A- FABRICATED PROPOSED ANTENNAS -...

of 18/18
185 APPENDICES A- FABRICATED PROPOSED ANTENNAS Figure (a) Fabricated rectangular patch antenna Figure (b) Fabricated square patch antenna
  • date post

    24-Feb-2020
  • Category

    Documents

  • view

    14
  • download

    0

Embed Size (px)

Transcript of A- FABRICATED PROPOSED ANTENNAS -...

  • 185

    APPENDICES

    A- FABRICATED PROPOSED ANTENNAS

    Figure (a) Fabricated rectangular patch antenna

    Figure (b) Fabricated square patch antenna

  • 186

    Figure (c) Fabricated hexagonal patch antenna

    Figure (d) Fabricated pentagonal patch antenna

  • 187

    Figure (e) Fabricated fractal shaped pentagonal patch antenna

    Figure (f) Measurement of pentagonal patch antenna using Vector Network Analyzer

    (VNA)

  • 188

    Figure (g) Measurement of dielectric loaded pentagonal patch antenna using Vector

    Network Analyzer (VNA)

  • 189

    B- IEEE FREQUENCY BAND DESIGNATIONS

    RADIO BAND DESIGNATIONS

    Frequency Wavelength Radio Band designation

    30 - 300 Hz 10 - 1Mm ELF (extremely low frequency)

    300 - 3000 Hz 1000 - 100 km ULF (ultra low frequency)

    3 - 30 kHz 100 - 10 km VLF (very low frequency)

    30 - 300 kHz 10 - 1 km LF (low frequency)

    300 - 3000 kHz 1000 - 100 m MF (medium frequency)

    3 - 30 MHz 100 - 10 m HF (high frequency)

    30 - 300 MHz 10 - 1 m VHF (very high frequency)

    300 - 3000 MHz 100 - 10 cm UHF (ultra high frequency)

    3 - 30 GHz 10 - 1 cm SHF (super high frequency)

    30 - 300 GHz 10 - 1 mm EHF (extremely high frequency)

    IEEE RADAR BAND DESIGNATIONS

    Frequency Wavelength

    IEEE Radar Band

    designation

    1 - 2 GHz 30 - 15 cm L Band

    2 - 4 GHz 15 - 7.5 cm S Band

    4 - 8 GHz 7.5 - 3.75 cm C Band

    8 - 12 GHz 3.75 - 2.50 cm X Band

    12 - 18 GHz 2.5 - 1.67 cm Ku Band

    18 - 27 GHz 1.67 - 1.11 cm K Band

    27 - 40 GHz 11.1 - 7.5 mm Ka Band

    40 - 75 GHz -- V Band

    75 - 110 GHz --- W Band

    110 - 300 GHz --- mm Band

    300 - 3000 GHz --- u mm Band

  • 190

    SATELLITE TVRO BAND DESIGNATIONS

    Frequency Satellite TVRO Band

    1700 - 3000 MHz S-Band

    3700 - 4200 MHz C-Band

    10.9 - 11.75 GHz Ku1-Band

    11.75 - 12.5 GHz Ku2-Band (DBS)

