A blow-up problem of a class of axisymmetric Navier-Stokes...

49
A blow-up problem of a class of axisymmetric Navier-Stokes flows and Fujita equation RIMS Kyoto Univ. Koji Ohkitani September 10, 2005

Transcript of A blow-up problem of a class of axisymmetric Navier-Stokes...

Page 1: A blow-up problem of a class of axisymmetric Navier-Stokes ...homepages.warwick.ac.uk/~masbu/turb_symp/sept05... · Fujita eq. 0 0.5 1 1.5 2 2.5 3 0 2 4 6 8 10 W(r) r 'uf.fujita.10k.t00.dat'

A blow-up problem of a class of axisymmetric

Navier-Stokes flows and Fujita equation

RIMS Kyoto Univ. Koji Ohkitani

September 10, 2005

Page 2: A blow-up problem of a class of axisymmetric Navier-Stokes ...homepages.warwick.ac.uk/~masbu/turb_symp/sept05... · Fujita eq. 0 0.5 1 1.5 2 2.5 3 0 2 4 6 8 10 W(r) r 'uf.fujita.10k.t00.dat'

Introduction

Axisymmetric NS eqs. (with infinite total energy)

vortex stereched by a mean flow

Burgers vortex (1-celled, linear)

Sullivan vortex (2-celled, nonlinear)

1

Page 3: A blow-up problem of a class of axisymmetric Navier-Stokes ...homepages.warwick.ac.uk/~masbu/turb_symp/sept05... · Fujita eq. 0 0.5 1 1.5 2 2.5 3 0 2 4 6 8 10 W(r) r 'uf.fujita.10k.t00.dat'

Kida-Yanase (1999)

2

Page 4: A blow-up problem of a class of axisymmetric Navier-Stokes ...homepages.warwick.ac.uk/~masbu/turb_symp/sept05... · Fujita eq. 0 0.5 1 1.5 2 2.5 3 0 2 4 6 8 10 W(r) r 'uf.fujita.10k.t00.dat'

Donaldson and Sullivan (1960)

3

Page 5: A blow-up problem of a class of axisymmetric Navier-Stokes ...homepages.warwick.ac.uk/~masbu/turb_symp/sept05... · Fujita eq. 0 0.5 1 1.5 2 2.5 3 0 2 4 6 8 10 W(r) r 'uf.fujita.10k.t00.dat'

Contents

0. Basic equations

1. Survey on stationary solutions

2. Nonstationary blow-up solutionsnot the $ 106 prize problem

4

Page 6: A blow-up problem of a class of axisymmetric Navier-Stokes ...homepages.warwick.ac.uk/~masbu/turb_symp/sept05... · Fujita eq. 0 0.5 1 1.5 2 2.5 3 0 2 4 6 8 10 W(r) r 'uf.fujita.10k.t00.dat'

References

C.duP. Donaldson and R.D. Sullivan (1960)

”Behavior of solutions of the Navier-Stokes equations for a complete class ofthree-dimensional viscous vortices”,Proc. 1960 Heat Transfer Fluid Mech. Inst., 16–30Stanford University Press.

”Examination of the soultions of the Navier-Stokes equations for a class of three-dimensional vortices.”Part I (1960), Part II (1962), Part III (1963)AFOSR TN 60-1227 (1960)Final report on AFOSR Contract No. AF49(638)-255

5

Page 7: A blow-up problem of a class of axisymmetric Navier-Stokes ...homepages.warwick.ac.uk/~masbu/turb_symp/sept05... · Fujita eq. 0 0.5 1 1.5 2 2.5 3 0 2 4 6 8 10 W(r) r 'uf.fujita.10k.t00.dat'

W.S. Lewellen, JFM 14(1962)420

6

Page 8: A blow-up problem of a class of axisymmetric Navier-Stokes ...homepages.warwick.ac.uk/~masbu/turb_symp/sept05... · Fujita eq. 0 0.5 1 1.5 2 2.5 3 0 2 4 6 8 10 W(r) r 'uf.fujita.10k.t00.dat'

