

    −0.05

    0

    0.05

    0.1

    0.15

    0.2

    f(t,vx,vy) at t = 0 [DoGPack]

    −25

    −20

    −15

    −10

    −5

    0

    5

    10

    15

    20

    25

    −0.2 −0.1 0 0.1 0.2

    −0.2

    −0.15

    −0.1

    −0.05

    0

    0.05

    0.1

    0.15

    0.2

    f(t,vx,vy) at t = 5.6054e−08 [DoGPack]

    −25

    −20

    −15

    −10

    −5

    0

    5

    10

    15

    20

    25

    −0.2 −0.1 0 0.1 0.2

    −0.2

    −0.15

    −0.1

    −0.05

    0

    0.05

    0.1

    0.15

    0.2

    f(t,vx,vy) at t = 5.6054e−07 [DoGPack]

    −25

    −20

    −15

    −10

    −5

    0

    5

    10

    15

    20

    25

    −0.2 −0.1 0 0.1 0.2

    −0.2

    −0.15

    −0.1

    −0.05

    0

    0.05

    0.1

    0.15

    0.2

    f(t,vx,vy) at t = 6.7265e−07 [DoGPack]

    −25

    −20

    −15

    −10

    −5

    0

    5

    10

    15

    20

    25

  • Outline

    Introduction

    Hybrid discontinous-Galerkin method

    Examples

    Other Extensions & Conclusions

  • Conclusions & Future Work

    I Vlasov-Poisson: nonlinear/nonlocal advection equation

    I Semi-Lagrangian and Eulerian grid-based methods as alternativeto PIC and particle methods

    I Operator splitting + sub-cycling + semi-Lagrangian relaxes CFL.

    I 1D-1V and preliminary 2D-2V results: collisionless simulation ofthe formation of a plasma sheath, Landau damping, bump ontail, ... http://www.dogpack-code.org

    I The Hybrid HSLDG and the SLDG Method attain:

    1. Unconditionally stable; (sub-cycling / semi-Lagrangian)2. High-order space (5th order) and time (4th order);3. Mass conservative; and4. Positivity-preserving

    Future workI Extra options for 2D-Poisson solver.

    I Vlasov-Maxwell, SLDG on even higher dimensions, . . .

  • Conclusions

    Thank You!

    This work was partially supported by the following agencies:I Michigan State University Foundation SPG-RG100059I Air Force Office of Scientific Research (AFOSR)

    FA9550-11-1-0281, FA9550-12-1-0343, FA9550-12-1-0455I National Science Foundation (NSF) DMS-1115709

  • The DoGPack software packagehttp://www.dogpack-code.org

  • Semi-Lagrangian discontinuous GalerkinPositivity Preserving Limiter: Step I

    Provided cell average is positive, one can gaurantee as many points asrequested are positive without losing order of accuracy.1. To limit cell Tij , compute

    m := min(x,v)∈Tij

    fh(x, v),

    or at least an approximate minimum.

    2. Define the limited solution [Zhang & Shu, 2010] as

    f̃h(ξ, η) := F (1) + θ ·(fh(ξ, η)− F (1)

    ),

    θ = min

    {1,

    F (1)

    F (1) −m

    }, 0 ≤ θ ≤ 1.

    3. Main advantages: Locally applied limiter, easy to implement.

    4. Difficulties:

    I Exact minimum of the function on each cell?I How does one make sure average is positive?

  • Semi-Lagrangian discontinuous GalerkinPositivity Preserving Limiter [Rossmanith and S., 2011]: Step II

    Theorem:A single advect-project step preserves positivity in the mean, and hence theoverall algorithm is positivity preserving. That is,[

    F(1)i,j

    ]n+1:=

    1∣∣Ti,j∣∣∫Ti,j

    fh(tn+1, x, v

    )dx dv ≥ 0.

    Proof:I The points chosen for integration are forced to be positive via a

    judicious and finite choice of limiting points in a preprocessing step:

    I Step I makes solution positive at our choice of quadrature points.I All quadrature weights are positive.I Extra effort reduces number of points to 2MK, where K :=

    ⌈M2

    ⌉.

  • Semi-Lagrangian DG-FEM4th order-in-time

    I Poisson’s equation−∇2φ = ρn − ρ0

    I Time derivatives

    En = ∇φ, En,t = − (ρu)n , En,tt = ∇ · En − (ρE)n

    En,ttt = ∇ · (ρuE + ρEu)n −∇ · ∇ · Fn + En∇ · (ρu)n +(ρ2u

    )nĒ(t,x) = En + (t− tn)En,t +

    1

    2(t− tn)2 En,tt +

    1

    6(t− tn)3 En,ttt

    Fourth-order splitting:Stage 1: + 0.6756 ∆t step on f,t + v · f,x = 0Stage 2: + 1.3512 ∆t step on f,t + Ē (t,x) · f,v = 0Stage 3: − 0.1756 ∆t step on f,t + v · f,x = 0Stage 4: − 1.7024 ∆t step on f,t + Ē (t,x) · f,v = 0Stage 5: − 0.1756 ∆t step on f,t + v · f,x = 0Stage 6: + 1.3512 ∆t step on f,t + Ē (t,x) · f,v = 0Stage 7: + 0.6756 ∆t step on f,t + v · f,x = 0

  • Eulerian Discontinuous Galerkin methods

    Spatial discretization [Cockburn & Shu, 1990’s]I Basis functions: ϕ(`)(x) =

    {1, x, y, x2, xy, y2, . . .

    }I Galerkin expansion: fh(t,x) =

    ∑M(M+1)/2k=1 F

    (`)(t)ϕ(`)(x)

    I Semi-discrete weak-form of f,t +∇ ·R(f) = 0:∫Tϕ(`) f,t dx = −

    ∫Tϕ(`)∇ ·R(f) dx

    =⇒ ddtF (`) =

    1

    |T |

    ∫T∇ϕ(`) ·R(f) dx︸ ︷︷ ︸Interior

    − 1|T |

    ∮∂T

    ϕ(`) R(f) · ds︸ ︷︷ ︸Edge

    I Interior: quadrature, Edge: quadrature, then approx Riemann soln

    IntroductionHybrid discontinous-Galerkin methodExamplesOther Extensions & Conclusions