    12.5 - 12.75 GHz Ku3-Band

    18.0 - 20.0 GHz Ka-Band

    MILITARY ELECTRONIC COUNTERMEASURES BAND DESIGNATIONS

    Frequency

    IEEE Radar Band

    designation

    30 - 250 MHz A Band

    250 - 500 MHz B Band

    500 - 1,000 MHz C Band

    1 - 2 GHz D Band

    2 - 3 GHz E Band

    3 - 4 GHz F Band

    4 - 6 GHz G Band

    6 - 8 GHz H Band

    8 - 10 GHz I Band

    10 - 20 GHz J Band

    20 - 40 GHz K Band

    40 - 60 GHz L Band

    60 - 100 GHz M Band

  • 191

    TRAFFIC RADAR FREQUENCIES

    Traffic Radar Frequency Bands

    Band Frequency Wavelength Notes

    S 2.455 GHz 4.8 in

    12 cm obsolete

    X 10.525 GHz ±25 MHz 1.1 in

    2.8 cm one 50 MHz channel

    Ku 13.450 GHz 0.88 in

    2.2 cm no known systems

    K 24.125 GHz ±100

    MHz

    0.49 in

    1.2 cm

    one 200 MHz channel

    Europe and some US

    systems

    K 24.150 GHz ±100

    MHz

    0.49 in

    1.2 cm one 200 MHz channel

    Ka 33.4 - 36.0 GHz 0.35 - 0.33 in

    9 - 8.3 mm 13 channels; 200 MHz/ch

    IR --

    Infrared 332 THz 904 nm Laser Radar

  • 192

    C- TABLES OF RELATIVE PERMITTIVITY AND LOSS TANGENT

    Solids

    Material Remarks t/°C f r´ 104 × tan δ

    Cellulose (see also

    paper)

    Cellophane . . . . . . unplasticized 20 50 Hz/1 MHz 7.6/6.7 100/650

    −30/70 50 Hz 7.2/8.0 100/150

    Paper fibres . . . . . calculated 20 50 Hz 6.5 50

    Ceramics

    Alumina . . . . . . . pure 20/100 50 Hz/1 MHz 8.5 20/5

    pure, porosity

    1% 20 1 MHz 10.8

    Calcium titanate . . a = −200 20 1 MHz 150 3

    Lead zirconate . . . a = +140 20 1 MHz 110 30

    Magnesium titanate .

    20/150 50 Hz/1 MHz 14 1/4

    Porcelain . . . . . . h.v. electrical 20/100 50 Hz/1 MHz 5.5 300/80

    Rutile . . . . . . . a = −80 20 1 MHz/1 GHz 80 3/8

    a = −40 20 1 MHz/1 GHz 40 15/30

    a = −2 20

    1 MHz/100

    MHz 12 30

    a = +6 20

    1 MHz/100

    MHz 15 1

    Steatite . . . . . . . a = +13 20 1 MHz/1 GHz 6 20

    (low loss) . . . . . a = +13 20 1 MHz/1 GHz 6 2

    Strontium titanate . . a = −300 20 1 MHz 200 5

    Strontium zirconate . a = +12 20 1 MHz 38 3

    Crystals (single,

    inorganic)

    Alkali halides

    LiF . . . . . . .

    20/25 1 kHz/10

    GHz 8.9/9.1 2

    LiCl . . . . . . .

    20 1 kHz/1 MHz 11.8/11.0

    LiBr . . . . . . .

    20 1 kHz/1 MHz 13.2/12.1

    LiI . . . . . . .

    20 1 kHz/1 MHz 16.8/11.0

    NaF . . . . . . .

    20 1 kHz/1 MHz 5.1/6.0

    NaCl . . . . . . .

    20/25 1 kHz/10

    GHz 6.1/5.9 5/1

    NaBr . . . . . . .

    20 1 kHz/1 MHz 6.5/6.0

    NaI . . . . . . .

    20 1 kHz/1 MHz 7.3/6.6

    KF . . . . . . .

    20 1 kHz/1 MHz 5.3/6.0

  • 193

    KCl . . . . . . .

    20 1 kHz/10

    GHz 4.9/4.8

    KBr . . . . . . .

    20/25 1 kHz/10

    GHz 5.0/4.9 2/7

    KI . . . . . . .

    20 1 kHz/1 MHz 5.1/5.0

    RbF . . . . . . .

    20 1 kHz 6.5

    RbCl . . . . . . . .

    20 1 kHz 4.9

    RbBr . . . . . . . .

    20 1 kHz 4.9

    RbI . . . . . . . .

    20 1 kHz 4.9

    Calcite . . . . . . . . CaCO3 20 1 kHz/10 kHz 8.5

    || 20 1 kHz/10 kHz 8.0

    Diamond . . . . . . C 20 500 Hz/100

    MHz 5.7/5.5

    Fluorite . . . . . . . CaF2 20 10 kHz/2

    MHz 7.4/6.8

    Gallium Arsenide . . .

    20 1 kHz 12

    Germanium . . . . .