Ranque-Hilsch tube

7

Page 9: A blow-up problem of a class of axisymmetric Navier-Stokes ...homepages.warwick.ac.uk/~masbu/turb_symp/sept05... · Fujita eq. 0 0.5 1 1.5 2 2.5 3 0 2 4 6 8 10 W(r) r 'uf.fujita.10k.t00.dat'

0. Basic equationsAnsatzaxisymmetric Navier-Stokes eq. in cylindrical coordinates(r,φ ,z)

u = (ur ,uφ ,uz) = (U(r, t),V(r, t),zW(r, t))

vorticity equation

∂ω3∂ t

+U(r, t)∂ω3∂ r

= W(r, t)ω3+ν4ω3

Burgers vortex

(ur ,uφ ,uz) =(−αr,

Γ2πr

(1−e−

αr22ν

),2αz

), or ω3 =

αΓ2πν

e−αr22ν

U(r, t) =−αr, W(r, t) = 2α

8

Page 10: A blow-up problem of a class of axisymmetric Navier-Stokes ...homepages.warwick.ac.uk/~masbu/turb_symp/sept05... · Fujita eq. 0 0.5 1 1.5 2 2.5 3 0 2 4 6 8 10 W(r) r 'uf.fujita.10k.t00.dat'

Sullivan vortex

(ur ,uφ ,uz) =

−αr +

6νr

(1−e−

αr22ν

),

Γ2πr

H(αr2

2ν )H(∞)

,2αz

(1−3e−

αr22ν

)

H(r)≡∫ r

0exp

(−t +3

∫ t

0

1−e−s

sds

)dt

9

Page 11: A blow-up problem of a class of axisymmetric Navier-Stokes ...homepages.warwick.ac.uk/~masbu/turb_symp/sept05... · Fujita eq. 0 0.5 1 1.5 2 2.5 3 0 2 4 6 8 10 W(r) r 'uf.fujita.10k.t00.dat'

axisymmetric Navier-Stokes eqs.

∂U∂ t

+U∂U∂ r

−V2

r=−∂ p

∂ r+ν

∂∂ r

(1r

∂∂ r

(rU ))

∂V∂ t

+U∂V∂ r

+UV

r= ν

∂∂ r

(1r

∂∂ r

(rV ))

z

(∂W∂ t

+U∂W∂ r

+W2)

=−∂ p∂z

+νz1r

∂∂ r

(r∂W∂ r

)

10

Page 12: A blow-up problem of a class of axisymmetric Navier-Stokes ...homepages.warwick.ac.uk/~masbu/turb_symp/sept05... · Fujita eq. 0 0.5 1 1.5 2 2.5 3 0 2 4 6 8 10 W(r) r 'uf.fujita.10k.t00.dat'

continuity

1r

∂∂ r

(rU )+W = 0

∂ 2p∂ r∂z

= 0⇒ z∂∂ r

[∂W∂ t

+U∂W∂ r

+W2−ν1r

∂∂ r

(r∂W∂ r

)]= 0

∂W∂ t

+U∂W∂ r

+W2−ν1r

∂∂ r

(r∂W∂ r

)=−C(z, t), in fact ,=−C(t)

p(z, r, t) =C(t)

2z2+

∫ r V2

rdr +

12U2

+∂∂ t

∫ rUdr +ν

1r

∂∂ r

(rU )+K

11

Page 13: A blow-up problem of a class of axisymmetric Navier-Stokes ...homepages.warwick.ac.uk/~masbu/turb_symp/sept05... · Fujita eq. 0 0.5 1 1.5 2 2.5 3 0 2 4 6 8 10 W(r) r 'uf.fujita.10k.t00.dat'

Relationship between U and W

W =−1r

∂∂ r

(rU ) or U(r) =−1r

∫ r

0r ′W(r ′)dr′

In R2, C(t)≡ 0

∂W∂ t

+U∂W∂ r

+W2 = ν1r

∂∂ r

(r∂W∂ r

),

U(r) =−1r

∫ r

0r ′W(r ′)dr′

Invisicd case ν = 0, blow-upJ.D. Gibbon, D.R. Moore, J.T. Stuart,Nonlinearity 16 (2003), 1823.GFD Physica D 132 (1999)497OG, Phys. Fluids, 12(2000)3181

