A Cyclopropane Fragmentation Approach to Heterocycle Assembly

59
A Cyclopropane Fragmentation Approach to Heterocycle Assembly Kevin Minbiole James Madison University August 11, 2005

description

A Cyclopropane Fragmentation Approach to Heterocycle Assembly. Kevin Minbiole James Madison University August 11, 2005. Outline. I. Introduction to Cyclopropanes and Heterocycle Formation Strategies II. Proof of Concept: Oxepane Synthesis III. Progress Towards Nitrogenous Heterocycles - PowerPoint PPT Presentation

Transcript of A Cyclopropane Fragmentation Approach to Heterocycle Assembly

Page 1: A Cyclopropane Fragmentation Approach to Heterocycle Assembly

A Cyclopropane Fragmentation Approach to Heterocycle Assembly

Kevin MinbioleJames Madison University

August 11, 2005

Page 2: A Cyclopropane Fragmentation Approach to Heterocycle Assembly

Outline

I. Introduction to Cyclopropanes and Heterocycle Formation Strategies

II. Proof of Concept: Oxepane Synthesis

III. Progress Towards Nitrogenous Heterocycles

IV. Radical Strategies

V. Future Directions

Page 3: A Cyclopropane Fragmentation Approach to Heterocycle Assembly

Outline

I. Introduction to Cyclopropanes and Heterocycle Formation Strategies

II. Proof of Concept: Oxepane Synthesis

III. Progress Towards Nitrogenous Heterocycles

IV. Radical Strategies

V. Future Directions

Page 4: A Cyclopropane Fragmentation Approach to Heterocycle Assembly

Cyclopropane Strain and Reactivity

Cyclopropane has significant ring strain.

Cyclopropanes have pi character.

Coulson-Moffitt ModelBent Bonds

Walsh Model

Ring Strain ~ 27.5 kcal/mol

Page 5: A Cyclopropane Fragmentation Approach to Heterocycle Assembly

Alkenes and Cyclopropanes

“Virtually every reaction that an alkene undergoes has its counterpart in the repertoire of transformations possible with cyclopropanes.”

OH

E+

OH

E+O

E

O

E

O

O

Nu

Nu

Nu O

ONu

Reactivity towards nucleophiles Reactivity towards electrophiles

Hudlicky, T.; Reed, J. W. In Comprehensive Organic Synthesis; Trost, B. M.; Fleming, I. Eds.; Pergamon: Oxford, 1991; Vol. 5, p 901.

Page 6: A Cyclopropane Fragmentation Approach to Heterocycle Assembly

Alkenes and Cyclopropanes

Carreira’s approach to spirotryprostatin B

Cossy’s approach to zincophorin

NBn

O MgI2

NR

R

NBn

OMgI

I

NBn

O

I

R

NR

NBn

O

NR

R

NH

O

N

N

O

O H

spirotryprostatin B

Marti, C.; Carreira, E. M. J. Am. Chem. Soc. 2005, ASAP.Cossy, J.; Blanchard, N.; Defosseux, M.; Meyer, C. Angew. Chem. Int. Ed. 2002, 41, 2144.

OH

O

OHBzO O

O

OHBzO

H HHgBr

OH3CO

O

OHHH

Hg(OTf)2;

KBr

85% zincophorinH

Page 7: A Cyclopropane Fragmentation Approach to Heterocycle Assembly

Alkenes and Cyclopropanes

OH

E+

OH

E+O

E

O

E

OH

E+

O

E

Could this be used to generate heterocycles?

Reactivity towards electrophiles

Page 8: A Cyclopropane Fragmentation Approach to Heterocycle Assembly

Oxocarbenium-Based Heterocycle Syntheses

OH RCHO

O

O

O

O

O

O

O

O

LA

O

O LA

O

O

O LA

O

OLA

O

O

O

O

O

O

OH

O

X

Petasis

This work

Prins

Prins-Pinacol

Analogous modes of cyclization

LA

LA

LA

LA

X

Page 9: A Cyclopropane Fragmentation Approach to Heterocycle Assembly

Zimmerman-Traxler Cyclization

O

OR R

O

OR R

OR

O LA

R

OR

O LA

R

OR

O

R

OR

O

R

Petasis

This workOMO

H

R R

OMO

H

R R

OH

OHOH

OHInitial target

LA

LA

Page 10: A Cyclopropane Fragmentation Approach to Heterocycle Assembly

The Kulinkovich Cyclopropanation

R1 OR2

O

H3C CH3

TiRO

ROTi

RO

RO

XMgO RTi

RO

RO

ROO

TiRO

RO

ROR

O

ORR

R1 OH

TiRO

RO

R

TiRO

RO

XMgOR

R

R

Kulinkovich Reaction

Ti(O-iPr)4 (0.1 eq)EtMgBr (3 eq)THF/Et2O (4:1)

Ti(OR)4+

2 EtMgBr

EtMgBr EtMgBr

Kulinkovich, O. G. Chem. Rev. 2003, 103, 2597.