    20 1 kHz 16.3

    Iodine . . . . . . .

    17/22 100 MHz 4.0

    Mica, muscovite (best)

    20/100 50 Hz/100

    MHz 7.0 10/2

    Periclase . . . . . . MgO 25 100 Hz/100

    MHz 9.7 3

    Quartz . . . . . . . SiO2 20/25 1 kHz/35

    MHz 4.43/4.43 −/0.4

    || 20/25

    1 kHz/35

    MHz 4.63/4.63 −/0.3

    Ruby . . . . . . . . Al2O3 17/22 10 kHz 13.3

    17/22 10 kHz 11.3

    Rutile . . . . . . . . TiO2 20 50 Hz/100

    MHz 86 100/2

    || 17/22 100 MHz 170

    Sapphire . . . . . . Al2O3 20 50 Hz/1 GHz 9.4 2

    || 20 50 Hz/1 GHz 11.6 2

    Selenium . . . . . .

    17/22 100 MHz 6.6

    Silicon . . . . . . .

    20 1 kHz 11.7

    Sulphur . . . . . . . rhombic

    (100) 25 1 kHz 3.8 5

    (010) 25 1 kHz 4.0 5

    (001) 25 1 kHz 4.4 5

    Urea . . . . . . . CO(NH2)2 17/22 400 MHz 3.5

  • 194

    Zircon . . . . . . . ZrSiO4 , || 17/22 100 MHz 12 Glasses

    Borosilicate . . . . . normal 20 1 kHz/1 MHz 5.3 50/40

    low alkali 20 1 MHz 5 30

    very low

    alkali 20

    50 Hz/100

    MHz 4 15/5

    Fused quartz . . . .

    20/150 50 Hz/100

    MHz 3.8 10/1

    Lead . . . . . . .

    20 1 kHz/1 MHz 6.9 17/13

    Soda . . . . . . . average 20 1 MHz/100

    MHz 7.5 100/80

    Minerals

    Amber . . . . . . .

    20 1 MHz/3 GHz 2.8/2.6 2/90

    Asbestos (chrysotile) purified, 50%

    R.H. 25 50 Hz/1 MHz 5.8/3.1 1800/250

    board 20 1 MHz 3 2200

    Bitumen . . . . . . . Gilsonite 25 50 Hz/100

    MHz 2.7/2.55 60/10

    20 1 kHz 3.5 300

    Granite . . . . . . .

    20 1 MHz 8

    Gypsum . . . . . . .

    20 10 kHz 5.7

    Marble . . . . . . . pure dry 20 1 MHz 8 400

    Sand . . . . . . . . dry 20 1 MHz 2.5

    15% water 20 1 MHz 9

    Sandstone . . . . . .

    20 1 MHz 10

    Soil . . . . . . . . . dry 20 1 MHz 3

    moist 20 1 MHz 10

    Sulphur . . . . . . . cast 20 3 GHz/10

    GHz 3.4 7/14

    Paper and Pressboard

    (see also cellulose)

    Unimpregnated, dry

    Kraft (tissue) . . . d = 0.8 20/90 1 kHz 1.8 10/15

    d = 1.2 20/90 1 kHz 3.0 25/35

    Rag (cotton) . . . d = 0.6 20/90 50 Hz/50 kHz 1.7 8/65

    Impregnated, mineral oil

    (εr´ = 2.2)

    Kraft (tissue) . . . d = 0.9 20 50 Hz 3.6 22

    d = 1.1 20 50 Hz 4.3 27

    Rag (cotton) . . . d = 0.9 20 50 Hz 3.5 13

  • 195

    d = 1.1 20 50 Hz 4.2 18

    Impregnated

    (Pentachlordiphenyl) .

    Kraft (tissue) d = 0.9 20 50 Hz 5.7 33

    d = 1.1 20 50 Hz 6.0 39

    Fibre . . . . . . . .

    20 1 MHz 4.5 500

    Pressboard . . . . . dry d = 0.8 20 50 Hz 3.2 80

    Plastics (non-polar,

    synthetic)

    Poly-

    ethylene . . . .