12

Page 14: A blow-up problem of a class of axisymmetric Navier-Stokes ...homepages.warwick.ac.uk/~masbu/turb_symp/sept05... · Fujita eq. 0 0.5 1 1.5 2 2.5 3 0 2 4 6 8 10 W(r) r 'uf.fujita.10k.t00.dat'

Donaldson and Sullivan (1960)

13

Page 15: A blow-up problem of a class of axisymmetric Navier-Stokes ...homepages.warwick.ac.uk/~masbu/turb_symp/sept05... · Fujita eq. 0 0.5 1 1.5 2 2.5 3 0 2 4 6 8 10 W(r) r 'uf.fujita.10k.t00.dat'

1. Stationary solutions (viscous)

Stationary Navier-Stokes eqs.

1r

∂∂ r

(rU )+W = 0

Ur

∂∂ r

(rV ) = ν∂∂ r

(1r

∂∂ r

(rV ))

U∂W∂ r

+W2−ν1r

∂∂ r

(r∂W∂ r

)=−C

14

Page 16: A blow-up problem of a class of axisymmetric Navier-Stokes ...homepages.warwick.ac.uk/~masbu/turb_symp/sept05... · Fujita eq. 0 0.5 1 1.5 2 2.5 3 0 2 4 6 8 10 W(r) r 'uf.fujita.10k.t00.dat'

non-dimensionalization

x≡ r2/R2, f (x)≡−2rU (r)/RS

g(x)≡ RW(r)/S, h(x)≡ rV (r)/Γ

f ′ = g

4νSR

xh′′+ f h′ = 0

f f ′′− ( f ′)2+4νSR

(x f ′′)′ = R2

S2C(t)

( f (0) = h(0) = 0, f ′(1) = 0,h(1) = 0)

15

Page 17: A blow-up problem of a class of axisymmetric Navier-Stokes ...homepages.warwick.ac.uk/~masbu/turb_symp/sept05... · Fujita eq. 0 0.5 1 1.5 2 2.5 3 0 2 4 6 8 10 W(r) r 'uf.fujita.10k.t00.dat'

Transformation

X = cx, c2≡− R4

16ν2C(t)

F(X) =SR4ν

f (x)

or

F(X) =− r2ν

U(r),X =√−C(t)

r2

16

Page 18: A blow-up problem of a class of axisymmetric Navier-Stokes ...homepages.warwick.ac.uk/~masbu/turb_symp/sept05... · Fujita eq. 0 0.5 1 1.5 2 2.5 3 0 2 4 6 8 10 W(r) r 'uf.fujita.10k.t00.dat'

(XF′′)′+FF ′′− (F ′)2+1 = 0

Xh′′(X)+F(X)h′(X) = 0

(F(0) = h(0) = 0, F ′(c) = 0,h(c) = 0)

A = F ′(0), F ′′(0) = A2−1

F(X) =±X Burgers

F(X) = X−3(1−e−X) Sullivan

17

Page 19: A blow-up problem of a class of axisymmetric Navier-Stokes ...homepages.warwick.ac.uk/~masbu/turb_symp/sept05... · Fujita eq. 0 0.5 1 1.5 2 2.5 3 0 2 4 6 8 10 W(r) r 'uf.fujita.10k.t00.dat'

2. Nonstationary solutions (viscous)

ω ≡−W

∂ω∂ t

+U∂ω∂ r

= ω2+ν1r

∂∂ r

(r∂ω∂ r

),

U(r) =1r

∫ r

0r ′ω(r ′)dr′

18

Page 20: A blow-up problem of a class of axisymmetric Navier-Stokes ...homepages.warwick.ac.uk/~masbu/turb_symp/sept05... · Fujita eq. 0 0.5 1 1.5 2 2.5 3 0 2 4 6 8 10 W(r) r 'uf.fujita.10k.t00.dat'

Comparison to reaction-diffusion eqs.

