A Finite Line Crack in a Pressurized Spherical Shell-folias

27
8/3/2019 A Finite Line Crack in a Pressurized Spherical Shell-folias http://slidepdf.com/reader/full/a-finite-line-crack-in-a-pressurized-spherical-shell-folias 1/27 AFINITE LINE CRACK IN A PRESSURIZED SPHERICAL SHELL Efthymios S. Folias* ABSTRACT The deform ation of a thin sheet having initial spherical curvature is shown to be associated with that of an initially flat plate resting upon an elastic foundation. Using an integral formulation the coupled Reissner equations for a shell with a crack of length 2c are solved for the in-plane and Kirchhoff bending stresses, and, among other things, it is found that the explicit nature of the stresses near the crack point depends upon the inverse half power of the non-dimensional distance from the point z. The character of the combined extension- bending stress field near the crack tip is investigated in detail for :he special case of a rad~.al crack in a spherical cap which is subjected to a uniform internal pressure qo and is clamped at the boundary R = R o. Pending a complete study of the solution, approximate results for the com bined surface stresses near the crack tip norm al and along the line of crack prolongation are respectively of the form %R Wy(C'°)[' ,~=1/3 = 0.45 Vl,'~ --if-- + ... k=0 . 98 c=0.28 in Ro = 4 . 25 in and similarly qoR ,~x(,.o)[ ~=zls= o..~'V'z/, --U + . . . k=0.98 c=0.23 in Ro=4.25 in It is interesting to note that the stress er x and ~y, along the line of crack prolongation, for this geom etry are equal, In general, they will be of the same sign and will differ only slightly in magnitude due to the bending component. Finally, the experimental and theoretical re- sults for C y, along the line of crack prolongation, compare very well. INTRODU C TION In the field of fracture mechanics, considerable work has been carried out on initially flat sheets subjected to either extensional or bending stresses, and for small deformations the superposition of these separate effects [i] is permissible. On the other hand, if a thin sheet possesses initial curvature, a bending load will generally produce both bending and extensional stresses, rand vice versa. The subject of eventual concern therefore is that of the simultaneous stress fields produced in an initially curved sheet containing a crack. It is of some practical value to be able to correlate flat sheet behavior with that of initially curved specimens. In experimental work, for example, considerable time couldbe saved if a reliable prediction of curved sheet response behavior could be made from flat sheet tests. For this reason an exploratory study was under- taken to assess analytically the manner in which the two problems might be related. Although it is recognized that' elastic analysis is not completely satisfactory due to plastic flow near the crack tip, considerable information can be obtained. Two initially curved geometries immediately come to mind: a spherical shell and a cylindrical shell. In the latter case one * Formerly Research Pellow , CaLifornia Institute of Technology, Dr. Folias is currently In Thessaloniki, Greece. MailIng address c/o the editorial office, Pasadena, California.

Transcript of A Finite Line Crack in a Pressurized Spherical Shell-folias

Page 1: A Finite Line Crack in a Pressurized Spherical Shell-folias

8/3/2019 A Finite Line Crack in a Pressurized Spherical Shell-folias

http://slidepdf.com/reader/full/a-finite-line-crack-in-a-pressurized-spherical-shell-folias 1/27

A F I N I T E L I N E C R A C K I N A P R E S S U R I Z E D S P H E R I C A L S H E L L

E f t h y m i o s S . F o l i a s *

A B S T R A C T

T h e d e f o r m a t i o n o f a t h i n s h e e t h a v i n g i n i t i a l s p h e r i c a l c u r v a t u re i s s h o w n t o b e a s s o c i a t e dw i t h t h a t o f a n i n i t i a l l y f l a t p l a t e r e s t in g u p o n a n e l a s t i c f o u n d a t i o n . U s i n g a n i n t e g r a lf o r m u l a t i o n t h e c o u p l e d R e i s s n e r e q u a t i o n s f o r a s h e l l w i t h a c r a c k o f l e n g t h 2 c a r e s o l v e df or t h e i n - p l a n e a n d K i r c h h o f f b e n d i n g s t re s se s , a n d , a m o n g o t h e r t h in g s , i t is f o u n d t h a tt h e e x p l i c i t n a t u r e o f t h e s t re s se s n e a r t h e c r a c k p o i n t d e p e n d s u p o n t h e i n v e r s e h a l f p o w e ro f t h e n o n - d i m e n s i o n a l d i s ta n c e f ro m t h e p o i n t z . T h e c h a r a c te r o f t h e c o m b i n e d e x t e n s i o n -b e n d i n g s t re s s f i e l d n e a r t h e c r a c k t i p i s i n v e s t i g a t e d in d e t a i l f o r : h e s p e c i a l c a s e o f ar ad ~. al c r a c k i n a s p h e r i c a l c a p w h i c h i s s u b j e c t e d t o a u n i f o r m i n t e r n a l p r e s s u r e q o a n d i sc l a m p e d a t t h e b o u n d a r y R = Ro . P e n d i n g a c o m p l e t e s t ud y o f t h e s o l ut i o n , a p p r o x i m a t er e s u l ts f o r t h e c o m b i n e d s u r f a c e s t r es s e s n e a r t h e c r a c k t i p n o r m a l a n d a l o n g t h e l i n e o fc r a c k p r o l o n g a t i o n a r e r e s p e c t i v e l y o f t h e f o r m

% RW y (C ' ° )[ ' , ~ = 1 / 3 = 0 . 4 5 V l , ' ~- - i f - - + . . .

k=0.98

c = 0 . 2 8 i n

Ro = 4 . 25 in

a n d s i m i l a r l yqoR

,~x(,.o)[ ~=zls= o..~'V'z/, -- U +. . .

k = 0 . 9 8c = 0 . 2 3 i nR o = 4 . 2 5 i n

I t i s i n t e r e s t i n g t o n o t e t h a t t h e s t re s s erx a n d ~ y, a l o n g t h e l i n e o f c r a c k p r o l o n g a t i o n , f o r th i sg e o m e t r y a r e e q u a l , I n g e n e r a l , t h e y w i l l b e o f t h e s a m e s i g n a n d w i l l d i f f e r o n l y s l ig h t l yi n m a g n i t u d e d u e t o t h e b e n d i n g c o m p o n e n t . F i n a ll y , t h e e x p e r i m e n t a l a n d t h e o r e ti c a l r e -s u lt s f o r C y, a l o n g t h e l i n e o f c r a c k p r o l o n g a t i o n , c o m p a r e v e r y w e l l .

I N T R O D U C T I O N

I n t h e f i e l d o f f r a c t u r e m e c h a n i c s , c o n s i d e r a b l e w o r k h a s b e e n

c a r r i e d o u t o n i n i t i a l l y f l a t s h e e t s s u b j e c t e d t o e i t h e r e x t e n s i o n a l

o r b e n d i n g s t r e s s e s , a n d f o r s m a l l d e f o r m a t i o n s t h e s u p e r p o s i t i o n

o f t h e s e s e p a r a t e e f f e c t s [ i ] i s p e r m i s s i b l e . O n t h e o t h e r h a n d ,

i f a t h i n s h e e t p o s s e s s e s i n i t i a l c u r v a t u r e , a b e n d i n g l o a d w i l l

g e n e r a l l y p r o d u c e b o t h b e n d i n g a n d e x t e n s i o n a l s t r e s s e s , r a n d

v i c e v e r s a . T h e s u b j e c t o f e v e n t u a l c o n c e r n t h e r e f o r e i s t h a t

o f t h e s i m u l t a n e o u s s t r e s s f i e l d s p r o d u c e d i n a n i n i t i a l l y c u r v e ds h e e t c o n t a i n i n g a c r a c k .

I t i s o f s o m e p r a c t i c a l v a l u e t o b e a b l e t o c o r r e l a t e f l a t s h e e t

b e h a v i o r w i t h t h a t o f i n i t i a l l y c u r v e d s p e c i m e n s . I n e x p e r i m e n t a l

w o r k , f o r e x a m p l e , c o n s i d e r a b l e t i m e c o u l d b e s a v e d i f a r e l i a b l e

p r e d i c t i o n o f c u r v e d s h e e t r e s p o n s e b e h a v i o r c o u l d b e m a d e f r o m

f l a t s h e e t t e s t s . F o r t h i s r e a s o n a n e x p l o r a t o r y s t u d y w a s u n d e r -

t a k e n t o a s s e s s a n a l y t i c a l l y t h e m a n n e r i n w h i c h t h e t w o p r o b l e m s

m i g h t b e r e l a t e d . A l t h o u g h i t i s r e c o g n i z e d t h a t ' e l a s t i c a n a l y s i s

i s n o t c o m p l e t e l y s a t i s f a c t o r y d u e t o p l a s t i c f l o w n e a r t h e c r a c k

t i p , c o n s i d e r a b l e i n f o r m a t i o n c a n b e o b t a i n e d .

T w o i n i t i a l l y c u r v e d g e o m e t r i e s i m m e d i a t e l y c o m e t o m i n d :

a s p h e r i c a l s h e l l a n d a c y l i n d r i c a l s h e l l . I n t h e l a t t e r c a s e o n e

* F o r m e r l y R e s e a r c h P e l l o w , C a L i f o r n ia I n s t i t u t e o f Te c h n o l o g y, D r. F o l i a s i s c u r r e n t l y I nT h e s s a l o n i k i , G r e e c e . M a i l I n g a dd r e ss c / o t h e e d i to r i a l o f f i c e , P a s a d e n a , C a l i f o r n i a .

Page 2: A Finite Line Crack in a Pressurized Spherical Shell-folias

8/3/2019 A Finite Line Crack in a Pressurized Spherical Shell-folias

http://slidepdf.com/reader/full/a-finite-line-crack-in-a-pressurized-spherical-shell-folias 2/27

Page 3: A Finite Line Crack in a Pressurized Spherical Shell-folias

8/3/2019 A Finite Line Crack in a Pressurized Spherical Shell-folias

http://slidepdf.com/reader/full/a-finite-line-crack-in-a-pressurized-spherical-shell-folias 3/27

Y

22 Efthymios S. Folias

TOP Vl EW

y / lZ

~ X

SIDE VIEW

R

=- X

CROSS

SECTION

Fig. 1 . Geom etry and Coo rdinates .

o n e h a s a l r e a d y f o u n d * a p a r t i c u l a r s o l u t i o n s a t i s f y i n g 4 a n d5 , b u t p r o d u c i n g a r e s i d u a l n o r m a l m o m e n t M 0 e q u i v a l e n tv e r t i c a l s h e a r Vy , n o r m a l i n - p l a n e s t r e s s N y , a n d a n i n - p l a n e

* See the next sect ion for an example .