    20 50 Hz/1 GHz 2.3 2/3

    isobutylene . . .

    20 50 Hz/3 GHz 2.2 2/5

    4-methylpentene

    (TPX) . . . .

    20 100 Hz/10

    kHz 2.1 2/1

    (dimethyl)

    phenyloxide (PPO)

    25 100 Hz/1

    MHz 2.6 4/7

    propylene . . . .

    20 50 Hz/1 MHz 2.2 5

    styrene . . . . .

    20 50 Hz/1 GHz 2.6 2/5

    tetrafluoroethylene

    (PTFE) . . . . teflon 20 50 Hz/3 GHz 2.1 2

    Plastics (polar,

    synthetic)

    Poly-

    amides . . . . . typical Nylon 20 50 Hz/100

    MHz 4/3 200

    carbonates . . . typical 20 50 Hz/1 MHz 3.2/3.0 10/100

    ethyleneterephthalate

    20 50 Hz/100

    MHz 3.2/2.9 20/150

    imides . . . . . typical 20 1 MHz 3.4

    methylmethacrylate

    20 50 Hz/100

    MHz 3.4/2.6 600/60

    vinylcarbazole . .

    20 50 Hz/100

    MHz 2.8 5/10

    vinylchloride . . . unplasticized 20 50 Hz/100

    MHz 3.2/2.8 200/100

    Plastics (miscellaneous)

    Aniline resin unfilled 20 3 GHz 3.5 500

    paper filled 20 1 MHz/1 GHz 5/4 600/300

  • 196

    100 1 MHz 6 800

    Cellulose acetate

    20 1 MHz/1 GHz 3.5 300/400

    Cellulose triacetate

    20 50 Hz/100

    MHz 3.8/3.2 100/300

    Ebonite unfilled 20 1 kHz/1 GHz 3/2.7 90/30

    filled

    (MgCO3) 20

    50 kHz/1

    GHz 4.1/3.8 100/180

    Epoxy resin

    25 1 kHz/100

    MHz 3.6/3.5 200

    Melamine resin

    20 3 GHz 4.7 400

    Phenolic resin fabric filled 20 1 MHz 5.5 500

    paper filled 20 1 MHz/1 GHz 5 300/800

    140

    1 MHz/10

    MHz 6 800/400

    wood filled 20 1 MHz 5 400

    Urea resin paper filled 20 1 MHz 6 300

    Vinyl acetate (poly-) plasticized 20 1 MHz/10

    MHz 4 500

    Vinyl chloride (poly-) plasticized 20 1 MHz/10

    MHz 4 600

    (PVC)

    Rubbers

    Natural crepe 20/80 1 MHz/10

    MHz 2.4 15/100

    vulcan, soft 20

    1 MHz/10

    MHz 3.2 280/200

    Butadiene/styrene unfilled 20/80 50 Hz/100

    MHz 2.5 5/70

    (GR-S) compounded 20/80 50 Hz/100

    MHz 2.5 10/200

    Butyl unfilled 20 50 Hz/100

    MHz 2.4 35/10

    Chloroprene Neoprene 20 1 kHz/1 MHz 6.5/5.7 300/900

    Silicone filled 67%

    TiO2 20

    50 Hz/100

    MHz 8.6/8.5 50/10

    Silicone unfilled 25 1 kHz/100

    MHz 3.2/3.1

    Waxes, etc.

    Chlornaphthalene

    (tri and tetrachlor-)

    20 50 Hz/100

    MHz 5.4/4.2 7/2700

    Ozokerite

    20 50 Hz/100 2.3 5/10

  • 197

    MHz

    Paraffin wax

    20 1 MHz/1 GHz 2.2 2

    Petroleum jelly

    20/60 50 Hz 2.1/1.9 1/5

    Rosin colophony 20 3 GHz 2.4 6

    Wood (% water)