∂u∂ t

= up+4u, u(x, t = 0) = u0(x)(≥ 0)

Fujita equations (1966) RN

• If 1 < p < 1+2/N, no global solutions except u≡ 0 (blow-up)

• If p > 1+2/N, some global solutions for ’small’ initial data,some blow-up for ’large’ initial data

• p = pc = 1+2/N blowup

19

Page 21: A blow-up problem of a class of axisymmetric Navier-Stokes ...homepages.warwick.ac.uk/~masbu/turb_symp/sept05... · Fujita eq. 0 0.5 1 1.5 2 2.5 3 0 2 4 6 8 10 W(r) r 'uf.fujita.10k.t00.dat'

Meaning of the theorem

• If p is large, diffusion dominates over nonlinearity for small initial data

• decay rate vs. blowup rate

(time)−N/2≈ (time)−1/(p−1)

20

Page 22: A blow-up problem of a class of axisymmetric Navier-Stokes ...homepages.warwick.ac.uk/~masbu/turb_symp/sept05... · Fujita eq. 0 0.5 1 1.5 2 2.5 3 0 2 4 6 8 10 W(r) r 'uf.fujita.10k.t00.dat'

Are there any self-similar blow-up solutions ?

ω =1

T− tf

(r√

ν(T− t)

)

U =√

νT− t

g

(r√

ν(T− t)

)

g =1ξ

∫ ξ

0η f (η)dη , ξ =

r√ν(T− t)

ODE

f +ξ2

f ′+ f ′ξ

∫ ξ

0η f (η)dη− f 2 =

(ξ f ′)′

21

Page 23: A blow-up problem of a class of axisymmetric Navier-Stokes ...homepages.warwick.ac.uk/~masbu/turb_symp/sept05... · Fujita eq. 0 0.5 1 1.5 2 2.5 3 0 2 4 6 8 10 W(r) r 'uf.fujita.10k.t00.dat'

12(ξ 2 f )′+ f ′

ξ

∫ ξ

0η f (η)dη− f 2 =

(ξ f ′)′

BC f ′(0) = 0, f (∞) = 0

By∫ ∞0 dξ

2∫ ∞

0ξ f (ξ )2dξ = 0⇒ f (ξ )≡ 0

Trivial ones only

cf. constant sols. f = 0, 1

22

Page 24: A blow-up problem of a class of axisymmetric Navier-Stokes ...homepages.warwick.ac.uk/~masbu/turb_symp/sept05... · Fujita eq. 0 0.5 1 1.5 2 2.5 3 0 2 4 6 8 10 W(r) r 'uf.fujita.10k.t00.dat'

Consider Lp-norm

ω(r, t)≥ 0

‖ω‖pp =

∫ ∞

0ω(r)p2πrdr = 〈ω(r)p〉

d‖ω‖pp

dt= (p+1)‖ω‖p+1

p+1−ν(p−1)

⟨(∂ω∂ r

)2ω p−2

If U ≡ 0

d‖ω‖pp

dt= p‖ω‖p+1

p+1−ν(p−1)

⟨(∂ω∂ r

)2ω p−2

23

Page 25: A blow-up problem of a class of axisymmetric Navier-Stokes ...homepages.warwick.ac.uk/~masbu/turb_symp/sept05... · Fujita eq. 0 0.5 1 1.5 2 2.5 3 0 2 4 6 8 10 W(r) r 'uf.fujita.10k.t00.dat'

Numerics

ν = 1×10−2, dt = 2×10−3,dr = 1×10−2

N = 10000, L = 100.

I.C.

W(r) = re−r

24

Page 26: A blow-up problem of a class of axisymmetric Navier-Stokes ...homepages.warwick.ac.uk/~masbu/turb_symp/sept05... · Fujita eq. 0 0.5 1 1.5 2 2.5 3 0 2 4 6 8 10 W(r) r 'uf.fujita.10k.t00.dat'

Fujita eq.0

0.5

1

1.5

2

2.5

3

0 2 4 6 8 10

W(r

)

r

’uf.fujita.10k.t00.dat’’uf.fujita.10k.t04.dat’’uf.fujita.10k.t08.dat’’uf.fujita.10k.t12.dat’’uf.fujita.10k.t16.dat’’uf.fujita.10k.t20.dat’’uf.fujita.10k.t24.dat’

