A cell-integrated semi-Lagrangian dynamical scheme based on a step-function representation

23
A cell-integrated semi-Lagrangian dynamical scheme based on a step- function representation Eigil Kaas, Bennert Machenhauer and Peter Hjort Lauritzen Danish Meteorological Institute Lyngbyvej 100, DK-2100 Copenhagen, Denmark SRNWP-NT mini workshop in Toulouse 12-13 December 2002

description

SRNWP-NT mini workshop in Toulouse 12-13 December 2002. A cell-integrated semi-Lagrangian dynamical scheme based on a step-function representation. Eigil Kaas, Bennert Machenhauer and Peter Hjort Lauritzen Danish Meteorological Institute Lyngbyvej 100, DK-2100 Copenhagen, Denmark. - PowerPoint PPT Presentation

Transcript of A cell-integrated semi-Lagrangian dynamical scheme based on a step-function representation

Page 1: A cell-integrated semi-Lagrangian dynamical scheme based on a step-function representation

A cell-integrated semi-Lagrangian dynamical scheme based on a step-function representation

Eigil Kaas, Bennert Machenhauer and Peter Hjort Lauritzen

Danish Meteorological InstituteLyngbyvej 100, DK-2100 Copenhagen, Denmark

SRNWP-NT mini workshop inToulouse 12-13 December 2002

Page 2: A cell-integrated semi-Lagrangian dynamical scheme based on a step-function representation

The goals

To construct a dynamical scheme for atmospheric dynamics and tracer transport with all the following properties:

• Indefinite order of accuracy for advection by a flow that is constant in time an space (except for initial truncation).

• Full local mass conservation.• Positive definite.• Monotonic.• Numerically effective.

Our solution: SF-CISLStep-Function Cell Integrated Semi-Lagragian scheme combined with a semi-implicit scheme for inertia-gravity wave terms.

Page 3: A cell-integrated semi-Lagrangian dynamical scheme based on a step-function representation

OUTLINE• The basic idea behind step function advection.

• The basic idea behind CISL.

• 2-D passive test simulations.

• A new semi-implicit formulation of CISL for the shallow water equations.

• Tests simulations.

• Discussion: efficiency, generalisation to 3-D and to spherical geometry …

Page 4: A cell-integrated semi-Lagrangian dynamical scheme based on a step-function representation

What is CISL ?

Nair and Machenhauer (2002)dd ji

njiji

1nji VhVh ,,,,

)()( tVttV

hdVdt

dhdV

dt

d

Integrate the continuity equation over a time dependent Lagrangian volume:

0hdVdt

dtV

)(

Page 5: A cell-integrated semi-Lagrangian dynamical scheme based on a step-function representation

What is CISL ?

Nair and Machenhauer (2002)

jiy ,

jix ,

jijiji yxV ,,,

dd jinjiji

1nji VhVh ,,,,

djiV ,

Page 6: A cell-integrated semi-Lagrangian dynamical scheme based on a step-function representation

The basic idea behind step-function advectionT

ime

x-direction

idx

ih ih

i i+1i-1

)(

)(

1ii

1ii1ii

ii

i

hhabsfor1

hhabsforhh

hh

dx 1iii hhh ,

1iiiii hdx1hdxh )(

10dxi ,

Page 7: A cell-integrated semi-Lagrangian dynamical scheme based on a step-function representation

1iii1i

1iiii1i

hhhh

hhhhh

,

,

Spatial truncation (horizontal diffusion)

Page 8: A cell-integrated semi-Lagrangian dynamical scheme based on a step-function representation

2-D step function representation

jih ,

y

jih ,

jih ,

1j1ij1iji1jijiji

j1ij1ijijijijiji

hdy1dx1hdy1dx

hdydx1hdydxh

,,,,,,

,,,,,,,

))(()(

)(

Page 9: A cell-integrated semi-Lagrangian dynamical scheme based on a step-function representation

Order of calculations

7. Calculate for each departure cell (=(result of 4.)/ )nji d

h ,

6. Calculate for each ”north-south” intersecty

nji d

h ,

4. Perform the cell integration (result = )dd ji

nji Vh ,,

5. Calculate for each departure grid cell point corner pointnji d

h ,

8. Do the ”horizontal diffusion” (i.e. modify if needed)

2. Calculate the departure grid cell corner points.

1. Calculate dxi,j and dyi,j for each Eulerian grid cell.

3. Calculate the ‘s and define the re-mappings.djiV ,

djiV ,

nji d

h ,

Page 10: A cell-integrated semi-Lagrangian dynamical scheme based on a step-function representation

10. Calculate the relative areal change for each step function

Order of calculations (cont.)

