A GEAR-BASED VEHICLE EMISSION MODEL FOR CO2 ... faculteit...Transfer Function Model Engine speed...

18
A GEAR-BASED VEHICLE EMISSION MODEL FOR CO 2 , CO AND NO X ESTIMATION Hajar Hajmohammadi Centre for Transport Studies, UCL [email protected] Benjamin Heydecker Professor of Transport studies, UCL MATTS 2018 Mathematics Applied in Transport and Traffic Systems 17-19 October 2018

Transcript of A GEAR-BASED VEHICLE EMISSION MODEL FOR CO2 ... faculteit...Transfer Function Model Engine speed...

  • A GEAR-BASED VEHICLE EMISSION MODEL FOR CO2, CO AND NOX ESTIMATION

    Hajar Hajmohammadi

    Centre for Transport Studies, UCL

    [email protected]

    Benjamin Heydecker Professor of Transport studies, UCL

    MATTS 2018

    Mathematics Applied in Transport and Traffic Systems

    17-19 October 2018

  • Introduction

    2

    Why we need vehicle emission model?

    To evaluate the impacts of traffic policies on the air quality

    To develop traffic control policies that can reduce air pollution in critical areas

    Influential variables in the vehicle emission modelling:

    Vehicle-related parameters: e.g. model, engine size, fuel and catalyst type and technology level

    Operational factors: driving cycle

  • Vehicle type

    Measurements

    emission: CO2, CO, THC, NOx, PMn

    vehicle: Roll speed, Engine speed

    3

    Dataset: Laboratory vehicle emission tests

    Fuel Petrol - Diesel

    Transmission Automatic – Manual

    Engine Size from 1000 to 3200 cc

  • 4

    Real Driving Cycle for London

    Traffic Conditions:

    Free Flow

    AM peak

    Inter peak

    [SERIES NAME] Suburban [SERIES NAME]

    0

    20

    40

    60

    80

    100

    120

    0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250

    Sp

    ee

    d (

    km

    /h)

    Time (s)

  • 5

    0

    0,02

    0,04

    0,06

    0,08

    0,1

    0,12

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    0 20 40 60 80 100 120

    NO

    x (

    mg

    /se

    c)

    CO

    2 (

    mg

    /se

    c)

    speed (km/h)

    CO2 NOx

    Statistical modelling

    Vehicle B, Diesel, manual, 1400 cc

  • 6

    Background

    Single model

    𝑦 = 𝑐 + 𝛽𝑗π‘₯𝑗

    𝐽

    𝑗=1

    + πœ€ 𝑦= emission

    π‘₯= Roll Speed, 𝑣

    Acceleration, π‘Ž Power demand

    𝑉𝑆𝑃 = 𝐴 𝑀 𝑣 + 𝐡𝑀 𝑣2 + 𝐢 𝑀 𝑣

    3 + (π‘Ž + 𝑔 𝑠𝑖𝑛 πœƒ )𝑣

    Classified model: Acceleration, Cruising, Idling, Deceleration (CADI)

    𝑦 =

    𝑒π‘₯𝑝( 𝐿𝑖,𝑗 Γ— 𝑣𝑖 Γ— π‘Žπ‘— ) π‘“π‘œπ‘Ÿ π‘Ž β‰₯ 0

    3

    𝑗=0

    3

    𝑖=0

    𝑒π‘₯𝑝( 𝛾𝑖,𝑗 Γ— 𝑣𝑖 Γ— π‘Žπ‘—

    3

    𝑗=0

    3

    𝑖=0

    π‘“π‘œπ‘Ÿ π‘Ž < 0

    VT-micro emission model

  • 7

    0

    0,02

    0,04

    0,06

    0,08

    0,1

    0,12

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 1,1 1,2 1,3 1,4 1,5

    NO

    x (

    mg

    /se

    c)

    CO

    2 (

    mg

    /se

    c)

    gear

    CO2 NOx

    New latent variable, Gear=roll speed/engine speed

  • 8

    Urban Motorway Sub-Urban

    0

    0,5

    1

    1,5

    2

    2,5

    3

    0 500 1000 1500 2000 2500 3000

    g

    Time (sec)