Present Class

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 2 4 6 8 10

W(r

)r

’uf.morton.10k.t00.dat’’uf.morton.10k.t04.dat’’uf.morton.10k.t08.dat’’uf.morton.10k.t12.dat’’uf.morton.10k.t16.dat’’uf.morton.10k.t20.dat’

25

Page 27: A blow-up problem of a class of axisymmetric Navier-Stokes ...homepages.warwick.ac.uk/~masbu/turb_symp/sept05... · Fujita eq. 0 0.5 1 1.5 2 2.5 3 0 2 4 6 8 10 W(r) r 'uf.fujita.10k.t00.dat'

L2-norm

0

5

10

15

20

0 0.5 1 1.5 2 2.5 3

E(t

)

t

’ens.morton.10k.dat’’ens.fujita.10k.dat’

26

Page 28: A blow-up problem of a class of axisymmetric Navier-Stokes ...homepages.warwick.ac.uk/~masbu/turb_symp/sept05... · Fujita eq. 0 0.5 1 1.5 2 2.5 3 0 2 4 6 8 10 W(r) r 'uf.fujita.10k.t00.dat'

Proof of blow-up( global nonexistence )method of subsolutionDeng, Kwong and Levine(1992)

ut = uxx+ εuux+12(a‖u(·, t)‖p−1+b)u, a,ε ∈R, b > 0, p > 1

in 2 steps(i) comparison principle

∂tu = A(u)+F(u)

A(u) = diffusion term,F(u) = nonlinear term

∂tu−A(u)−F(u)≥ ∂tv−A(v)−F(v)⇒ u(·, t)≥ v(·, t),27

Page 29: A blow-up problem of a class of axisymmetric Navier-Stokes ...homepages.warwick.ac.uk/~masbu/turb_symp/sept05... · Fujita eq. 0 0.5 1 1.5 2 2.5 3 0 2 4 6 8 10 W(r) r 'uf.fujita.10k.t00.dat'

(ii)construction of subsolution

∂ω∂ t

≤ ω2−U∂ω∂ r

+ν1r

∂∂ r

(r∂ω∂ r

),

(ξ f ′)′− f + f 2− ξ2

f ′− f ′

ξ

∫ ξ

0η f (η)dη ≥ 0

f = aexp(−bξ 2), a,b > 0

((a− (4b+1))+b(a+4b)ξ 2

)f ≥ 0

OK with a > 4b+1

ω(r, t)≥ ω(r, t) =1

T− tf (ξ )

Page 30: A blow-up problem of a class of axisymmetric Navier-Stokes ...homepages.warwick.ac.uk/~masbu/turb_symp/sept05... · Fujita eq. 0 0.5 1 1.5 2 2.5 3 0 2 4 6 8 10 W(r) r 'uf.fujita.10k.t00.dat'

∂ω∂ t

≤ 2ω2− 1r

∂∂ r

(rU ω)+ν1r

∂∂ r

(r∂ω∂ r

),

U(r) =1r

∫ r

0r ′ω(r ′)dr′

Performing∫ t

0dt

∫ ∞

0drrφ(r, t)

we find ∫ ∞

0dt′ωφ(r)rdr−

∫ ∞

0ω0(r)φ(r,0)rdr

≤∫ t

0dt′

∫ ∞

0

∂φ∂ t′ +2ω2φ +U ω

∂φ∂ r

+νω1r

∂∂ r

(r∂φ∂ r

)]rdr

28

Page 31: A blow-up problem of a class of axisymmetric Navier-Stokes ...homepages.warwick.ac.uk/~masbu/turb_symp/sept05... · Fujita eq. 0 0.5 1 1.5 2 2.5 3 0 2 4 6 8 10 W(r) r 'uf.fujita.10k.t00.dat'

D =R2× (0,T)∫ ∞

0(ω−ω)φ(r)rdr ≤

∫ ∞

0(ω0(r)−ω0(r))φ(r,0)rdr

+∫ t

0dt′

∫ ∞

0

[(ω−ω)