Page 4: A Finite Line Crack in a Pressurized Spherical Shell-folias

8/3/2019 A Finite Line Crack in a Pressurized Spherical Shell-folias

http://slidepdf.com/reader/full/a-finite-line-crack-in-a-pressurized-spherical-shell-folias 4/27

EfthymiosS. Folias 23

t a n g e n t i a l s t r e s s N x y , a l o n g t h e r e a l a x i s Ix < 1 , o f t h e f o r m :

M y ( P ) _ D m ( x ) (6 )c 2

DVy ( P ) = - v ( x ) ( 7 )

c 2

N y ( P ) = - n(x___J.) (8 )C 2

N x ~ P ) = _ t ( x )c 2 ( 9 )

T h u s w e n e e d t o f i n d t w o f u n c t i o n s o f t he d i m e n s i o n l e s s c o o r -d i n a t e s ( x , y ) , W ( x , y ) an d F ( x , y ) , s u c h th a t t h e y s a t i s f y th ep a r t i a l d i f f e r e n t i a l e q u a t i o n s 4 a n d 5 an d t h e f o l l o w i n g b o u n d a r y

c o n d i t i o n s . A t y = 0 a n d ]xJ < 1

M y ( X , O ) - D [ 8 2 W + v - -82W] = D, m (x ) (10 )e 2 8y 2 0x 2 c 2

D v ( x ) ( 11 )y ( x , 0 ) - D [ 0 3 W + ( 2 - V ) 8 3 W ] = C 3c 3 L S y 3 8 x 2 d y

Ny(X, . 0) - 1 O2F = n( x) ( 1 2 )c 2 8 x 2 c 2

Nxy ( x , 0 ) - 1 8 2 F _ * ( x ) ( 1 3 )c 2 8 x S y c 2

A t y = 0 a n d Ix l > 1, w e m u s t s a t i s f y t h e c o n t i n u i t y r e q u i r e m e n t s ,n a m e l y :

8 n 8 n

l i r a [ - - ( W + ) - ( W - ) ] = 0[Y] -- '*0 8 y n 8 7

( 1 4 )

8 n 8 n

l i m [ - - ( F +)[y ] - - -,0 8yn aYn

- - - ( F - ) ] -- 0 ( 1 5 )

( n = 0 , 1 , 2 , 3 ) .

F u r t h e r m o r e , b e c a u s e w e a r e l i mi t in g o u r s e l v e s to a l a r ger a d i u s o f c u r v a t u r e f o r t hi s s h a l l o w s he ll , i .e ., s m a l l d e v i a t i o n sf r o m a f l a t s h ee t , w e c a n a p p l y c e r t a i n b o u n d a r y c o n d i t io n s a ti nf in it y e v e n t h o u g h w e k n o w p h y s i c a l l y t h a t t h e s t r e s s e s a n dd i s p l a c e m e n t s f a r a w a y f r o m t he c r a c k a r e fi ni te . T h e r e f o r e ,t o a v o i d i n f i n i t e s t r e s s e s a n d i n f i n i t e d i s p l a c e m e n t s w e m u s tr e q u i r e t ha t t h e d i s p l a c e m e n t f u n c t i o n W a n d t h e s t r e s s f u n c t i o nF w i t h t h e ir f i rs t d e r i v a t i v e s t o b e f i n i te f a r a w a y f r o m t he

Page 5: A Finite Line Crack in a Pressurized Spherical Shell-folias

8/3/2019 A Finite Line Crack in a Pressurized Spherical Shell-folias

http://slidepdf.com/reader/full/a-finite-line-crack-in-a-pressurized-spherical-shell-folias 5/27

2 4 Efthymios S. Folias

c r a c k . T h e s e r e s t r i c t i o n s s i m p l i f y t he m a t h e m a t i c a l c o m p l e x i t i e so f t he p r o b l e m c o n s i d e r a b l y , a n d c o r r e s p o n d t o t he u s u a l e x -p e c t a t i o n s o f t h e S t . Ve n a n t P r i n c i p l e . I t s h o u l d b e p o i n t e d o u tt h a t th e b o u n d a r y c o n d i t i o n s a t i n f i n i ty a r e n o t g e o m e t r i c a l l yf e a s i b l e . H o w e v e r i f t he c r a c k i s s m a l l c o m p a r e d to t he d i -m e n s i o n s o f t he s h e l l , t he a p p r o x i m a t i o n i s g o o d .

Method of Solution

R e i s s n e r [4 ] h a s s h o w n t h a t t he s o l u t i o n o f t h e s y s t e m 4 ,5 c a n b e w r i t t e n i n t h e f o r m

w = z + • ( 1 6 )

F = - R D V 2 ; ( + ~ ( 1 7 )c 2

w h e r e ¢ a n d ~ a r e h a r m o n i c f u n c t i o n s a n d X s a t i s f i e s t h e s a m ed i f f e r e n t i a l e q u a t i o n a s t h e d e f l e c t i o n of a p l a t e o n a n e l a s t i c

f o u n d a t i o n , i . e .

( V4 + X4) X = 0 (18 )

w h e r e

E h c 4 _ 1 2 ( 1 - v 2 ) ( ~ _ ) 4k 4 - - R 2 D - ( _ ~ ) 2 (19)

T h e f u n c t i o n JJ r e p r e s e n t s t h e i n e x t e n s i o n a l b e n d i n g p a r t o f t h es o l u t i o n , a n d ¢ r e p r e s e n t s t h e m e m b r a n e p a r t o f t he s o l u t i o n .

We n e x t c o n s t r u c t t he i n t e g r a l r e p r e s e n t a t i o n s

f ? e -~ ] s2-iX21 _ ~f 2+iX"-~lYl _ sly IW ( x , y + ) = { P 1 Y+I P 2 e + P 3 e } c o s x s d s ( 2 0 )

f ; - ~ /s2- ix21Yl - ~ k 2 1 y E - s ly IP ( x , y ± ) - - - iA 2 R D { P 1 e - P 2 e + P 4 e } e o s x s d s ( 21 )

c 2

w h e r e t h e P i ( i = 1 , 2 , 3 , 4 ) a r e a r b i t r a r y f u n c t i o n s o f s t o b ed e t e r m i n e d f r o m th e b o u n d a r y c o n d i t i o n s , a n d t he f s i g n s r e f e rt o y > 0 a n d y < 0 r e s p e c t i v e l y . I n r e f e r e n c e [ 5] , i t i s s h o w nt h a t th e p r o b l e m i s r e d u c e d t o t h e s o l u t i o n o f t w o c o u p l e d s i n g u l a ri n t e g r a l e q u a t i o n s w h i c h , b e c a u s e o f t he c o m p l i c a t e d n a t u r e o ft he k e r n e l s , a r e s o l v e d f o r s m a l l v a l u e s o f t he p a r a m e t e r k .T h i s i s c e r t a i n l y p e r m i s s i b l e s i n c e f o r m o s t p r a c t i c a l a p p l i c a t i o n st he p a r a m e t e r ~ a t t a i n s s m a l l v a l u e s a s fo l l o w s f r o m th e d e f i n i t i o no f ~ , n a m e l y

( 2 2 )

I t i s c l e a r t h a t k i s s m a l l f o r l a r g e r a t i o s o f R / h a n d s m a l lc r a c k l e n g t h s . A s a p r a c t i c a l m a t t e r , i f w e c o n s i d e r c r a c k

Page 6: A Finite Line Crack in a Pressurized Spherical Shell-folias

8/3/2019 A Finite Line Crack in a Pressurized Spherical Shell-folias

http://slidepdf.com/reader/full/a-finite-line-crack-in-a-pressurized-spherical-shell-folias 6/27

Efthyrnios S. Folias 25

2~rRl e n g t h s l e s s t h a n o n e t e n t h o f t h e p e r i p h e r y , i . e . 2 c < " T O - ' a n d

f o r R / h < 1 0 3 a c o r r e s p o n d i n g u p p e r b o u n d f o r k c a n b e o b t a i n e d ,n a m e l y k < 2 0 . T h u s t h e r a n g e o f k b e c o m e s 0 < k < 2 0 a n d f o rm o s t p r a c t i c a l c a s e s i s b e t w e e n 0 a n d 2 .

F i n a l l y , w i t h o u t g o i n g i n t o t h e d e t a i l s w e o b t a i n t h e d i s p l a c e -m e n t f u n c t i o n W a n d t h e s t r e s s f u n c t i o n F ( s e e a p p e n d i x ) f o rm = m o , v = 0 , n = n o a n d t = 0 . * T h u s t h e s t r e s s e s a r e f o u n dt o b e :

Bending stresses:** O n t h e s u r f a c e Z = + h2

_ E h P l o 3 0 1 5 0O ~ X b 2 ( 1 + ~ ) c 2 V ~'~(-4 c ° s 2 + 4 c ° s - ~ ) + 0 ( ¢ ° )

PE h 1o

Cry = 2 ( 1 _ u 2 ) c 2 ~ -

TxYb

( 2 3 )

1 1 + 5 u 0 1-u

- - ( ~ c o s -~ + "-4 -- c o s - - ) + O ( c ° ) ( 2 4 )

G h P 1 o . 7 + y . 0 1 - u( ~ s l n ~ + s in -- ) + O ( e °)

( l - y ) c 2 ~( 2 5 )

w h e r e

A 1 "B 1 n o k 2 8 -7u o 4-3v o

P l o - -- ~ h 2 - - : ( ~ + -----if--- ~' +2 ~ f 2 ~ f 2 E h D ( 4 - ' o )

4 - 3 y o

1 6

m o 4 - 3 v ok 2( i + ~ n ~ ) > + < I + ~ - k

324 - Vo ) 4 _U o } + 0 ( ~ . 4 i n k )

S i m i l a r l y

Extensional s t resses:

( 2 6 )

20 3 0 1 5 0(-z ~ T - ~ - ( ) ( 2 7 )- X =e h a 4 ~ - - ~ C O S ~ + ' ~ C O S a ) + O - c ° -

P 2 0 5 0 1Cry e h c 4 ~ _e ( ~ - c o s 7 ~ ~ - c o s ) + 0 ( ¢ ° )

P 2 0 1 0 1 5 0X Y e he 4 ~ (~- s in g ~ s in -~-) + O ( z °)

(28)

(29)

* Reference [5] also discusses the me thod of solution for the case tha t m and n are functionsof x. The case of v # 0 and t # 0 is discussed in reference [6].# Note because of the Kirchhoff boundary conditions, the bending shear stress does not vanishin the free edge. For the flat sheet this problem was discussed by Knowles and Wang[ 7 ] .

Page 7: A Finite Line Crack in a Pressurized Spherical Shell-folias

8/3/2019 A Finite Line Crack in a Pressurized Spherical Shell-folias

http://slidepdf.com/reader/full/a-finite-line-crack-in-a-pressurized-spherical-shell-folias 7/27

2 6 Efthymios S. Folias

w h e r e

~ 0 ~ m

X 4 R D

( A 1 + B I )

n c 2 m X 2 ~ - ~ c 2 3 .~. k 2

- V~" { i + ~ " %/2" (4 -U o )

+ 0 ( k 4 ~ n k ) .

(30)

I t i s a p p a r e n t f r o m t h e a b o v e e x p r e s s i o n s t h a t t h e r e e x i s t s a n

i n t e r a c t i o n b e t w e e n b e n d i n g a n d s t r e t c h i n g , e x c e p t t h a t i n t h e

l i m i t a s X - ~ 0 t h e s t r e s s e s o f a f l a t s h e e t a r e r e c o v e r e d a n d

c o i n c i d e w i t h t h o s e o b t a i n e d p r e v i o u s l y f o r b e n d i n g [ 8 ] a n d

e x t e n s i o n [ 9 ] . T h u s t h e l o c a l s t r e s s e s i n a s h e l l a r e e x p r e s s e d

i n t e r m s o f t h e l o c a l s t r e s s e s i n a f l a t s h e e t .