Page 11: A Cyclopropane Fragmentation Approach to Heterocycle Assembly

Cyclopropanation Yields

OH

OEt

O

OH

OEt

O

OH

OH

OH

OH

OH

TiCl(O-iPr)3 (1 eq)EtMgBr (4 eq)THF/Et2O (4:1)

51%

Ti(O-iPr)4 (0.1 eq)EtMgBr (3 eq)THF/Et2O (4:1)

80%

TiCl(O-iPr)3 (1 eq)EtMgBr (4 eq)THF/Et2O (4:1)

51%

OO OH

OH

Ti(O-iPr)4 (0.1 eq)EtMgBr (3 eq)THF/Et2O (4:1)

<30%

OH

O

O

Cho, S. Y.; Cha, J. K. Org. Lett. 2000, 2, 1337-1339.

Page 12: A Cyclopropane Fragmentation Approach to Heterocycle Assembly

Outline

I. Introduction to Cyclopropanes and Heterocycle Formation Strategies

II. Proof of Concept: Oxepane Synthesis

III. Progress Towards Nitrogenous Heterocycles

IV. Radical Strategies

V. Future Directions

Page 13: A Cyclopropane Fragmentation Approach to Heterocycle Assembly

Initial Attempts at Oxepane Formation

OH

OH O

O

Ph

PhCHO, Na2SO4CH2Cl2, 0.1M

M(OTf)3,-78 oC

M = Al, Bi, In

Page 14: A Cyclopropane Fragmentation Approach to Heterocycle Assembly

Initial Attempts at Oxepane Formation

OH

OH O

O

Ph O

O

Ph

PhCHO, Na2SO4CH2Cl2, 0.1M

30-50%

M(OTf)3,-78 oC

warm to

0 oC

M = Al, Bi, In

Softer Lewis acids (CuSO4, ZnCl2, SnCl2) stop at acetal

Page 15: A Cyclopropane Fragmentation Approach to Heterocycle Assembly

Mechanism of Oxepane Formation

OH

OHO

O

Ph O

O

Ph

LA

O Ph

OLA

O

O

Ph

PhCHO, Na2SO4CH2Cl2, 0.1M

Al(OTf)30 oC

Page 16: A Cyclopropane Fragmentation Approach to Heterocycle Assembly

Mechanism of Oxepane Formation

OH

OH

OH

OH

O

O

Ph

O

O

Ph Ph

O

O

Ph

LA

OPh Ph

OLA

O Ph

OLA

Ph

OLA

O

O

Ph

OPh

PhCHO, Na2SO4CH2Cl2, 0.1M

Al(OTf)30 oC

PhCHO, Na2SO4CH2Cl2, 0.1M

Al(OTf)30 oC

- PhCHO

69%

Page 17: A Cyclopropane Fragmentation Approach to Heterocycle Assembly

Stereochemistry of Oxepane Formation

OH

OH

O

O

PhH H

O

O

Ph

H HO

O

Ph

O

O

Ph

PhCHO, Na2SO4CH2Cl2, 0.1M

30-50%

M(OTf)3,-78 oC

warm to

0 oC

10% nOe 10% nOe

M = Al, Bi, In

Page 18: A Cyclopropane Fragmentation Approach to Heterocycle Assembly

Zimmerman-Traxler Cyclization

O

OR R OR

O LA

R OR

O

ROMO

R R

Page 19: A Cyclopropane Fragmentation Approach to Heterocycle Assembly

Initial Limitations of Oxepane Formation

OH

OH

O

O

PhH H

OH

OH

O

O

Ph

O

O

Ph

H HO

O

Ph

X

O

O

Ph

O

O

Ph

PhCHO, Na2SO4CH2Cl2, 0.1M

30-50%

M(OTf)3,-78 oC

warm to

0 oC

10% nOe 10% nOe

M = Al, Bi, In

PhCH2CH2CHO, Na2SO4

CH2Cl2, 0.1M

M(OTf)3,-78 oC

M = Al, Bi, In

Page 20: A Cyclopropane Fragmentation Approach to Heterocycle Assembly

Two-Lewis Acid System

R1

OH

OH O

O

R1 R2

R2CHO, Na2SO4Al(OTf)3, -10 oC, 1 h;