    Balsa 0%

    20 50 Hz/3 GHz 1.4/1.2 40/140

    Beech 16% d = 0.62 20 1 MHz/100

    MHz 9.4/8.5 580/830

    Birch 10% d = 0.63 20 1 MHz/100

    MHz 3.1 400/800

    Douglas fir 11% d = 0.45 15 1 MHz/10

    MHz 3.2 520/810

    compressed d = 0.64 15 1 MHz/10

    MHz 4.3 570/950

    Scots pine 15% d = 0.61 20 1 MHz/100

    MHz 8.2/7.3 590/940

    Walnut 0%

    20 10 MHz 2 350

    Walnut 17%

    20 10 MHz 5 1400

    Whitewood 10% American 20 1 MHz/100

    MHz 3 400/750

    Liquids

    Material Remarks t/°C f r´ 10

    4 × tan

    δ

    Castor oil

    . . . . . . . . 20 1 kHz 4.5

    Chlordiphenyl

    (tri) . . . . −10/100 50 Hz/20 kHz 7/5 2000/2

    (penta-) . .

    0/100 50 Hz 5.2/4.3 700/3

    Parafin oil

    . . . . . . . . medicinal 20 1 kHz 2.2 1

    Silicone fluid

    . . . . . . 0.65 cS 20 50 Hz/3 GHz 2.2 2/19

    1000 cS 20 50 Hz/3 GHz 2.78/2.74 1/100

    Transformer

    oil . . . . . BS 138 20

    50 MHz/100

    GHz 2.2 1/42

    20

    100 MHz/10

    GHz 2.2 42/8

  • 198

    Material t/°C r´ a

    Alcohols (primary)

    Methanol 25 32.65 P − 588

    Ethanol 25 24.51 P − 612

    Propanol 25 20.51 P − 683

    Butanol 25 17.59 P − 733

    Pentanol 25 15.09 P − 775

    Hexanol 25 13.3 P − 806

    Hydrocarbons

    n-Pentane 20 1.84 − 87

    n-Hexane 20 1.89 − 82

    n-Heptane 20 1.92 − 73

    n-Octane 20 1.95 − 67

    n-Nonane 20 1.97 − 68

    n-Decane 20 1.99 − 65

    n-Undecane 20 2.00 − 62

    n-Dodecane 20 2.01 − 60

    Benzene 20 2.284 − 88

    Cyclopentane 20 1.96

    Cyclohexane 20 2.025 − 79

    Toulene 20 2.39 − 102

    (Chloro/Fluoro)-

    hydrocarbons

    CCl4 20 2.24 − 89

    CCl3F 29 2.28

    CCl2F2 29 2.13

    CClF3 −30 2.3

    CHCl3 20 4.80 P − 368

    CHCl2F 28 5.34 P

    CHClF2 24 6.11 P

    (—CCl2F)2 25 2.52

    (—CClF2)2 25 2.26

    (—CH2Cl)2 20 10.66 P − 550

    ( CCl2)2 25 2.30 − 85

    CCl2 CHCl 20 3.4 P

    F-pentane 20 4.24 P

    F-benzene 25 5.42 P

    Cl-benzene 20 5.70 P − 229

    Miscellaneous

  • 199

    Aniline 20 6.89 −341

    Acetone 25 20.7 P −472

    Diethylketone 20 17.0 P −520

    Diethylether 20 4.34 P − 500

    Cyclohexanone 20 18.3 P

    Nitrobenzene 25 34.8 P − 518

    CS2 20 2.64 − 101

    Liquid gases T/K

    Argon 82 1.53 − 220

    Helium 4.19 1.048

    ,, 2.06 1.055

    Hydrogen 20.4 1.22 − 280

    Nitrogen 70 1.45 − 200

    Oxygen 80 1.50 − 160

    Note- Many of these liquids are hazardous, flammable or toxic. Chemical safety

    manuals should be consulted before using them.