Combined s t r e s se s :

I n g e n e r a l , t h e c o m b i n e d s t r e s s e s w i l l d e p e n d u p o n t h e c o n -

t r i b u t i o n s o f t h e p a r t i c u l a r s o l u t i o n s r e f l e c t i n g t h e m a g n i t u d ea n d d i s t r i b u t i o n o f t h e a p p l i e d n o r m a l p r e s s u r e . O n t h e o t h e r

h a n d , t h e s i n g u l a r p a r t o f t h e s o l u t i o n , t h a t i s t h e t e r m s p r o -

d u c i n g ( m a t h e m a t i c a l l y ) i n f i n i t e e l a s t i c s t r e s s e s a t t h e c r a c k

t i p , w i l l d e p e n d o n l y u p o n t h e l o c a l s t r e s s e s e x i s t i n g a l o n g t h e

l o c u s o f t h e c r a c k b e f o r e i t i s c u t , w h i c h o f c o u r s e a r e p r e c i s e l y

t h e s t r e s s e s w h i c h m u s t b e r e m o v e d o r c a n c e l l e d b y t h e p a r t i c u l a r

s o l u t i o n s d e s c r i b e d a b o v e i n o r d e r t o o b t a i n t h e s t r e s s f r e e

e d g e s a s r e q u i r e d p h y s i c a l l y . H e n c e t h e d i s t r i b u t i o n q ( x , y ) d o e s

n o t - - t o t h e f i r s t o r d e r - - a f f e c t t h e l o c a l c h a r a c t e r o f t h es t r e s s e s a t t h e c r a c k p o i n t .

A P A R T I C U L A R S O L U T I O N

A s a n i l l u s t r a t i o n o f h o w t h e l o c a l s o l u t i o n m a y b e c o m b i n e di n a p a r ti c u la r c a se , c o n s i d e r a c l a m p e d s e g m e n t o f a s h a l l o ws p h e r i c a l s h el l o f b a s e r a d i u s R o a n d c o n t a i n i n g a t t h e a p e x af in it e r a d i a l c r a c k o f l e n g t h 2 c i n t h e d i r e c t i o n o f t h e X - a x i s( s ee f i g . 2). T h e s h el l i s s u b j e c t e d t o u n i f o r m i n te r na l p r e s s u r e

h

I

!

. . . - . - . - R o . - -_ . -. ~

Fig . 2 . Clam ped spher ica l cap: A par t icu lar case .

Page 8: A Finite Line Crack in a Pressurized Spherical Shell-folias

8/3/2019 A Finite Line Crack in a Pressurized Spherical Shell-folias

http://slidepdf.com/reader/full/a-finite-line-crack-in-a-pressurized-spherical-shell-folias 8/27

Efthymios S. Folias 27

1q o w i t h r a d i a l e x t e n s i o n a l s t r e s s N r = ~ q o R , a n d b e c a u s e i t

i s c l a m p e d w e r e q u i r e t h a t t he d i s p l a c e m e n t a n d s l o p e v a n i s ha t R = R o . F o r t h i s p r o b l e m , R e i s s n e r [1 0] g i v e s t h e s o l u t i o no f t he c o u p l e d - e x t e n t i o n - b e n d i n g e q u a t i o n s f o r t h e u n c r a c k e ds h e l l a s :

W p ( r ) = C 1 b e r ( k r ) + C 2 b e i ( k r ) + C a ( 3 1 )

1F p ( r) = E h 2 { C 1 b e i ( k r) - C 2 b e r ( k r ) } - ~ q o R r 2 ( 3 2)

1 ~ ( 1 -U 2 )

w h e r e

C 1 =

C 2 q o R ~ 1 2 ( l - v 2 ) r o b e i ' ( ) fr o )

E h 2 k [ b e i , ( A r o ) ] 2 + [ b e r , ( k r o ) ] 2

b e t ' ( k r o )

C 2 = - C 1 { b e i ' ( k r o ) }

b e r ( X r ° ) b e i ' ( A r o ) - b e i ( ) t r o ) b e r '( k r o )

C 3 = - C 1 {' b e i ' ( l r ) }

A l o n g a n y r a d i a l r a y , a n d i n p a r t i c u l a r a l o n g 0 = 0 , ~r, t h eb e n d i n g a n d e x t e n s i o n a l s h e a r v a n i s h b y s y m m e t r y i a n d t hec i r c u m f e r e n t i a l b e n d i n g a n d s t r e t c h i n g s t r e s s e s a r e

M(P)0 ( r ) =D X 2 { C l [ v b e i ( k r ) - ( l - v ) b e r ' ( ) t r ) .c s r l

- C 2 [ y b e r ( k r ) + ( 1 - v ) ~ ] } ( 33 )

IkT(P) Eh2(k2/c2)-- C 1 bei"(kr) - C 2 ber"(kr)} -½qoR (34)" ' c o ( r ) = V 1 2 ( 1 : v ~ )

N r 0 ( r ) = 0 ( 3 5 )

Vr O ( r ) = 0 ( 3 6 )

T h e r e f o r e , t he h o m o g e n e o u s s o l u t i o n m u s t n e g a t e t h e s e v a l u e sf r o m th e p a r t i c u l a r s o l u t i o n . B u t s i n c e w e a l r e a d y h a v e o b t a i n e da s o l u t i o n f o r u n i f o r m l o a d i n g a l o n g t he c r a c k , n a m e l y m o a n dn o , t h e r e f o r e w e w i l l m a k e u s e o f t h e s e r e s u l t s i n o r d e r t o o b -t a i n a n e s t i m a t e o f t he s t r e s s e s i n t h e v i c i n i t y o f t h e c r a c k .A s a n e n g i n e e r i n g a p p r o x i m a t i o n , b y c o n s i d e r i n g a n u p p e r a n dl o w e r b o u n d o n m o a n d n o , w e m a y e s t i m a t e a n u p p e r a n d l o w e rb o u n d f o r th e s t r e s s e s i n t h e n e i g h b o r h o o d o f t h e c r a c k p o i n t .O n th e o t h e r h a n d , i f w e a r e i n t e r e s t e d i n t h e s t r e s s e s a w a yf r o m t he c r a c k , s a y t h r e e t i m e s t he c r a c k l e n g t h , t h e n b y S a i n tVe n a n t ' s p r i n c i p l e w e n e e d t o t a k e o n ly th e a v e r a g e v a l u e s .T h u s w e d e f i n e

Page 9: A Finite Line Crack in a Pressurized Spherical Shell-folias

8/3/2019 A Finite Line Crack in a Pressurized Spherical Shell-folias

http://slidepdf.com/reader/full/a-finite-line-crack-in-a-pressurized-spherical-shell-folias 9/27

28 Effhymios S. F o l i a s

D m o ( l)

2C

- - - r a i n

Ixl<l,O=0M(P)0 0 < - -

m m t r H ¢

m a xC 2 Ixl<l, 0 =0

M(P),@0= D - -

m o ( u )

C 2

a n d s i m i l a r l y

n ( t )oC 2

- r a i n (P) n t r~ e lkT P) n° ( U )Ix l<z ,o=0N00 < c 2 ..< m a x = - -IxL<l,0 = o ~ ' 0 0 c 2

N e x t , l e t u s c o n s i d e r a s p h e r i c a l s h e l l w i t h t h eg e o m e t r i c a l d i m e n s i o n s :

K o = 4 . 2 5

R = 2 0 i n .

h = 0 . 0 0 9 i n .

v = i / 3

2 c = 0 . 4 6 i n .

E = 1 6 x 1 0 6 p s i

f o l l o w i n g

f r o m w h i c h w e c a n c a l c u l a t e t he p a r a m e t e r s

X = 0 . 9 8

r o = 1 8 . 5 0

T h e f o l l o w i n g t a b l e s h o w s t he v a r i a t i o n o f t he r e s i d u a l m o m e n t

r 'T (P ) a l o n g t h e c r a c k .(P ) a n d m e m b r a n e f o r c e ~ '0 0* " 0 0

XX X x = X - -

c N(P)o0 M(O~

- 0 . 5 0 q oR 0 .89 × 10 4 qoRh-0.50 qo R 0.8 7 x 10 -4 qoRh-0.50 qo R 0. 92 x 10 -4 qoRh-0.50 qo R 0. 94 x 10 4 qoRh-0.50 qo R 0.97 x 10 -4 qoRh

diff. 0% diff. 9%

0 00. 074 0.300. 117 0.500. 164 0.700. 235 1.00

I t i s c l e a r f r o m t h e t a b l e a b o v e t h a t M (~P) a n d N ( ~ a r e

u n i f o r m a l o n g t he c r a c k . T h e r e f o r e w e m a y c h o o s e

n (u )o

0 2= 0 . 5 0 q o R

a l m o s t

D m ( u)

c 2= - 0 . 9 7 × 1 0 - 4 q o R h

R e t u r n i n g n o w t o t h e s t r e s s e s a l o n g t he l i n e o f c r a c k p r o l o n g a t i o n ,f o r e x a m p l e t h e n o r m a l s t r e s s ~Y total ( X , 0 ) , o n e f i n d s u s i n g 2 4a n d 2 8 t h a t :

Page 10: A Finite Line Crack in a Pressurized Spherical Shell-folias

8/3/2019 A Finite Line Crack in a Pressurized Spherical Shell-folias

http://slidepdf.com/reader/full/a-finite-line-crack-in-a-pressurized-spherical-shell-folias 10/27

E f t h y m i o s S . F o l ia s 2 9

CrYtota1 ( X , O ) ] v = l /3~b

~ / 2 ( X - 1 ) / c

~ e

2{1 +(0.16 +0. 03 In l~)k 2}

( 3 7 )

+~/2(X-1)/c{ 1 - ( 0 , 3 8 + 0 , 2 3 I n )t 2 }

w h i c h f o r X = O. 9 8 r e d u c e s to :

O'Ytota1 ( X , 0 ) - - (1.07} +q 2(X-l)/c q 2(X-l)/c

{ 1 . 2 7 } (38 )

w h e r e

~b6 D m o

h 2 c 2- " a p p l i e d b e n d i n g "

n o

- - "applied stretching"e c2 h

A n d f o r o u r p a r t i c u l a r e x a m p l e , w e c a n a s s o c i a t e

qo R qo R~ b u ) -- - 0 . 5 8 x 1 0 - 3 T = - 0 . 0 0 1 - - h - - ( 3 9 )

q o R~(u) _.. O. 50 (40)e h

F r o m e q u a t i o n 3 8 w e s e e t h at t he i n i t i a l c u r v a t u r e w i l l i n c r e a s et h e a p p l i e d b e n d i n g s t r e s s i n t h i s c a s e b y a p p r o x i m a t e l y 7% a n dt he a p p l i ed s t r e t c h i n g s t r e s s b y 2 7% . O n e d e d u c e s t h e r e f o r e t ha tt he c r i t i c a l c r a c k l e n g t h o f a sh e l l d e c r e a s e s w i th an i n c r e a s eo f )t o r a d e c r e a s e o f r a d i u s o f c u r v a t u r e . I n t h i s p a r t i c u l a rc a s e i t i s f o u n d t h a t t he d i r e c t b e n d i n g s t r e s s e s a r e n e g l i g i b l ec o m p a r e d t o t he e x t e n s io n a l o n e s an d t he c o m b i n e d s t r e s s i s