50-70%

then TiCl4, 45 min

No problems associated with coexistence of two Lewis acids

Page 21: A Cyclopropane Fragmentation Approach to Heterocycle Assembly

Yields and Scope of Oxepane Formation

RCHO

OH

OH

OH

OH

OH

OH

O

H Ph

O

H

O

O

PhO

O

O

O

O

O

Ph

O

O

O

O

Ph

O

H

O Ph

O

O Ph

O

O Ph

O

diol

51% 55%

71%71%

70%62%

55%

66%

69%

O'Neil, K. E.; Kingree, S. V.; Minbiole, K. P. C. Org. Lett. 2005, 7, 515-517.

Page 22: A Cyclopropane Fragmentation Approach to Heterocycle Assembly

Appearance of Trans Oxepane

R

OH

OH

O

O

R

O

O

RM

O

O

R

O

O

R

PhCHO, Na2SO4Yb(OTf)3 (1.0 eq);

then TiCl4(1.1 eq)

TiCl4

0 oC, 45 min

~1:1

R YieldPr 61%Me 70%iPr 55%

Page 23: A Cyclopropane Fragmentation Approach to Heterocycle Assembly

Inclusion of Sidechain Functionality

O

H

O

H

NO2

RCHO

OH

OH

OH

OH

OH

OH

O

O

O

O

O

O

O

O

O

O

O

O

diol

34%

30%

30%

26%

36%

36%

NO2

NO2

NO2

Page 24: A Cyclopropane Fragmentation Approach to Heterocycle Assembly

Inclusion of Sidechain Functionality

O

O

O

OCH3

O

H OBn

O

O

OBn

O

OCH3H

O

47% 15%

Certain chelating groups are tolerated…

Page 25: A Cyclopropane Fragmentation Approach to Heterocycle Assembly

Inclusion of Sidechain Functionality

O

O

R O

O

R

O

HOCH3

O

O

HOBn

ProductiveChelation

No rearrangement No rearrangementNo rearrangement

Non-ProductiveChelation

O

HN

OM

R M O

R

Certain chelating groups are tolerated…but others fail to rearrange to oxepane

Page 26: A Cyclopropane Fragmentation Approach to Heterocycle Assembly

Reaction Optimization

Alternate Lewis acids Zirconium tetrachloride

Alternate drying agents Molecular sieves

Alternate solvent systems More or less polar solvents

Page 27: A Cyclopropane Fragmentation Approach to Heterocycle Assembly

Outline

I. Introduction to Cyclopropanes and Heterocycle Formation Strategies

II. Proof of Concept: Oxepane Synthesis

III. Progress Towards Nitrogenous Heterocycles

IV. Radical Strategies

V. Future Directions

Page 28: A Cyclopropane Fragmentation Approach to Heterocycle Assembly

Nitrogen Analogs: Azepines

NH

OHN

O

R N

O

R

RCHO, Na2SO4

Lewis Acid(s)

R

R R

Analogous reaction in nitrogenous heterocycles?

Page 29: A Cyclopropane Fragmentation Approach to Heterocycle Assembly

Nature of Protecting Group on Nitrogen

NH2

OH

NH

OH

Boc

NH

O

Ph

N

O

PhBoc

NH

O

Ph

LA

N

O

Ph

LA

Boc

NH

Ph

OLA

N Ph

OLA

Boc

NH

O

Ph

N

O

PhBoc

PhCHO, Na2SO4

Lewis Acid(s)

PhCHO, Na2SO4

Lewis Acid(s)

Boc =O

O

Page 30: A Cyclopropane Fragmentation Approach to Heterocycle Assembly

Assembly of Azepine Precursor

OEt

NH2 O

OEt

NHBoc

O

OH

NHBoc

Boc2O;

KulinkovichCyclopropanation

>99%

Ti(O-iPr)4 (1 eq)EtMgBr (4 eq)THF/Et2O (4:1)