    D- RELATIVE PERMITTIVITY OF GASES AND VAPOURS

    Material t/°C 104

    ( r − 1) Material t/°C 10

    4 ( r −

    1)

    Air dry . . . . . . . 20 5.361 Nitrous oxide . . . . . . 25 10.3

    Nitrogen . . . . . . 20 5.474 Ethylene . . . . . . . . 25 13.2

    Oxygen . . . . . . . 20 4.943 Carbon

    disulphide . . . . 29 29.0

    Argon . . . . . . . . 20 5.177 Benzene . . . . . . . . 100 32.7

    Hydrogen . . . . . . 0 2.72 Methanol . . . . . . . . 100 57

    Deuterium . . . . . . 0 2.696 Ethanol . . . . . . . . . 100 78

    Helium . . . . . . . 0 0.7 Ammonia . . . . . . . . 1 71

    Neon . . . . . . . . 0 1.3 Sulphur

    dioxide . . . . . 22 82

    Carbon dioxide . . . 20 9.216 Water . . . . . . . . . 100 60

    Carbon monoxide . . 25 6.4 Water (10

    mmHg) . . . 20 1.24

    Sources;

    C. J. F. Bötcher (1973) Dielectrics and Static Fields, Vol. 1, 2nd edn, Elsevier

    Scientific Publishing Company, Amsterdam.

    C. J. F. Bötcher and P. Bordewijk (1978) Dielectrics in Time Dependent Fields,

    Vol. 2, 2nd edn, Elsevier Scientific Publishing Company, Amsterdam.

  • 200

    V. V. Daniel (1967) Dielectric Relaxation, Academic Press, London. H. Fröhlich

    (1958) Theory of Dielectrics, 2nd edn, Clarendon Press, Oxford.

    Nora E. Hill, Worth E. Vaughan, A. H. Price, Mansel Davies (1969) Dielectric

    Properties and Molecular Behaviour, van Nostrand Reinhold Company Ltd.,

    London. A. R. von Hippel (1954) Dielectrics and Waves, Chapman & Hall, London.

    K. F. Young and H. P. R. Frederikse (1973) Compilation of the Static Dielectric

    Constant of Inorganic Solids, J. Phys. Chem. Ref. Data, 2(2), 313–410.

    R. G. Jones (1976) J. Phys. D: Appl. Phys., 9, 819–27.

    S. Jenkins, R. N. Clarke, Measured values and uncertainties for the complex

    permittivity of selected organic reference liquids at 20 to 30°C and frequencies up

    to 3 GHz, (NPL Report DES 109).

    E- TRANSMISSION LINE PARAMETERS

    The Tx line model is the simplest of all, representing the rectangular patch as a

    parallel-plate transmission line connecting two radiating slots (apertures), each of

    width W, height h and z is direction of propagation of the transmission line (Fig h).

    Fig h A rectangular patch antenna and fringing fields

    The slots represent very high-impedance terminations from both sides of the

    transmission line (almost an open circuit). Thus, this structure is suppose to have

    highly resonant characteristics depending crucially on its length L along z. The

  • 201

    resonant length of the patch is not exactly equal to the physical length due to the

    fringing effect. The fringing effect makes the effective electrical length of the patch

    longer than its physical length (Leff >L).

    The dominant TM001 mode has a uniform field distribution along the y-axis at the slots

    formed at the front and end edges of the patch. The equivalent conductance G is

    obtained from the theory of uniform apertures while B is related to the fringing

    capacitance.

    The limitation is necessary since a uniform field distribution along the

    x-axis is assumed and the equivalent circuit of a slot is constructed as a parallel R-C

    circuit, using the values of G and B.

    The equivalent circuit representing the whole patch in the TM001 mode includes the two

    radiating slots as parallel R-C circuits and the patch connecting them as a transmission

    line whose characteristics are computed in the same way as those of a microstrip

    transmission line (Fig i).

    Fig i The line parameters of a microstrip antenna

  • 202

    Here, Zc is the characteristic impedance of the line, and βg is its phase constant. For

    each slot, G represents the radiation loss and B = j C represents the capacitance

    associated with the fringing effect. The thickness of the substrate is very small. The

    waves generated and propagating beneath the patch undergo considerable reflection at

    the edges of the patch. Only a very small fraction of them is being radiated.

    At the feed point, the impedance of each slot is transformed by the respective

    transmission line representing a portion of the patch.

    Fig j Feed line impedances of microstrip antenna

    The admittance transformation is given by

    provided line is loss-less.

    ***