Crytota ( X , 0 ) v = l / 3 = ~ 0 "4 q°R--h---"= ~f2(x-1)0"4 ~ qo h (41)

cr ( X , 0 ) I v = l / 8 ~ 0 . 6 4 ~ q o Rx total a]'2( X - 1 ) h

(42)

w h e r e , b a s e d o n t he K i r c h h o f f t h e o r y , t h e t w o - d i m e n s i o n a l" h y d r o s t a t i c t e n s i o n " n a t u r e o f t he ax a n d a y s t r e s s e s p r e d i c t e df o r f la t p l a t e s i s p r e s e r v e d . F i n a l l y , t he c o r r e s p o n d i n g s t r a i n sa r e

Page 11: A Finite Line Crack in a Pressurized Spherical Shell-folias

8/3/2019 A Finite Line Crack in a Pressurized Spherical Shell-folias

http://slidepdf.com/reader/full/a-finite-line-crack-in-a-pressurized-spherical-shell-folias 11/27

30 E f f h y r n i o s S . F o l i a s

X ~ _ I q ° Ry(X, 0) = 0.3 0 Eh

q° Rex(X, 0) = 0.3 0 Eh

(43)

(44)

GRIF FITH 'S THEORY OF FRACT URE FOR CURVED SHEETS

As i s we l l known in f r a c t u re mec han ics , t he p re d ic t io n o ff a i l u r e i n t he p r e s e n c e o f s h a r p d i s c o n t i n u i t i e s i s a v e r y c o m -p l i ca ted p rob l em. Some work has been done on f i a t shee t s ,b a s e d o n t he b r i t t l e f r ac tu re the ory o f A . A . Gr i ff i th [11].Hi s hypo the s i s i s t hat t he to t a l ene r gy o f a c ra ck ed sys tems u b j e c t e d t o l o a d i ng r e m a i n s c o n s t a n t a s t he c r a c k e x t e n d s a ni n f i n i t e s i m a l d i s t a n c e . It s h o ul d o f c o u r s e b e r e c o g n i z e d t h atth i s i s a nec ess a ry cond i t ion fo r f a i lu re bu t no t su ff i c i en t .

Gr i ff i th app l i ed hi s c r i t e r i on to an in f in i t e , i so t r op i c p la t e

con ta in ing a f i a t , s ha r p -e nde d c ra ck o f l eng th 2c . We sha l l nowp r o c e e d t o o b t ai n a s i m i l a r, b ut a p p r o x i m a t e , c r i t e r i o n fo ri n i t i a l l y c u r v e d s h e e t s b a s e d u p on o nl y t he s i n g u l a r t e r m s o ft h e s t r e s s e s .

T h e b a s i c c o n c e p t f o r c r a c k i n s t a b i l i t y i s

8Us y s t e m8c

= o (45)

w h e r e t he s y s t e m e n e r g y i s d e f i ne d b y

U s y s t e m = U l o a d i n g + U s t r a i n + U s u r f a c e ( 4 6 )

T h e a p p l i e d s t r e s s e s a r e h e l d c o n s t a n t s o t h a t

U l o a d i n g = U o - h f v ( ~ u n + " r ~ u ~ ) dP (47)

where Uo i s a r e f e re nce cons ta n t ene r gy, and the in t eg ra t ion i so v e r t h a t p o r t i o n o f t he o u t e r p e r i m e t e r w h e r e f o r c e s a c t to c a u sed i s p l a c e m e n t s . T he s t r a i n e n e r g y i s

U s t r a i n = ½ fvol (cr~e~ + ~'~n T~r~ + or7 6~) d vol . (48)

U s u r f a c e =T(2S + Ph + 4ch) ( 4 9 )

I t m a y b e s h o w n t h a t t h e s u r f a c e a r e a S o f t h e s h e l l f a c e s a n d

t h e o u t e r p e r i m e t e r P o f t h e s h e l l a r e i n d e p e n d e n t o f t h e c r a c k

l e n g t h .

T h e r e f o r e 4 6 m a y b e w r i t t e n a s

° f+ 4 T ' h c - h ( ~ u ~ + u r / T ~ r T ) d PU s y s t e m = U o P

+ ½ f (~ e ~ + ~~n ~Y~n + %7c ~ ) d v o l .v o l

( 5 0 )

Page 12: A Finite Line Crack in a Pressurized Spherical Shell-folias

8/3/2019 A Finite Line Crack in a Pressurized Spherical Shell-folias

http://slidepdf.com/reader/full/a-finite-line-crack-in-a-pressurized-spherical-shell-folias 12/27

Ef thymios S . Fol ias 3 1

o r

Usystem = U " + 4 7 % -

Z 2 A* 7r

X I ¢ -It

h* ~w h e r e U 'o = U o + 3 ' *( 2 A + P h ) , Z 1 = Z o - ~ - - - , Z 2 = Z o + a n d A *

a r a d i u s t o b e d e t e r m i n e d ( s e e f i g . 3 ) . I n t h e a b o v e w e h a v ed e f i n e d

2 - R 1 - ( R - h / 2 ) ~ ~ R - _ ~ _ /2 1 -R R 2 R '2

Z o = ~ R 2 . ~ , 2 _ ( R - a )

w i t h 6 t he h e i g h t o f t he s h e l l s e g m e n t .

C R A C K - - ~ _ . .~ A~

, - / /R

Fig . 3 . Ge om et r ic de ta i l s fo r f rac ture c r i t e r ion .

I n t e g r a t i o n o f 5 0 w i t h r e s p e c t t o 0 g i v e s :

Z 2 A*

U

\ Z o

\ Z I

system c f ; I l d R *U ' + 4 T * c h - l i r a ~ - ~ d Z

0 ~ - - ~ 0 Z ~ :

(51)

Page 13: A Finite Line Crack in a Pressurized Spherical Shell-folias

8/3/2019 A Finite Line Crack in a Pressurized Spherical Shell-folias

http://slidepdf.com/reader/full/a-finite-line-crack-in-a-pressurized-spherical-shell-folias 13/27

3 2 EfthymiosS . F o l i a s

w h e r e

1 - / 2

1 = ~% '-~ "" " - - " ' ' " " - - " "~ K o + K 2 1 2 " ~ K I + K a ) ~ I + [ tK o - K 2 ) ~ " ~ K I " K 3 ) 21( 5 2 )

w i t h

K 0 _ K 2 = E Z 7+_._5_.v --~ 1 P202 c 2 l _ v 2 P 1 0 2 h c 4 ( 5 3 )

E z 2

K 0 + K 2 = + - - - - ( 5 4 )c 2 ( l - u ) h e 4

K I + K 3 = 0 ( 5 5 )

E Z P ~ 0 1 P ~ 0= 4-

K 1 - K 3 - (' T '/ '~ ) 2 c 2 ~ c 4 (56)

A n d s i n c e w e a r e r e s t r i c t in g o u r s e l v e s t o t h e s i n g u l a r s t r e s s e s ,i t i s o n l y f a i r t o d e r i v e a G r i f f i t h c r i t e r i o n a p p l i c a b l e i n t hei m m e d i a t e n e i g h b o r h o o d o f t h e c r a c k t ip , w h e r e b e c a u s e l o c a l l yt h e s h e l l i s a l m o s t f l a t , w e c a n r e p l a c e w i t h o u t m u c h e r r o r t h e

h hl i m i t s o f in t e g r a t i o n Z 1 a n d Z 2 b y - 2 a n d s . T h u s 5 1 m a y b e

a p p r o x i m a t e d b y --

h/2 A*

C $ f f i l d R #sy ste m = U " + 4 T * c h - l i r a ~ d Z ( 5 7 )z-- .0

- h / 2 •

a n d a f t e r i n t e g r a t i o n

Usystem = U o ' + 4"y *ch

- 8G {1-'g~ c 2 ( l_ u ) ~ (h - -" -4 )c h (58 )

+

3 ( i _ p 2 ) 2 C 4 2 h2c-------8-h) A; :"+

w h i c h i n t h e l i m i t , a s R ---* oo a n d ~ b - " 0 , i n e q u a l b i a x i a l t e n s i o n~ e a l o n g t h e p e r i p h e r y o f a f la t s h e e t , m u s t b e e q u a l t o ( s e e r e f .[12])

S h ( k - l ) B e 2 r c 2 h ( 3 - k ) ( 59 )U sys tem = U " + 4 T ~ c h - ~ 8 G ~ -e 2

T h u s w e h a v e d e t e r m i n e d t h e v a l u e f o r A ;'~, n a m e l y

1 6 v c 1 6 ( 1 - u ) S ( 6 0)A * -- ~ + 9-7 'u ~--~

Page 14: A Finite Line Crack in a Pressurized Spherical Shell-folias

8/3/2019 A Finite Line Crack in a Pressurized Spherical Shell-folias

http://slidepdf.com/reader/full/a-finite-line-crack-in-a-pressurized-spherical-shell-folias 14/27

Effhymios S. Folias 33

S u b s t i t u t i n g i n 5 8 f o r A * a n d a p p l y i n g t h e b a s i c c o n d i t i o n 4 5 , t h ef r a c t u r e c r i t e r i o n i s s e e n to b e:

w h e r e

_ ~rc {33+6u-7v 24"y':"h ~ -( 1 -u 2 )2 24

a n d

2 " 2 3E P 1 0 h

4c

9 -7u P20 16u+ 2(l+u) h e 8 } 9 - 7 u 0

1 6 - 1 3 u 4 - 3 v o4 h ~-e o

= - { 3 2 + TP I 0 % ~- R D ( 4 _ V o )

h 2 c 2 ~ -

+ { i +6 "V'2 (4 -U o)D

e 4 h ; e ( 1 + ~ '~ A

+

F i n a l l y i n t r o d u c i n g 62r e a r r a n g e m e n t at :

(61)

( 33+6y-7y 2)4u

3 ( 9 _ 7 u ) ( 4 _ U o ) 2 ( I +

4 - 3 u~r o ~ 232 4-u o } + 0 (X41 nX)

(62)

h2c2k4R ~b 13 3

6~/2 (4 -y ° )

( 6 3 )

a n d 6 3 i n t o 6 2 w e a r r i v e a f t e r s o m e

2 + 4 u 37rh2 --2x2)}b ~(i+i-6-,~) %

4 - 3 Vo

16 4-uO

16-3v 4-3v 4-3v+ [ _ ~ ( 3 3 + 6 U - 7 y 2 ) U ( . __ o + o T + - - ~ n 4 l-) +

3 ~ 2 " - ~ ( 9 - 7v ) ( 4 -Vo ) 2 8

+ 8 _ ~ _ ~ % / i - u 1 ~ 3 3 ~ 2 - - _ 1 6 G T * ( 6 4 )l+u (4-Yo)( + ~ T + ~ - f n ) ] k O'eO- ~'C

w h i c h , f o r t h e c a s e o f a f l a t s h e e t , i . e . )t = 0 , r e d u c e s t o t h ef o l l o w i n g s i m p l e f o r m :

( 3 3 + 6 v - 7 y 2 ) 4 v ~ 2 + 4 v ~ 2 _ 1 6 G 7 ° _ ( e ~ ) 2 (6 5)