72%

Page 31: A Cyclopropane Fragmentation Approach to Heterocycle Assembly

Cyclization attempts

OH

NHBoc

N OH

O

OH

ZrCl4LaCl3TiCl4BBr3

PhCHO, LANo Reaction

Brönsted Acids employed:HCOOHTFApTSA

Lewis Acids employed:Al(OTf)3Yb(OTf)3In(OTf)3Bi(OTf)3

Page 32: A Cyclopropane Fragmentation Approach to Heterocycle Assembly

Cyclization Attempts with Free Amine

OH

OH

OH

NH2

OH

N3

NH

O

Ph

PhCHO, LA

PPh3, DIAD,Zn(N3)3-pyr2

60% OH

NH2LAH or NaBH4

or PPh3/H2O

Amino alcohol not yet isolated

Page 33: A Cyclopropane Fragmentation Approach to Heterocycle Assembly

Outline

I. Introduction to Cyclopropanes and Heterocycle Formation Strategies

II. Proof of Concept: Oxepane Synthesis

III. Progress Towards Nitrogenous Heterocycles

IV. Radical Strategies

V. Future Directions

Page 34: A Cyclopropane Fragmentation Approach to Heterocycle Assembly

Radical Cyclization

OM

O

O M

O

Heterolytic

Homolytic

Page 35: A Cyclopropane Fragmentation Approach to Heterocycle Assembly

Radical Cyclization

OM

O

O M

O

Heterolytic

HomolyticOH [O]

Heterolysis is known for cyclopropanols with mild single electron oxidants (e.g., Mn3+ and Fe3+).

Page 36: A Cyclopropane Fragmentation Approach to Heterocycle Assembly

Radical Cyclization Utilizing Azide

IN3

IN3

NH

H

NTs

N N N

N

NN2

1. Bu3SnH, AIBN PhH, , 2h

2. TsCln

n n = 1, 88%n = 2, 50%

Kim, 1994

n

- N2

Kim, S.; Joe, G. H.; Do, J. Y. J. Am. Chem. Soc. 1994, 116, 5521-5522.

Page 37: A Cyclopropane Fragmentation Approach to Heterocycle Assembly

Radical Cyclization Towards Heterocycles

OH

N3 N3

O

HN

O

Mn(pic)3

orFeCl3

- N2

solvent

pic =N

O

O

Page 38: A Cyclopropane Fragmentation Approach to Heterocycle Assembly

Radical Cyclization Towards Functionalized Heterocycle

OH

N3 N3

O

HN

O

Mn(pic)3

orFeCl3

RR R

- N2

solvent

pic =N

O

O

Page 39: A Cyclopropane Fragmentation Approach to Heterocycle Assembly

Progress Towards Piperidine

N3 O

X

OH

N3 N3

O

HN

O

Not observed

X = H, OH, OOH, Cl

Oxidant

DMF or benzene

Oxidants Used:FeCl3Fe(NO3)3Mn(OAc)3Mn(pic)3

Page 40: A Cyclopropane Fragmentation Approach to Heterocycle Assembly

Recourse for Piperidine

OO

PhMgBr

OH

N3Ph

OH

OH Ph

N3

O

Ph

HN

O

Ph

Ti(O-iPr)4 (0.1 eq)THF/Et2O (4:1)

Oxidant

Page 41: A Cyclopropane Fragmentation Approach to Heterocycle Assembly

Towards the Pyrrolidine

R3NR3

R1 R2

O[O]

RO

OR'OH

RO

OR'NH2

RO

OR'N3

R

ROH

N3

R

Tf2O, NaN3;

Cu(II)SO4

Kulinkovich Reaction

Ti(Oi-Pr)4 (0.1 eq),EtMgBr, THF/Et2O

Tf2O, pyr;

NaN3, DMF, 24h

Alper, P. B.; Hung, S.-C.; Wong, C.-H. Tetrahedron Lett. 1996, 6029-6032.

Page 42: A Cyclopropane Fragmentation Approach to Heterocycle Assembly

Outline

I. Introduction to Cyclopropanes and Heterocycle Formation Strategies

II. Proof of Concept: Oxepane Synthesis

III. Progress Towards Nitrogenous Heterocycles

IV. Radical Strategies

V. Future Directions

Page 43: A Cyclopropane Fragmentation Approach to Heterocycle Assembly

Alternative Ring Size

OHOHR

OO

R

R

RCHOO

R

MO

HR O

O

R R

Lewis AcidLewis Acid

Page 44: A Cyclopropane Fragmentation Approach to Heterocycle Assembly

Sites of Functionalization on Oxepane Ring

OH

OH O

O

O

O

R

RR

OH

OH O

O

O

OR

R

4 diastereomers 4 diastereomers

O

OR

R+

Aldehyde, LA

Aldehyde, LA

Page 45: A Cyclopropane Fragmentation Approach to Heterocycle Assembly

Cyclopropane Functionalization via Cyclopropene

OH

R

OH

OH

OH

R

FOTIPS

R

OTIPS

OR R

R

OM

OTIPS

M

OTIPS

R

OR R

RO

OTIPS

N2

R

Chiral Rh(II)

RCHO, LA

O

O

R

Doyle, M. P.; Protopopova, M.; Müller, P.; Ene, D.; Shapiro, E. A. J. Am. Chem. Soc. 1994, 116, 8492.Müller, P.; Granicher, C. Helv. Chim. Acta 1995, 78, 129.