9. Calculate new values of dxi,j and dyi,j based on upstream

values of , and .n

ji dh ,

yn

ji dh ,

nji d

h ,

12. Calculate the final values of and from the values of

dxi,j , dyi,j and .

y1n

jih ,

1njih

,

1njih

,

11. Use this information to calculate the final value of )( ,,

,,

nji

ji

ji1nji d

d hh

))(()(

)(

,,,,,,

,,,,,,,

1j1i1j1id1j1ij1ij1idj1i

1ji1jid1jijijidjiji

dy1dx1Vdydx1V

dy1dxVdydxVd

)])(()(

)([

,,,,

,,,,,,,

1j1i1j1ij1ij1i

1ji1jijijijijiji

dy1dx1dydx1

dy1dxdydxyx

ji

ji d

,

,

Page 11: A cell-integrated semi-Lagrangian dynamical scheme based on a step-function representation

2-D passive test simulationsSolid body rotation, 6 rotations, 96 time steps per rotation

100 x 100 grid points/cells

Page 12: A cell-integrated semi-Lagrangian dynamical scheme based on a step-function representation

A new semi-implicit formulation of CISL for the shallow water equations.

y

v

x

uDFD

dt

d

yfu

dt

dvx

fvdt

du

s

s

,

)(

)(

vus

,

depth of fluid

height of topographyvelocity components

Page 13: A cell-integrated semi-Lagrangian dynamical scheme based on a step-function representation

a

d

d

nn1nE A

AFt

~

A new semi-implicit 2-D CISL formulation (1)

)~

( 1na

1na0

1nE

1nideal 2

t

DD

)~

( 1n1n0

1nE

1n DD2

t

~ indicates time extrapolation from n and n-1

The traditional two-time level SL-scheme:

d

nn1nad

nnndd

nn Ft2

tFt

2

tFt

DD ~

CISL explicit forecast:

DD t1A

A

A

AAt

a

d

a

da

)(

Ideal semi-implicit CISL forecast:

a

1nd

a

nd

d

nn

A

A50

A

A50Ft

ad ~..

Elliptic equation too complicated !

1n1nd

nn

d

nn1nE D

2

tD

2

ttF

~~

Page 14: A cell-integrated semi-Lagrangian dynamical scheme based on a step-function representation

A new semi-implicit 2-D CISL formulation (2)

a

dd

nna0

1n1na0

a

dd

nn1n

AAD

2

t

D2

t

AAFt

)~

(

~

D

D

The basic explicit forecast

Inconsistent implicit correction term

Correction of the inconsistency in the previous time step

Page 15: A cell-integrated semi-Lagrangian dynamical scheme based on a step-function representation

Tests of the semi-implicit SF-CISL in a shallow water channel model

2000

0 km

20000 km

Page 16: A cell-integrated semi-Lagrangian dynamical scheme based on a step-function representation

Spectral Eulerian model:3 time level spectral transform scheme (double Fourier series) Semi-implicit formulation (Coriolis explicit)Reasonable implicit horizontal diffusion

Eulerian grid-point model: 3 time level centered difference scheme Semi-implicit formulation (Coriolis explicit)Reasonable explicit horizontal diffusion

Interpolating semi-Lagrangian (IPSL) model:2 time level scheme based on bi-cubic interpolation Semi-implicit formulation (Coriolis implicit)No additional horizontal diffusion

SF-CISL model: 2 time level scheme based on step-function representation Semi-implicit formulation (Coriolis implicit)No additional horizontal diffusion

Four different model formulatoins

Page 17: A cell-integrated semi-Lagrangian dynamical scheme based on a step-function representation

Spectral Eulerian modelEulerian grid-point model

Interpol. semi Lagrangian model SF-CISL model

48 hour ”forecasts” at low resolution.Parameter: height field

Page 18: A cell-integrated semi-Lagrangian dynamical scheme based on a step-function representation

Spectral Eulerian modelEulerian grid-point model

Interpol. semi Lagrangian model SF-CISL model

48 hour ”forecasts” at high resolution.Parameter: height field

Page 19: A cell-integrated semi-Lagrangian dynamical scheme based on a step-function representation

Spectral Eulerian modelEulerian grid-point model

Interpol. semi Lagrangian model SF-CISL model

48 hour ”forecasts” at low resolution.Parameter: passive tracer

Page 20: A cell-integrated semi-Lagrangian dynamical scheme based on a step-function representation

Spectral Eulerian modelEulerian grid-point model

Interpol. semi Lagrangian model SF-CISL model

48 hour ”forecasts” at high resolution.Parameter: passive tracer

Page 21: A cell-integrated semi-Lagrangian dynamical scheme based on a step-function representation

Interpol. semi Lagrangian model

SF-CISL model

10 day ”forecasts” at high resolution.Parameter: passive tracer

Page 22: A cell-integrated semi-Lagrangian dynamical scheme based on a step-function representation

Discussion and conclusion

• Cost Passive advection 1.7 times IPSL.

• Truncation/horizontal diffusion This is a critical point

• Memory consumption When step function geometries are defined from the total mass field they could in principle be used for all prognostic variables (i.e. only one prognostic variable per tracer variable)

• The passive advection tests in realistic flow demonstrate the monotonicity, mass conservation and positive definiteness

• The shallow-model works with the new scheme !No noise due to step functions

”Bad”

”Good”

Page 23: A cell-integrated semi-Lagrangian dynamical scheme based on a step-function representation

Discussion and conclusion

• Other possible formulations“horizontal diffusion/truncation”Choice of step-functions.

• Generalisation to 3-DCascade interpolation (Nair et al. 1999) for the vertical problem.Prognostic variables: 3-D cell averages, horizontal averages at model levels, vertical averages at grid points, grid point values.

• Spherical geometryNo real problem (reduced lat-lon (or Gaussian) grid).