1F o r v = "g e q u a t i o n 6 4 b e c o m e s

0.21 (I + 0.12X 2) --2Crb+ (i + 0.59X 2 ) ~2e

- ( 0 . 2 4 + 0 . 0 7 l n - ~ ) = ~'c

Page 15: A Finite Line Crack in a Pressurized Spherical Shell-folias

8/3/2019 A Finite Line Crack in a Pressurized Spherical Shell-folias

http://slidepdf.com/reader/full/a-finite-line-crack-in-a-pressurized-spherical-shell-folias 15/27

3 4 Efthymios S. Folias

w h i c h c l e a r l y r e p r e s e n t s a f a m i l y o f e l l i p s e s . I n v i e w o f 6 6 w e

c a n o b t a i n a r e l a t i o n b e t w e e n t h e c r i t i c a l c r a c k l e n g t h i n a s h e l l

1a n d t h e c r i t i c a l c r a c k l e n g t h i n a p l a t e , i . e . f o r v = - ~

[ O . 2 1 ~ 2 + ~ 2 ] (~ )b e Pla te cr- Pla te

= X 2 - - - -('tcr)Shell [0.21(i+0. 12X2)~+(I+0.59~t2)~2e- (0. 24+0. 07*n~)X OeOb] Shel

( 6 7 )

f o r e x a m p l e i f k = 1 a n d ( ~- b) P = ( ~ b ) s = ( ~ e ) s = ( ~ ' e ) P ' t h e n 6 7r e d u c e s t o :

( ~ c r ) S h e l l ~ O . 7 6 ( l c r ) P l a t e ( 6 8 )

T h i s c l e a r l y s h o w s t h a t t h e c r i t i c a l c r a c k l e n g t h f o r a s p h e r i c a ls h e l l i s l e s s t h a n t h a t o f a f l a t s h e e t , a n d a s i s s e e n b y 6 7t h e r a t i o d e p e n d s u p o n t h e c u r v a t u r e . T h i s a g r e e s w i t h t h es t a t e m e n t f o l l o w i n g e q u a t i o n s 3 9 a n d 4 0 .

F o r t h e s p e c i a l c a s e w h e r e ( ~ b ) P = ( ~ b ) S = ( ~- e) S = ( L ) P w e

o b t a i n t h e f o l l o w i n g e x p r e s s i o n

i=

CrP i + (0.31 - O.061n~)~. 2(69)

1.0

0 . 8

,_, , . , 0 . 6

t!

~1 ~ 0 .4

0 .2

% p

o - % = o -e p

I I l I I t0 1 .0 2 . 0 5 . 0X

Fig. 4 . Square root ra t io of cr i t ic a l crack lengths in a spher ical cap and a f la t p la te , for

v = 1/3; X = ~J12 (1 -v 2) C

Page 16: A Finite Line Crack in a Pressurized Spherical Shell-folias

8/3/2019 A Finite Line Crack in a Pressurized Spherical Shell-folias

http://slidepdf.com/reader/full/a-finite-line-crack-in-a-pressurized-spherical-shell-folias 16/27

E f t h ym ios S . F o l i a s 3 5

T h i s r a t i o i s l e s s t h a n 1 f o r a l l h . < 7 . W e c o n j e c t u r e t h a t f o r

k > 7 t h e s a m e c h a r a c t e r w i l l p o s s i b l y b e p r e s e r v e d , b u t m o r e

t e r m s i n t h e b a s i c s o l u t i o n , s a y u p t o k 4 w o u l d b e r e q u i r e d t o

v e r i f y t h i s p o i n t . A s w e h a v e i n d i c a t e d , h o w e v e r , f o r m o s t

p r a c t i c a l c a s e s k i s l e s s t h a n 2 h e n c e 6 9 g i v e s a g o o d a p p r o x -i m a t i o n . A p l o t o f e q u a t i o n 6 9 g i v e n i n f i g . 4 . T h i s t y p e o f

b e h a v i o r w a s a l s o o b t a i n e d e x p e r i m e n t a l l y , f o r c r a c k e d c y l i n d r i c a l

s h e l l s , b y S e c h l e r a n d W i l l i a m s [ 2 ] .R e t u r n i n g t o e q u a t i o n 6 6 w e n o t e t h a t i t c a n a l s o b e w r i t t e n

i n t h e f o r m

( 1 + O . 5 9 X 2 ) ( e_.;_)2 _ ( 0 . 2 4 + 0 . 0 7 l n ~ - ) X 2 ( - - ~ -- ) - (- - - ~ -) +(3- (3- o-

s s s

+ 0 . 2 1 ( 1 + O . 1 2 X 2 ) (~ _~ b,)2 = 1(7

S

(70)

T h i s o b v i o u s l y r e p r e s e n t s a f a m i l y o f e l l i p s e s , w h i c h a r e p l o t t e df o r d i f f e r e n t v a l u e s o f t h e p a r a m e t e r ~ , s e e f i g . 5 . F o r k g r e a t e r

1.0

_ > . - - 1 . 0 "% / ~ - - _ - _ _ _ . ._ _ ._ _ _

x = J o . o ) , = 5 . 0 i ~ \ \

, , i , / l l l k _o 0 . 5 1 , 5 2 . 0.0

% & r *

F i g . 5 . E x t e n s i o n - b e n d i n g i n t e r a c t i o n c u r v e f or a s p h e ri c a l c a p , f or v = ! / 3 ;

X = ~ / 1 2 ( 1 - v 2 ) C4-ff

t h a n 1 . 5 w e w i l l n e e d h i g h e r o r d e r s o f X f o r t h e d e t e r m i n a t i o n

o f t h e e l l i p s e s ; t h e r e f o r e f o r X = 5 , i 0 w e s h o w j u s t t h e i n -t e r c e p t s . * I t i s a l s o c l e a r f r o m f i g . 5 t h a t t h e a p p l i e d s a f e

l o a d i n a c r a c k e d s p h e r i c a l s h e l l d e c r e a s e s w i t h a d e c r e a s e i n

r a d i u s o f c u r v a t u r e . F o r e x a m p l e , i f a l o n g t h e c r a c k t h e r e i s

a r e s i d u a l l o a d o f e q u a l b e n d i n g a n d s t r e t c h i n g a f l a t s h e e t

c a n c a r r y , b e f o r e f a i l u r e o c c u r s , u p t o a l o a d o f 0 . 8 8 ( - - y ) w h i l e

a s p h e r i c a l s h e l l c h a r a c t e r i z e d w i t h t h e p a r a m e t e r X = 1 c a n

c a r r y o n l y u p t o 0 . 7 6 ( _ _ ~ e ) , i . e . a p p r o x i m a t e l y 1 4 % l e s s l o a d( i *

t h a n a f l a t s h e e t .

* Cur v e fo r k = 2 fol l ows t he an t i c i p a t e d t r end .

Page 17: A Finite Line Crack in a Pressurized Spherical Shell-folias

8/3/2019 A Finite Line Crack in a Pressurized Spherical Shell-folias

http://slidepdf.com/reader/full/a-finite-line-crack-in-a-pressurized-spherical-shell-folias 17/27

F i g . 6 . S p h e r i c a l c a p u s e d f or s t r ai n m e a s u r e m e n t s .

F i g . 7 . C l o s e - u p o f s t ra i n g a u g e l o c a t i o n s .

Page 18: A Finite Line Crack in a Pressurized Spherical Shell-folias

8/3/2019 A Finite Line Crack in a Pressurized Spherical Shell-folias

http://slidepdf.com/reader/full/a-finite-line-crack-in-a-pressurized-spherical-shell-folias 18/27

Efthymios S. Folias 3 7

E X P E R I M E N T A L V E R I F I C A T I O N

Description of Experiment

T o c o m p a r e t h e o r e t i c a l a n d a c t u a l b e h a v i o r o f a n i n i t i a l l y

c u r v e d s p e c i m e n , a p r e l i m i n a r y e x p e r i m e n t w a s c o n d u c t e d . W e

h a v e c o n s i d e r e d a c l a m p e d s e g m e n t o f a s h a l l o w s p h e r i c a l s h e l l ,

c o n t a i n i n g a t t h e a p e x a r a d i a l c u t o f l e n g t h 0 . 4 6 i n . T h e s h e l lw a s s u b j e c t e d t o a u n i f o r m i n t e r n a l p r e s s u r e q o , a n d t h e s t r a i n

e y a t t h r e e d i f f e r e n t p o s i t i o n s a l o n g t h e d i r e c t i o n o f c r a c k

p r o p a g a t i o n w a s r e c o r d e d a s a f u n c t i o n o f q o " T h e d e s i g n o f

t h e e x p e r i m e n t d i d n o t p e r m i t a d e t e r m i n a t i o n o f c r i t i c a l c r a c k

l e n g t h , f u r t h e r m o r e t h e c o p p e r m a t e r i a l i s t o o d u c t i l e f o r

b r i t t l e f r a c t u r e t h e o r y t o a p p l y .

Preparations

T h e s h a l l o w s h e l l s eg ,m , e n t w a s c o n s t r u c t e d b y t h e m e t h o d o f" c o p p e r e l e c t r o f o r m i n g . I t s c h a r a c t e r i s t i c s w e r e h = 0 . 0 0 9

= 4 . 2 5 i n . , v 1n . , R = 2 0 i n . , 5 = 0 . 4 i n . , S o = ~ , E =

1 6 x 1 0 6 l b s / i n 2 . A h o l e o f 0 . 0 1 2 i n . d i a m e t e r w a s d r i l l e d a tt h e a p e x o f t h e s h e l l s e g m e n t , a n d a c r a c k w a s s a w e d w i t h aj e w e l e r ' s s a w o f 0 . 0 0 7 i n . t h i c k n e s s . F i n a l l y , t h e e n d s o f t h ec r a c k w e r e s m o o t h e d b y t h e " d i a m o n d t h r e a d m e t h o d , " * *( d i a m e t e r o f d i a m o n d t h r e a d l e s s t h a n 0 . 0 0 5 i n . ) . I n t h e p r o c e s so f d r i l l i n g a n d o f s a w i n g , a w a x b a c k i n g w a s u s e d i n o r d e r t oa v o i d d a m a g i n g o f t h e s h e l l . N e x t , a l o n g t h e l i n e o f c r a c k p r o -l o n g a t i o n , t h r e e s t r a i n g a g e s w e r e a t t a c h e d o n t h e s h e l l t o m e a s -u r e t h e s t r a i n s i n t h e Y d i r e c t i o n ( s e e fig s._ _ 6 , 7 ) . T h e s h e l l w a sc e m e n t e d b e t w e e n t w o c i r c u l a r r i n g s , w i t h R o = 4 i n . a s t h e i n s i d er a d i u s ( s e e f i g . 8 ). N e x t t h e c r a c k w a s s e a l e d i n t e r n a l ly w i t h t w ol a y e r s o f a c e t a t e f i b r e t a p e . T h e f i r s t l a y e r w a s a s q u a r e o f 2 x 2

r - C E M E N T C R A C K/ Z ~ r ' ~S H E L L

VALVE

Fig. 8 . Schem at ic of tes t ing apparatus .

i n c h e s , a n d t h e s e c o n d l a y e r w a s a r e c t a n g u l a r o n e o f 2 x ½ i n c h e s .T h e f o l l o w i n g t a b l e g i v e s t h e g a g e f a c to r s a n d p o s i t i o n s o f t h eg a g e s f r o m t h e c r a c k t i p .