    New latent variable, Gear=roll speed/engine speed

  • 9

    F(𝑔 |Ο€;ΞΈ)= πœ‹π‘˜ FπΎπ‘˜=1 𝑔 ΞΈk

    π‘€π‘‘π‘˜ = 𝑓 𝑔𝑑 ΞΈk Ο€k

    𝑓𝐾𝑗=1 𝑔𝑑 ΞΈj Ο€j Bayes’ theorem

    π‘™π‘œπ‘” 𝑙 Ο€, ΞΈ = (π‘™π‘œπ‘” πœ‹π‘˜π‘“ (𝑔𝑛|ΞΈk))πΎπ‘˜=1

    𝑁𝑛=1 Log-likelihood

    Mixed distribution model

    Maximization Expectation-Maximization (EM) algorithm

    π’˜(𝒕, π’Œ)

    𝛑, 𝛍 and 𝛔 for each component π‘˜

    Gear-memberships

  • 10

    Time (sec)

    0 2000 4000 6000 8000 10000 12000

    0.0

    0.4

    0.2

    0.8

    0.6

    1.0 G

    ea

    r m

    em

    bers

    hip

    s

    Component 1

    Component 2

    Component 3

    Component 4

    Component 5

    Component 6

    Component 7

    Gear memberships

    Vehicle B

    Diesel – Supermini – Manual

  • 12

    π’š = 𝐱. Ξ²

    𝐱: Explanatory variables 𝑣, π‘Ž, π‘Žπ‘£, 𝑣3

    π’˜: Gear membership (latent variable)

    𝐱.𝐰: Interaction

    𝛆: Residuals

    Gear-based emission modelling

    π’š = 𝐱. Ξ² + 𝐰.Ο† π’š = 𝐱. Ξ² + 𝐰.Ο† + 𝐱.𝐰 . Ξ³ + 𝛆

  • 13

    Challenge: engine speed as a latent variable

    geaπ‘Ÿ, 𝑔 = 𝑣/𝑒

    roll speed, 𝑣

    geaπ‘Ÿ, 𝑔 = 𝑣/𝑒

    Latent variable

    (estimated) 𝑒𝑛𝑔𝑖𝑛𝑒 𝑠𝑝𝑒𝑒𝑑, 𝑒

    𝑒𝑛𝑔𝑖𝑛𝑒 𝑠𝑝𝑒𝑒𝑑, 𝑒 Observation

  • 14

    𝑒𝑑 = 𝑑(𝐡)𝑣𝑑 +Nt

    𝒆𝒕: engine speed at time 𝑑

    𝒗𝒕: roll speed at time 𝑑

    𝑡𝒕: noise- can be serially correlated

    βˆ…(𝐡)

    πœƒ (𝐡) 𝑁𝑑= πœ€π‘‘

    𝒕(𝑩): rational polynomial in B: 𝑀(𝐡)𝐡𝑏

    𝛿(𝐡)

    Systematic part

    Stochastic part

    Transfer Function Model

  • 15

    𝑒𝑑 = c+ 𝑀0+𝑀1𝐡+𝑀2𝐡

    2

    1βˆ’π›Ώ1π΅βˆ’π›Ώ2𝐡2 𝑣𝑑 +

    1βˆ’ βˆ…1π΅βˆ’βˆ…2 𝐡2

    1βˆ’πœƒ1π΅βˆ’πœƒ2𝐡2 (1 βˆ’ 𝐡) πœ€π‘‘

    observed

    fitte

    d

    R2 = 0.896

    ACF and PACF of πœ€

    Transfer Function Model

  • 16

    Driving Cycle

    Gear-based emission modelling

    π’š = 𝐱. Ξ² + 𝐰.Ο† + 𝐱.𝐰 . Ξ³ + 𝛆

    Mixed distribution model

    Explanatory variables 𝑣, π‘Ž, π‘Žπ‘£, 𝑣3

    Transfer Function Model

    Engine speed

    Gear =roll speed/ engine speed Gear-memberships

  • 17

    Results

    0

    2000

    4000

    6000

    8000

    10000

    12000

    14000

    16000

    18000

    A,Petrol,Manual B, Diesel,Manual C,Diesel,Automatic

    D,Diesel,Automatic

    E,Petrol,Automatic

    BIC

    Vehicle type

    BIC

    Gear-based Single VT-micro

    0

    0,1

    0,2

    0,3

    0,4

    0,5

    0,6

    0,7

    0,8

    0,9

    1

    A,Petrol,Manual B, Diesel,Manual C,Diesel, Automatic D,Diesel, Automatic E,Petrol,Automatic

    Vehicle type

    𝑅-squared

    𝑅2

  • 18

    Conclusion

    β€’ Gear for driving mode instead of acceleration

    β€’ Introducing gear-membership

    β€’ Transfer function model

  • 19

    Thank You !