∂φ∂ t′ +2(ω2−ω2)φ +(U ω−Uω)

∂φ∂ r

+ν(ω−ω)1r

∂∂ r

(r∂φ∂ r

)]rdr

ω∫ r

0rω(r)dr−ω

∫ r

0rω(r)dr = (ω−ω)

∫ r

0rω(r)dr +ω

∫ r

0r(ω(r)−ω(r))dr

29

Page 32: A blow-up problem of a class of axisymmetric Navier-Stokes ...homepages.warwick.ac.uk/~masbu/turb_symp/sept05... · Fujita eq. 0 0.5 1 1.5 2 2.5 3 0 2 4 6 8 10 W(r) r 'uf.fujita.10k.t00.dat'

Thus ∫ ∞

0(ω−ω)φ(r)rdr ≤

∫ ∞

0(ω0(r)−ω0(r))φ(r,0)rdr

+∫ t

0dt′

∫ ∞

0(ω−ω)

[∂φ∂ t′ +A(r, t′)φ +B(r, t′)∂φ

∂ r+ν

1r

∂∂ r

(r∂φ∂ r

)]

︸ ︷︷ ︸=0, for some φ

rdr

+∫ t

0dt

∫ ∞

0ω(r)

∫ r

0r ′(ω(r ′)−ω(r ′))dr′∂φ

∂ rdr

where

A(r, t) = 2(ω +ω),B(r, t) =1r

∫ r

0r ′ω(r ′)dr′

30

Page 33: A blow-up problem of a class of axisymmetric Navier-Stokes ...homepages.warwick.ac.uk/~masbu/turb_symp/sept05... · Fujita eq. 0 0.5 1 1.5 2 2.5 3 0 2 4 6 8 10 W(r) r 'uf.fujita.10k.t00.dat'

An, Bn ∈C∞(DT), An→ A, Bn→ B in DT as n→ ∞

backward problem

∂φn

∂ t+An(r, t)φn+Bn(r, t)

∂φn

∂ r+ν

1r

∂∂ r

(r∂φn

∂ r

)= 0

φn(∞, t′) = 0, 0 < t′ < t

φn(r, t) = χ(r), r ≥ 0

χ(r) ∈C∞0 (0,∞), 0≤ χ ≤ 1

φ = limn→∞ φn with An,Bn replaced by A,B, φ ≥ 0

31

Page 34: A blow-up problem of a class of axisymmetric Navier-Stokes ...homepages.warwick.ac.uk/~masbu/turb_symp/sept05... · Fujita eq. 0 0.5 1 1.5 2 2.5 3 0 2 4 6 8 10 W(r) r 'uf.fujita.10k.t00.dat'

∫ ∞

0(ω−ω)χ(r)rdr ≤M1

∫ ∞

0(ω0(r)−ω0(r))

+rdr

+∫ t

0dt

∫ ∞

0ω(r)

∫ r

0r ′(ω(r ′)−ω(r ′))dr′∂φ

∂ rdr,

∫ r

0r ′(ω(r ′)−ω(r ′))dr′ ≤

∫ r

0r ′(ω(r ′)−ω(r ′))+dr′ ≤

∫ ∞

0r ′(ω(r ′)−ω(r ′))+dr′

|the final term| ≤∫ t

0dt′

∫ ∞

0ω(r)

∫ ∞

0r ′(ω(r ′)−ω(r ′))+dr′

∣∣∣∣∂φ∂ r

∣∣∣∣dr

≤M2M3

∫ t

0dt′

∫ ∞

0r ′(ω(r ′)−ω(r ′))+dr′

M1 = supDT|φ |, M2 = sup

∣∣∣∂φ∂ r

∣∣∣ , M3 =∫ ∞0 ω(r)dr

32

Page 35: A blow-up problem of a class of axisymmetric Navier-Stokes ...homepages.warwick.ac.uk/~masbu/turb_symp/sept05... · Fujita eq. 0 0.5 1 1.5 2 2.5 3 0 2 4 6 8 10 W(r) r 'uf.fujita.10k.t00.dat'