Gage no . G .F .=G age Fac to r X - 1 - 1

1 2 . i 0 O . 0 7 i . 8 1

2 2 . 0 9 O . 2 9 O . 8 9

3 2 . 0 9 0 . 4 8 0 . 6 9

- See tef . [131.*~ A cot ton thread im pregnated wi th 6 m icron diamondp a s t e .

Page 19: A Finite Line Crack in a Pressurized Spherical Shell-folias

8/3/2019 A Finite Line Crack in a Pressurized Spherical Shell-folias

http://slidepdf.com/reader/full/a-finite-line-crack-in-a-pressurized-spherical-shell-folias 19/27

3 8 Efthymlos S. Folias

I n f i g. 9 w e h a v e p l o t t e d v o l t a g e v s . g a g e p r e s s u r e , a n d b e c a u s et he c u r v e s f o r s m a l l p r e s s u r e s w e r e n o t q u it e s t r a i g h t l i n e s , as e c o n d r u n w a s c o n d u c t e d a f e w h o u r s l a t e r. I t g a v e b e t t e r r e s u l t s( fi g. 1 0) . T h e c h a n g e b e t w e e n f i r s t a n d s e c o n d r u n s i s a t t r i b u t e dt o w a r m i n g u p o f t h e r e s i s t a n c e g a g e s i n t he e l e c t r o n i c e q u i p m e n t

14

12

I0

0 38

. . I0>

!,3

o 6

I - -- I0

> 4L g

2

G A G E N O . I ' - ~

GAGE NO. 2 -~

GAGE NO. 3

0 2 0 4 0 6 0 8 0

qo cm o f HgFig. 9. Test no. 1. Data for a clamped spherical cap containing a crack.

a n d " s e t t i n g " o f t he s t r a i n g a g e s . E v e n f o r t he s e c o n d r u n , t hec u r v e s a r e s l i g h t l y c u r v e d a t t he o r i g i n . I t i s p o s s i b l e t h a t t het ape ca r r i e s a sma l l pa r t o f t he l oad . I n any ca s e , we con s id e rt he s l ope o f t he cu rv e wh ich i s g iven by

A Ev° l t ag e (71)C = sl op e = A. F. x Aqo

w h e r e A . F . = a m p l i f i e r f a c t o r = 5. I n v i e w o f t his , w e c a nc o m p u t e t h e s t r a i n s f r o m

Page 20: A Finite Line Crack in a Pressurized Spherical Shell-folias

8/3/2019 A Finite Line Crack in a Pressurized Spherical Shell-folias

http://slidepdf.com/reader/full/a-finite-line-crack-in-a-pressurized-spherical-shell-folias 20/27

Ef thymiosS. Fo l i a s 39

1 6

(nb -JO>

t o

O

x

b-..IO>

tlJ

14

12

I0

8

6

4

GAGE NO. I--~

GAGE NO. 2-~

GAGE NO. 3 - ~

®

0 2 0 4 0 6 0 8 0

qo cm of Hg

Fig . lO . T es t no .2 . Da ta for a c l amp ed sphe r i ca l cap con ta in ing a c r ack .

4 C q o

¢Yexp - P . S . V . G . F .

G a g e T h e o r e t i c a l ¢N o . y

C E x p . z C E x p . ¢Y Y

( 72 )

1 0 . 7 ~ x l O - 4 qo

2 O .gqx lO"4qo

3 0 .29x lO"4qo

3 . 0 3 x 10 - 4 0 . 9 6 x ! O - 4 q o 2 . 4 2 x1 0 - 4 0 . 7 7 x l O - 4 q o

1 70 x I O: o 5 4 x i 0 , % I ~ x I O - ~ 0 ~ x i 0 - 4 %

1 . 3 q x l0 - 4 0 . 4 4 x 1 0 - 4 q o i . 1 5 x 1 0 - 4 0 . 3 6 x 1 0 " 4 q

fk s t r u n s e c o n d r u n

Page 21: A Finite Line Crack in a Pressurized Spherical Shell-folias

8/3/2019 A Finite Line Crack in a Pressurized Spherical Shell-folias

http://slidepdf.com/reader/full/a-finite-line-crack-in-a-pressurized-spherical-shell-folias 21/27

4 0 Ef thymios S . Fo l ias

w h e r e P. S . V. = P o w e r s u p p l y v o l t a g e = 6 v o l t s ( m e a s u r e d ) .T h e t h e o r e t i c a l s t r a i n s w e r e c a l c u l a t e d f r o m e q u a t i o n 4 3 a n d

t he c o m p a r i s o n w i th e x p e r i m e n t a l l y d e t e r m i n e d v a l u e s f ol l o w s .

C o n c l u s i o n s

I n f ig . 11 , w e c o m p a r e t he t h e o r e t i c a l p r e d i c t e d s t r a i n s w i tht he e x p e r i m e n t a l o n e s . I t i s e a s y t o s ee t h a t c l o s e t o t h e c r a c kt ip th e t h e o r e t i c a l r e s u l t s a r e s l i g h t l y l o w e r t h a n t h e e x p e r i m e n t a lo n e s , e . g . t h e r e e x i s t s a n e r r o r o f a b o u t 3% f o r t h e f i r s t g a g e .

~yx 1 0 4

q o

r a b , . 1 - 'L i n 2 J

1.0

0.8

0 . 6

0 . 4

0 . 2

\\

T E s T

~ " " - - ~ 2- TEST

~ THEORETICAL

I I I I0 0 . 2 0 . 4 0 . 6 0 . 8 1 .0

X - I ( i n . )

F i g . i i . C o m p a r i s o n o f e x p e r i m e n t a l a n d t h e o r e t i c a l s t r a i n s a h e a d o f t he c r a c k .

We r e c a l l t h a t i n t he t h e o r e t i c a l f o r m u l a w e n e g l e c t e d t e r m so f O(X4) . Th i s f a c t cou l d con t r i bu t e t o t he d i f f e r e nce , a s we l la s t he a v e r a g i n g e f f e c t o f t h e f i ni t e g a g e t h i c k n e s s . A s wem o v e f u r t h e r a w a y f r o m t he c r a c k t ip th e t h e o r e t i c a l v a l u e sb e c o m e s m a l l e r t h a n t he e x p e r i m e n t a l o n e s . T h i s i s t o b ee x p e c t e d , s i n c e n o w ~ i s l a r g e a n d t he n o n - s i n g u l a r t e r m sb e c o m e s i gn i fi c an t . O u r t he or et ic al re s ul t s w e r e c o m p u t e d o nt he b a s i s o f o n l y t he s i n g u l a r t e r m a n d f u r t h e r m o r e o n l y u p t ot e r m s o f O ( k2 ) .

W h i l e it s h o u l d b e p o i n t e d o ut t ha t t h e b e n d i n g s t r e s s e s a r ep r a c t i c a l l y n e g l i gi b l e f o r t h i s p a r t i c u l a r l e s t c o n fi g u ra t i on , itw a s f o u n d t h at o n t h e w h o l e t he e x p e r i m e n t a l a n d t h eo r e ti c alr e su l ts c o m p a r e v e r y we ll .

Page 22: A Finite Line Crack in a Pressurized Spherical Shell-folias

8/3/2019 A Finite Line Crack in a Pressurized Spherical Shell-folias

http://slidepdf.com/reader/full/a-finite-line-crack-in-a-pressurized-spherical-shell-folias 22/27

Ef thym ios S . Fo l ias

C O N C L U S I O N S

4 1

T h e l o ca l s t r e s s e s n e a r t he c r a c k p o in t a r e f o u n d t o b e p r o -p o r ti o n a l t o i / ~ - w h i c h is c h a r a ct e r i s ti c f or c r a c k p r o b l e m s .F u r t h e r m o r e , t he a n g u l a r d is tr ib ut io n a r o u n d t he c r a c k tip i se x a c t l y t h e s a m e a s t h a t o f a f l a t s he e t, a n d t h e c u r v a t u r e a p -p e a r s o n l y i n t h e in te n si ty f a c t o r s a n d i n s u c h a w a y t h at f o r

R - - * ~ w e r e c o v e r t h e f l at s h e e t b e h a v i o r . A t yp ic al t e r m i s

f fs he ll " ~ O 'p la t e 1 + ( c o n s t + c o n s t ~ n - c ) ~ - - ~ + 0 ( )

( 7 3 )

w h e r e t h e e x p r e s s i o n i n t h e p a r e n t h e s e s i s a p o s i t i v e q u a n t i t y .

T h e g e n e r a l e f f e c t o f i n i t i a l c u r v a t u r e , i n r e f e r e n c e t o t h a t o f

a f l a t s h e e t , i s t o i n c r e a s e t h e s t r e s s i n t h e n e i g h b o r h o o d o f

t h e c r a c k p o i n t . F u r t h e r m o r e , i t i s o f s o m e p r a c t i c a l v a l u e

t o b e a b l e t o c o r r e l a t e f l a t s h e e t b e h a v i o r w i t h t h a t o f i n i t i a l l y

c u r v e d s p e c i m e n s . I n e x p e r i m e n t a l w o r k o nr i t t l e f r a c t u r e f o re x a m p l e , c o n s i d e r a b l e t i m e m i g h t b e s a v e d s i n c e b y3 w e w o u l d

e x p e c t t o p r e d i c t t h e r e s p o n s e b e h a v i o r o f c u r v e d s h e e t s f r o m

f i a t s h e e t t e s t s .

T h e s t r e s s e s a l s o i n d i c a t e t h a t t h e r e e x i s t s a n i n t e r a c t i o n

b e t w e e n b e n d i n g a n d t r e t c h i n g , i . e . b e n d i n g l o a d i n g s w i l l

g e n e r a l l y p r o d u c e b o t h b e n d i n g a n d s t r e t c h i n g s t r e s s e s , a n d

v i c e v e r s a .

I t i s w e l l k n o w n t h a t l a r g e , t h i n - w a l l e d p r e s s u r e v e s s e l s

r e s e m b l e b a l l o o n s a n d i k e b a l l o o n s a r e s u b j e c t t o p u n c t u r e a n d

e x p l o s i v e l o s s . F o r a n y g i v e n m a t e r i a l , u n d e r s p e c i f i e d s t r e s s

f i e l d d u e t o i n t e r n a l p r e s s u r e , t h e r e w i l l b e a c r a c k l e n g t h i n

t h e m a t e r i a l w h i c h w i l l b e s e l f p r o p a g a t i n g . C r a c k l e n g t h s e s s

t h a n t h e c r i t i c a l v a l u e w i l l c a u s e l e a k a g e b u t n o t d e s t r u c t i o n .