Fox, J. M.; Yan, N. Curr. Org. Chem. 2005, 9, 719.

Page 46: A Cyclopropane Fragmentation Approach to Heterocycle Assembly

Natural Product Total Synthesis

NH

O

H3CO OHO

N

O H

O

O

HH3C

Piperidines Azepines

TetrahydropyransOxepanes (7) and Oxocanes (8)

Coniine SpectalinineStemoamide

Centrolobine Lauthisan

NH

H3C

OH

OH

11

O

Cl BrH H

Isolaurepinnacin

Page 47: A Cyclopropane Fragmentation Approach to Heterocycle Assembly

Conclusions

Cyclopropanes can be utilized as homo-alkenes to prepare heterocycles

A facile two-step procedure has been developed to prepare oxepanes with excellent stereoselectivity

Further substitution and alternate heterocycles are being explored

Radical cyclization promises another method to deliver heterocycles from cyclopropanols

Page 48: A Cyclopropane Fragmentation Approach to Heterocycle Assembly

Epilogue on Undergraduate Teaching and Research

Quality of Life

Opportunities for Funding

Satisfaction Direction of research Students

Page 49: A Cyclopropane Fragmentation Approach to Heterocycle Assembly

The Group

Kerry O’Neil, JMU ’05 Seth Kingree, JMU ’06 Cambria Baylor, JMU ’06

Andrew Blanchard, JMU ’07 Steve Andrews, JMU ’07 Erik Stang, JMU ’06

Page 50: A Cyclopropane Fragmentation Approach to Heterocycle Assembly

Where’s James Madison University?

Page 52: A Cyclopropane Fragmentation Approach to Heterocycle Assembly

Acknowledgements

NMR: Tom Gallaher and Jeff Molloy

Nebraska Center for Mass Spectrometry

Drs. Kevin Caran and Scott Lewis

James Madison University

Page 53: A Cyclopropane Fragmentation Approach to Heterocycle Assembly
Page 54: A Cyclopropane Fragmentation Approach to Heterocycle Assembly

Future Direction: Cyclopropane Functionalization

OTIPSTIPSO

N2

CO2R

O

CHORCO2R

OTIPS

CO2R

TIPSO

O R R

OH

CO2R

HO

O

R

OHRO2C

Chiral Rh Cat

RCHO, LA

TBAF, -78 oC

R

Page 55: A Cyclopropane Fragmentation Approach to Heterocycle Assembly

Other Backups: Discrete Homoenolate

X

OTMS

R

R

X

O

R

R

M

X RR

O M

X

R

R

O

R

Metals Employed:AgI, AuI, CuII,HgII, PdII,PtII, SnIV

Page 56: A Cyclopropane Fragmentation Approach to Heterocycle Assembly

Other Backups: Radical

N

HO

R

RN

O

R

R

N

R

R

O

R

CO2RO

HO

R R

CO2RO

O

O

CO2R

RO

Page 57: A Cyclopropane Fragmentation Approach to Heterocycle Assembly

Aza Cope Possibility

NR

Ph

OLA

NR

O

Ph

LA

NR

O

Ph

Page 58: A Cyclopropane Fragmentation Approach to Heterocycle Assembly

Modified Point of Attachment

R

OH

O

OR2R1

R

OH OHR1

OMO

H

H

H

R RO

H

HH

R R

R1 OR

O OLA

R R1

R3

R

O Ti(Oi-Pr)n

OR1

OR

R3

R

OH OHR1Ti(Oi-Pr)4, PhCH3, rt;then c-C5H9MgCl, THF

15 examples42-68% yield3.5-12.2:1 ds

Cha, 2002

R3CHO, LA

Previous Modified Connectivity

H

H

Page 59: A Cyclopropane Fragmentation Approach to Heterocycle Assembly

Precedent For Acyliminium Formation

Hsung Precedent

NHBocO

OTBS

R

NBoc

OTBS

R

NBoc

OTBS

R

OHCO

HCO2H

THFToluene

R = hexyl

61%Hsung, 2004