χ(r) ={

1, if ω(r)−ω(r) > 00, otherwise

∫ ∞

0(ω(r)−ω(r))+rdr ≤M1

∫ ∞

0(ω0(r)−ω0(r))

+rdr

+M2M3

∫ t

0dt′

∫ ∞

0(ω(r ′)−ω(r ′))+r ′dr′

Gronwall∫ ∞

0(ω(r)−ω(r))+rdr ≤M1eM2M3t

∫ ∞

0(ω0(r)−ω0(r))

+rdr

QED

33

Page 36: A blow-up problem of a class of axisymmetric Navier-Stokes ...homepages.warwick.ac.uk/~masbu/turb_symp/sept05... · Fujita eq. 0 0.5 1 1.5 2 2.5 3 0 2 4 6 8 10 W(r) r 'uf.fujita.10k.t00.dat'

SummaryBurgers-Donaldson-Sullivan class

• Survey on stationary solutions

• Non-stationary solutions

numerics suggests blow-up

methods of reaction-diffusion eq. → proof of blow-up for large IC

Non-zero constant self-similar solution → suggests asymptotic self-similarblow-up

34

Page 37: A blow-up problem of a class of axisymmetric Navier-Stokes ...homepages.warwick.ac.uk/~masbu/turb_symp/sept05... · Fujita eq. 0 0.5 1 1.5 2 2.5 3 0 2 4 6 8 10 W(r) r 'uf.fujita.10k.t00.dat'

THE REST IS SUPPLEMENTARY MATERIALS, WHICH ARE NOT USED INTHE TALK.

35

Page 38: A blow-up problem of a class of axisymmetric Navier-Stokes ...homepages.warwick.ac.uk/~masbu/turb_symp/sept05... · Fujita eq. 0 0.5 1 1.5 2 2.5 3 0 2 4 6 8 10 W(r) r 'uf.fujita.10k.t00.dat'

We must envisage a much broader class of flows in the entire x-space. Somesort of condition at infinity must, however, be imposed in order to insure reason-able behaviour of the flow. This is shown by the solutions

ui = aiνxν , p =−(aik +aiαaαk)xixk

of the equations of flow where the aik are entirely arbitrary functions of t subjectto the conditions

aik = aki, aαα = 0.

Such a solution can become infinite at a finite moment of time. It can also startfrom the state of rest with u = p = 0 without staying at rest. Presumably no suchthings happen if a condition of the following sort is imposed:...

Hopf(1952)

36

Page 39: A blow-up problem of a class of axisymmetric Navier-Stokes ...homepages.warwick.ac.uk/~masbu/turb_symp/sept05... · Fujita eq. 0 0.5 1 1.5 2 2.5 3 0 2 4 6 8 10 W(r) r 'uf.fujita.10k.t00.dat'

Properties of solutions with finite energy are deeply rooted in our consciousness.What you will see may appear bizzard.

Infinite energy

u(x,y,z, t) =(

y+zt−T

,z+xt−T

,x+yt−T

)

p(x,y,z, t) =−x2+y2+z2

(t−T)2

S.Childress and E. Spiegel

G.F.D. Duff “As Professor G. Duff points out, in case one is willing to acceptinfinite energies, one can easily do this just using (such an example).” Marsden,Ebin & Fisher (1972)

37

Page 40: A blow-up problem of a class of axisymmetric Navier-Stokes ...homepages.warwick.ac.uk/~masbu/turb_symp/sept05... · Fujita eq. 0 0.5 1 1.5 2 2.5 3 0 2 4 6 8 10 W(r) r 'uf.fujita.10k.t00.dat'

W.S. Lewellen “A solution for three dimensional vortex flows with strong circula-tion.”J. Fluid Mech. 14 1962 420–432.