H o w e v e r , i f t h e c r i t i c a l l e n g t h i s e v e r r e a c h e d , e i t h e r b y

p e n e t r a t i o n o r b y t h e g r o w t h o f a s m a l l f a t i g u e c r a c k , t h e e x -

p l o s i o n a n d c o m p l e t e l o s s f t h e s t r u c t u r e o c c u r s . T h i s r i t i c a l

c r a c k l e n g t h , u s i n g G r i f f i t h ' s c r i t e r i o n , w a s s h o w n t o d e p e n d

u p o n t h e s t r e s s f i e l d , t h e r a d i u s a n d t h i c k n e s s o f t h e v e s s e l ,

a s w e l l a s t h e m a t e r i a l i t s e l f ( s e e 6 4 ) . W e w e r e a l s o a b l e t o

o b t a i n a r e l a t i o n f o r t h e r a t i o c r i t i c a l c r a c k l e n g t h o f a s p h e r i c a l

s h e l l o v e r c r i t i c a l c r a c k l e n g t h o f a f l a t s h e e t ( s e e e q . 6 7 ) . I n

g e n e r a l t h i s r a t i o i s l e s s t h a n u n i t y , w h i c h a g a i n i n d i c a t e s

c l e a r l y t h a t a c r a c k e d i n i t i a l l y c u r v e d s h e l l i s w e a k e r t h a n a

c r a c k e d f l a t s h e e t s u b j e c t e d t o t h e s a m e l o a d i n g .

I n c o n c l u s i o n i t m u s t b e e m p h a s i z e d t h a t t h e c l a s s i c a l b e n d i n g

t h e o r y h a s b e e n u s e d n d e d u c i n g t h e f o r e g o i n g r e s u l t s . H e n c e

i t i s i n h e r e n t t h a t o n l y t h e K i r c h h o f f e q u i v a l e n t s h e a r r e e

c o n d i t i o n i s s a t i s f i e d a l o n g t h e c r a c k , a n d n o t t h e v a n i s h i n g o f

b o t h i n d i v i d u a l s h e a r i n g s t r e s s e s . W h i l e o u t s i d e t h e l o c a l r e g i o n

t h e s t r e s s d i s t r i b u t i o n s h o u l d b e a c c u r a t e , o n e m i g h t e x p e c t h e

s a m e t y p e o f d i s c r e p a n c y t o e x i s t n e a r t h e c r a c k p o i n t a s t h a t

f o u n d b y K n o w l e s a n d W a n g7 ] i n c o m p a r i n g K i r c h h o f f a n dR e i s s n e r b e n d i n g r e s u l t s o r t h e f l a t p l a t e c a s e [ 8 , 9 ] . I n t h i s

c a s e t h e o r d e r o f t h e s t r e s s s i n g u l a r i t y r e m a i n e d u n c h a n g e d b u t

t h e c i r c u m f e r e n t i a l d i s t r i b u t i o n a r o u n d t h e c r a c k c h a n g e d s o s

t o b e p r e c i s e l y t h e s a m e a s t h a t d u e t o s o l e l y e x t e n s i o n a l l o a d i n g .

P e n d i n g f u r t h e r i n v e s t i g a t i o n o f t h i s e f f e c t f o r i n i t i a l l y c u r v e dp l a t e s , o n e i s t e m p t e d t o c o n j e c t u r e t h a t t h e b e n d i n g a m p l i t u d e

a n d a n g u l a r d i s t r i b u t i o n w o u l d b e t h e s a m e a s t h a t o f s t r e t c h i n g .

Page 23: A Finite Line Crack in a Pressurized Spherical Shell-folias

8/3/2019 A Finite Line Crack in a Pressurized Spherical Shell-folias

http://slidepdf.com/reader/full/a-finite-line-crack-in-a-pressurized-spherical-shell-folias 23/27

4 2 Ef thymios S. F o l ias

F i n a l l y f o r a c l a m p e d s p h e r i c a l s h e l l , t h e e x p e r i m e n t a l a n dtheo re t i ca l s t r a ins Cy, a t th ree d i ffe re n t loca t ions a long thec r a c k pr o l o n g at i o n , c o m p a r e v e r y w el l .

ACKNOWLEDGMENTS

T h e a u t h o r a c k n o w l e d g e s s e v e r a l u se fu l d i s c u s s io n s of t hi sp r o b l e m w i th P r o f e s s o r M . L . W i l l i am s a n d M r . J . L . S w e d l o wo f t he C a l if o rn i a In st it ut e o f Te c h n o l o g y . T h e r e s e a r c h r e p o r t e dh e r e in w a s s p o n s o r e d i n p a r t b y t he A e r o s p a c e R e s e a r c hL a b o r a t o r i e s , O f f i c e o f A e r o s p a c e R e s e a r c h o f t he U n i t e d S ta t esA i r F o r c e .

R e c e i v e d J u n e 1 9 6 4 .

REFERENCES

I . A n g , D . D . a n d Wi l l i am s , M . L . , " C o m b i n e d S tr e ss es i n a n O r t h o t ro p i c P l a t e H a v i n g

a F i n i t e C r a c k , " J o u r n a l o f A p p l i e d M e c h a n i c s , v o l . 28 , 1 9 6 1 , p p. 3 7 2 - 8 7 8 .

2 . S e c h l e r, E . E. a n d Wi l l i a m s , M . L . , " T h e C r i t i c a l C r a c k L e n g t h i n P r e s su r i ze d , M o n o -c o q u e C y l i n d e r s, " F i n a l R ep o rt o n C o n t r a c t N A w - 6 5 2 5 , C a l i f o rn i a I n st i t u t e o f Te c h -n o l o g y, S e p t e m b e r 1 9 5 9 .

3 . R e i ss n e r, E . , " O n S o m e P r o b l e m s i n S h e l l T h e o r y, " S t r u c t u r a l M e c h a n i c s , P r o c e e d i n g so f t h e F i r st S y m p o s i u m o n N a v a l S t r u c t u r a l M e c h a n i c s , P e rg a m o n P re ss , 1 96 0, p p ;7 4 - I 1 3 .

4 . R e i ss n e r, g . , " A N o t e o n M e m b r a n e a n d B e n d i n g S t re s se s i n S p h e r i c a l S h e l l s , " J . S o c .I n d u s tr. A p p l . M a t h . , v o l . 4, 1 9 5 6 , p p . 2 3 0 - 2 4 0 .

5 . F o l i a s , E f t h y m i o s S . , " T h e S t r es s es i n a C r a c k e d S p h e r i c a l S h e l l , " ( S u b m i t t e d t o t h eJ o u r n a l o f M a t h e m a t i c s a n d P h y s ic s , 1 9 6 4 ) .

6 . F o l i as , E f t h y m i o s S . , " T h e S t re s se s i n a S p h e r i c a l S h e l l C o n t a i n i n g a C r a c k , " A R L6 4 - 2 8 , A e r o s p a c e R e s e a r c h L a b o r a t o r ie s , O ff i c e o f A e r o s p a c e R e s e a rc h , U . S . A i rForce , Jan uary 1964 .

7 . K n o w l e s , J . K . a n d Wa n g , N . M . , " O n t h e B e n d i n g o f a n E l a st i c P l a t e C o n t a i n i n g aC r a c k , " J o u r n a l o f M a t h e m a t i c s a n d P h y s ic s , v o l . 8 9 , 1 9 6 0 , p p . 2 2 3 - 2 8 6 .

8 . W i l l i a m s , M . L . , " T h e B e n d i n g S t re s s D i s t r i b u t i o n a t t h e B a s e o f a S t a t i o n a r y C r a c k , "J o u r n a l o f A p p l i e d M e c h a n i c s , v o l . 2 8 , Tr a n s . A S M E , v o l . 8 8 , S e r i es E , 1 9 6 1 ,p p . 7 8 - 8 2 .

9 . W i l l i a m s , M . L . . " O n t h e S t re s s D i s t r i b u t i o n a t t h e B a se o f a S t a t i o n a r y C r a c k , " J o u r-n a l o f A p p l i e d M e c h a n i c s , v o l . 2 4 , M a r c h 19 5" /, p p . 1 0 9 - 1 1 4 .

1 0 . R e i s sn e r, E . , " S t r es s e s a n d S m a l l D i s p l a c e m e n t s o f S h a l l o w S p h e r i c a l S h e l l s I , I I , "J o u r n a l o f M a t h e m a t i c s a n d P h y s i cs , v o l . 2 5 , 1 9 4 6 , p p . 8 0 - 8 5 , 2 7 9 - 3 0 0 .

11 . G r i f f i t h , A . A . , " T h e T h e o r y o f R u p t u r e , " P r o c e e d i n g s o f t h e F i rs t I n t e r n a t i o n a l C o n -g r es s o f A p p l i e d M e c h a n i c s , D e l f t , 1 92 4, p p . 5 5 - 6 3 .

1 2 . S w e d l o w, J . L . , " O n G r i f f i t h ' s T h e o r y o f F r a c t u r e , " G A L C IT S M 6 3 - 8 , C a l i f o r n i a l n -s t i t u t e o f Te c h n o l o g y, M a r c h 1 9 6 8 .

1 3 . P a r m e r t e r, R . R . , " T h e B u c k l i n g o f C l a m p e d S h a U o w S p h e r i c a l S h e l ls U n d e r U n i fo r mP r e s s u re , " P h . D . D i s s e r t a t i o n , C a l i f o r n i a I n s t i t u t e o f Te c h n o l o g y, S e p t e m b e r 1 9 6 3 .

1 4 . M i k h l i n , S . G . , I n t e g r a l B q u a t i 0 n s, E n g l i sh t r a n s N t i o n b y A . H . A r m s t r o n g , p u b -l i shed by Perga mo n Press , 1957 .

Page 24: A Finite Line Crack in a Pressurized Spherical Shell-folias

8/3/2019 A Finite Line Crack in a Pressurized Spherical Shell-folias

http://slidepdf.com/reader/full/a-finite-line-crack-in-a-pressurized-spherical-shell-folias 24/27

N O T AT I O N 4 3

C

D

E

F ( X , Y)

G

h

h*

i

k

IS

t p( l c r ) s

( l c r ) p

m o

M x , M y , M x y

n o

N x , N y , N x y

P

q ( X , Y )

q o

r

ro

R

0

S

t o

U

V o

VY

w ( x ,Y )

X , y , z

X , Y, Z

B

T

-- h a l f c r a c k l e n g t h

_= E h S / [ 1 2 ( 1 - v 2 ) ] = f l e x u r a l r i g i d i t y

= Yo u n g ' s m o d u l m o f e l a s t i c i t y

- - s t r e s s f u n c t i o n

-- s h e a r m o d u l u s

= t h i c k n e s s

= a s d e f i n e d o n f i g . 3

- ¢ r 7

3- V

I +V

= 2 e = c r a c k l e n g t h o f s h e l l

= c r a c k l e n g t h o f p l a t e

= c r i t i c a l c r a c k l e n g t h o f s h e l l

= c r i t i c a l c r a c k l e n g t h o f p l a t e

-- c o n s t a n t a s d e f i n e d i n t e x t

-- m o m e n t c o m p o n e n t s

= c o n s t a n t a s d e f i n e d i n t e x t

= m e m b r a n e f o r ce s

= p e r i p h e r y

= i n t e r n a l p r e s s u r e

= u n i f o r m i n t e r n a l p r e s s u r e

Ro

C

= r a d i u s o f c u r v a t u r e o f t h e s h e l l

~ / X 2 + y 2

= g i v e n

= s u r f a c e a r e a o f t h e s h e l l

= c o n s t a n t a s d e f i n e d i n t e x t

- - e n e r g y

= c o n s t a n t a s d e f i n e d i n t e x t

= e q u i v a l e n t s h e a r

= d i s p l a c e m e n t f u n c ti o n

= d i m e n s i o n l e s s c o o r d i n a t e s w i t h r e s p e c t t o t he c r a c k l e n g t h

-- r e c t a n g u l a r c a r t e s i a n c o o r d i n a t e s

- ( i ) ½

_-- ( - i ) ½

= 0.5768 = Euler's constant

Page 25: A Finite Line Crack in a Pressurized Spherical Shell-folias

8/3/2019 A Finite Line Crack in a Pressurized Spherical Shell-folias

http://slidepdf.com/reader/full/a-finite-line-crack-in-a-pressurized-spherical-shell-folias 25/27

4 4

~* =

=

e X ' Z y , ~ Z =

0 --

X = _ _

M

~o

p =

a X b ' ( ; Y b ' " ~ x Y b=

(~Xe, ~ ;ye ,'~XY e=

( ~x , ~ y , ~ x y =

c; =

~ =

~ ( x , y ) , ~ ( x , y ) =

;C(x, y) =

s u r f a c e e n e r g y p e r u n i t a r e a

h e i g h t o f t h e s h e l l

)2 + (cY_)2

s t r a i n c o m p o n e n t s

t a n - 1 YX

E h c 4 _ 1 2 ( 1 - ~ 2 ) c 4

R2D " R2h 2

Poisson ' s ra t io

1 - ~

+ = +

b e n d i n g s t r e s s c o m p o n e n t s

s t r e t c h i n g s t r e s s c o m p o n e n t s

a p p l i e d s t r es s c o m p o n e n t s a t t h e c r a c k

c r i t i c a l ( f r a c t u r e ) s t re s s f o r s h e i l

c r i t i c a l ( f r a c t u r e ) s t r es s f o r p l a t e

h a r m o n i c f u n c t i o n s

d e f l e c t i o n o f a p l a t e o n a n e l a s t i c f o u n d a t i o n .

A P P E N D I X

T h e d e f l e c t i o n f u n c t i o n W a n d t h e s t r e s s f u n c t i o n F a r e :

W ( x , y * ) = P 1 e + P 2 e + P 3 e c o s x s d s

F ( x , y ± ) - i X2 RD c2 P i e - ~24~-~-ix21Yl P 2 e + P 4 e c o s x s d s

w h e r eX 2 A 2 J 2 ( s )

S {AIJ I(S ) + + O(14 }P ~ ( s) - ~ 3 s

~ t 2 B 2 J 2 ( s )s

P 2 ( s ) - ~ { B I J I ( S ) + 3 s + O ( X 4 ) )

X ~ ( A 2 + B 2 ) J 2 ( s )P 3 ( s ) = - ( A z + B z ) J I ( s ) 3 s

i X 2 ( A z _ B I ) J l ( S ) + 0 ( ; %/2 S 2

Page 26: A Finite Line Crack in a Pressurized Spherical Shell-folias

8/3/2019 A Finite Line Crack in a Pressurized Spherical Shell-folias

http://slidepdf.com/reader/full/a-finite-line-crack-in-a-pressurized-spherical-shell-folias 26/27

w h e r e

E f t h y m i o s S . F o l ia s

X2 (A2-B2) J2 (s)P 4 ( S ) = - ( A 1 - B 1 ) J ~ ( s ) 3 s

) t 4 R D

2 ~ (AI + B 1 )

+ O ( X 4 )

45

n c 2 m t . 2 ' ~ E h D c 2o { 1 + 3 r o

+ O ( X 4 I n ) t )

~ 2 X 2 12 ) t 2 8 - 7 / /-- 0 { O

2~r2 (AI-B1) = ~/2EhD (4-v o) 32 +

{13 a_y 3 X2gg+ 8 + ~ lni-g}

m ° { 1 + ~ ) t2 4 - 3 u ° } + O ( / 4 1 p n / )~ / ~ ( 4 _ U o ) 3 2 4 - u o

4-3v 4-3vo o8 T + 1 6

o t

A 2 + B 2 = _ -if- (AI-B I)

( l + ~ n ~ ) }

4-3//0 ~2A 2 - B 2 = _ (4-~-2~vo) ~ (At + B I)

R E S UM { - O n m o n t r e c lu e l a d g f o r m a t i o n d ' u n e f e u i l l e m i n c e a y a n t u n e c o u r b u r e s p h g r i q u ei n i t ia l s , e s t a s s o c i g e a v e e c e l l e d ' u n e p l a q u e m i n c e r e p o s a n t s u r u n e f o n d a ti o n g la s t iq u e .

g n u t i l is a n t u n e f o r m e i n t g g r a l e , o n rg s o u d l e s g q u a t i o n s c o u p l g e s d e R e i s sn e r , p o u r u n ec o q u e a v e c u n e f r a c t u r e d e lo n g u e u r 2 c , p o u r l e p la n i n t e r n e e t le s c o a t r a i u t e s d e f l e x i o nd e K i r c h h o f f . D ' a u t r e p a r t o n t r o u v e q u e l a f o r m e e x p l i c i t e d e s c o n t r a % t e s p r gs d u e p o i n td e f r a c tu r e , d g p e a d d e l 'i n v e r s e d e l a d e m i p u i s s a n c e d e l a d i s t a n c e , s a n s d i m e n s i o n , a up o i nt e . L e c a r a c t ~ r e d u c h a m p s d e c o n t r a i n te c o m b i n g e , f l e x io n t e n s io n , p r ~t d e l ' e x t r g m i t gd e l a f r a c t u r e , e s t g t u d i g e n d g t a i t d u n s l e c a s p a r t i c u l ie r d ' u n e f r a c t u r e r a d i a l e d u n s u n ec u l o t t e s p h g r i q u e s o u m i s e ~I u n e p r e ss i o n i n t e r n e u n i f o r m e q o e t q u i e s t e n c a s t r g e ~t l a l i m i t e

- - R o " g n a t t e n d a n t u n e & u d e c o m p t g t e d e l a s o l u t i o n , d e s r g s u lt a t s a p p r o c h g s p o u r l e s

c o n t r a i n t e s c o m b i n g e s d e s u r f a c e , p r o s d e l ' e x t r g m i t g d e l a f r a c t u r e n o r m a l e , e t l e l o n g d el a l i g n e d e p r o lo n g a t i o n d e l a f r a c t u r e , o a t d o n n g s r e s p e c t i v e m e n t

~ry (~,o) -- '~x (~,o) , , 0.45 q ' ~ (%R/h)

o u v = 1 / 3 , c = 0 . 2 3 i n c h , R o = 4 . 2 5 i n c h e t X = 0 . 9 8 .

I1 e s t i n t e r r e s s a n t d e n o t e r q u e le s c o n t r a i n t e s ~ x e t a y ! e l o n g d e l a l i g n e d e p r o l o n g a t i c ~d e f r a c t u r e s o n t S g a t e s p o u r c e t t e g g o m g t r i e . E n g g h g r a l , e l l e s o a t l e m ~ m e s ig n e e t n ed i f fe r e n t l d g ~ r e m e n t q u ' e n m o d u l e , d u f a i t d e l a c o m p o s a n t e d e f l e x io n . F i n a l e m e n t t e s r g -s u l t a ts e x p ~ r i m e n t a u x e t t h ~ o r i q u e s p o u r Cy l e l o n g d e l a l i g n e d e p r o l o n g a t i o n d e l a f r a c -t u re c o ~ c i d e n t b i e n .

Z U S A M M E N FA SS U N G - E s w i rd g e z e i g t , d a s s d i e Ve r f o r m u n g e i a e r d u e n n e n , a n f a e n g l i c h s p h a e -r is c h g e k r u e m m t e n P l a t te m i t d e r Ve r f o r m u n g e i n e r a n f a e n g l i c h e b e n e n P l a t t e , d i e e l a s ti s e h

Page 27: A Finite Line Crack in a Pressurized Spherical Shell-folias

8/3/2019 A Finite Line Crack in a Pressurized Spherical Shell-folias

http://slidepdf.com/reader/full/a-finite-line-crack-in-a-pressurized-spherical-shell-folias 27/27

4 6 E f t h y m i os S . F o l ia s

g e b e t t e t i s t , v e r b u n d e n i s t. M i t H i l f e e in e r I n t e g r a lf o r m u l a t i o n w e r d e n d i e g e k u p p e i t e nR e i s s n e r - G l e i c h u n g e n f u e r e i n e S c h a l e , d i e e i n e n R is s d e r L a e n g e 2 c e n t h a e l t , f u e r d i e e b e n e nu n d d i e K i r c h h o f f B i e g e s p a n n u n g e n g e l o e s t. U n t e r a n d e r e m w u r d e f e s t g e s t e l l t, d a s s d i e e x -p l i z i t e F o r m d e r S p a n n u n g e n i n d e r N a e h e d e s B m c h p u n k t e s u m g e k e h r t p r o p o r t io n a l d e r Wu r z e ld e s d i m e n s i n n s l o s e n A b s t a n d e s y o r e P u n k t e i s t. D e r C h a r a k t e r d e s D e h n m a g s - B i e g e s p a n n u n g s-f e l d e s i n d e r U m g e b u n g d e r R i s s p it z e w i r d i m D e t a i l u n t e r s u c h t f u e r d e n s p e z i e l l e n F a l l e i n e sr a d i a l e n R i ss es in e i n e r s p h a e r i s c h e n K a p p e u n t e r g l e i c h f o e r m i g e n I r m e n d ru c k q o , d i e a ni h r er A u f l a g e R = Ro e i n g e k l e m m t i s t . D i e a n g e n a e h e r t e n E r g e b n is s e - a l as a u s f u e h r li c h eS t u d i n m d e r L o e s u n ge n i s t n o c h n i c h t ab g e s c h l o s s e n - f u e r d i e k o m b i n i e r t e n O b e r f l a e c h e n -s p a n n u n g e n n a h e d e r R i s s p i t z e s e n k r e c h t z u m R is s u n d i n R i c h t u n g d e s R i ss e s s i n d y o n d e rF o r m :

~ ;y (¢ ,0 ) ~ :~X (¢ ,0 ) "~ 0 .4 5 ~ (qoR /h)

e t v = 1 / 3 , c = 0 . 2 3 i n c h , R o = 4 . 2 5 i n c h u n d k = 0 . 9 8 .

E s i s t i n t e r e s s a n t , d a s s d i e S p a n n u n g e n ~ x u n d g y e n t l a n g d e r L i n i e d e r R i s s f o r tp f l a n z u n gg l e i c h s in d f u e r d i e ss e n F a l l . I m a l l g e m e i n e n w e r d e n s i e d a s s e l b e Vo r z e i c h e n h a b e n un ds i c h n u t w e n i g i n d e r a b s o l u t e n G r o e s s e u n t e rs e h e i d e n i n f o l g e d e r B i e g e k o m p o n e n t e . D i e e x -p e r i m e n t e l l e n u n d t h e o r e t i s c h e n E rg e b n i s s e f u e r C y e n t l a n g d e r L i n i e d e r R i s s f o r t p f la n z u n g

s t i m m e n s e h r gu t u e b e r e i n .