B.R. Morton “The Strength of Vortex and Swirling Core Flows” J. Fluid Mech. 381969 315-333

38

Page 41: A blow-up problem of a class of axisymmetric Navier-Stokes ...homepages.warwick.ac.uk/~masbu/turb_symp/sept05... · Fujita eq. 0 0.5 1 1.5 2 2.5 3 0 2 4 6 8 10 W(r) r 'uf.fujita.10k.t00.dat'

Fujita equation blow-upSketch of Proof

u(x, t) = et4u(x,0)+∫ t

0e(t−s)4u(x,s)pds

et4φ(x)≡∫

RnGt(x−y)φ(y)dy

Gt(x) =1

(4πt)N/2exp

(−|x|

2

4t

)

Crux inequality

t1

p−1et4φ(x)≤C(p)

39

Page 42: A blow-up problem of a class of axisymmetric Navier-Stokes ...homepages.warwick.ac.uk/~masbu/turb_symp/sept05... · Fujita eq. 0 0.5 1 1.5 2 2.5 3 0 2 4 6 8 10 W(r) r 'uf.fujita.10k.t00.dat'

i.e.

t1/(p−1)∫

Rnexp

(−|x−y|2

4t

)φ(y)dy

︸ ︷︷ ︸→‖φ‖

L1

≤C(p)(4πt)N/2

1p−1

>N2⇒ contradiction

cf. H.A. Levine, SIAM Review, 32(1990)262,K. Deng & H.A. Levine, J. Math. Anal. Appl. 243(2000)85.

40

Page 43: A blow-up problem of a class of axisymmetric Navier-Stokes ...homepages.warwick.ac.uk/~masbu/turb_symp/sept05... · Fujita eq. 0 0.5 1 1.5 2 2.5 3 0 2 4 6 8 10 W(r) r 'uf.fujita.10k.t00.dat'

Proof

J(x,s)≡∫

RnGt−s(x−y)u(y,s)dy

dJ(x,s)ds

=∫

RnGt−s(x−y)(u(y,s))pdy≥

(∫

RnGt−s(x−y)u(y,s)dy

)p

dJ(x,s)ds

≥ J(x,s)p

1p−1

(J(x,0)1−p−J(x, t)1−p

)≥ t

t1

p−1et4φ(x)≤C(p)

41

Page 44: A blow-up problem of a class of axisymmetric Navier-Stokes ...homepages.warwick.ac.uk/~masbu/turb_symp/sept05... · Fujita eq. 0 0.5 1 1.5 2 2.5 3 0 2 4 6 8 10 W(r) r 'uf.fujita.10k.t00.dat'

Stability of Burgers vortex

D.G. Crowdy, A note on the linear stability of Burgers vortex. Stud. Appl. Math.100 (1998), no. 2, 107–126.

W.O. Criminale, D.G. Lasseigne, T.L. Jackson, Vortex perturbation dynamics.Stud. Appl. Math. 98 (1997), no. 2, 99–120.

D.S.Nolan, B.F. Farrell, Generalized stability analyses of asymmetric disturbancesin one- and two-celled vortices maintained by radial inflow. J. Atmospheric Sci.56 (1999), no. 10, 1282–1307.

42

Page 45: A blow-up problem of a class of axisymmetric Navier-Stokes ...homepages.warwick.ac.uk/~masbu/turb_symp/sept05... · Fujita eq. 0 0.5 1 1.5 2 2.5 3 0 2 4 6 8 10 W(r) r 'uf.fujita.10k.t00.dat'

∂ω∂ t

+U∂ω∂ r

= ω2+ν1r

∂∂ r

(r∂ω∂ r

),

U(r) =1r

∫ r

0r ′ω(r ′)dr′

Equivalently,

∂ω∂ t

= 2ω2− 1r

∂∂ r

(rU ω)+ν1r

∂∂ r

(r∂ω∂ r

),

43

Page 46: A blow-up problem of a class of axisymmetric Navier-Stokes ...homepages.warwick.ac.uk/~masbu/turb_symp/sept05... · Fujita eq. 0 0.5 1 1.5 2 2.5 3 0 2 4 6 8 10 W(r) r 'uf.fujita.10k.t00.dat'

Critical case

tn2et4φ(x)≤C, ‖φ‖

L1 ≤C′, ‖u(t)‖L1 ≤C′

Assume

φ ≥ kGα , k,α > 0

u(t)≥ et4φ ≥ et4kGα

‖u(t)‖L1 ≥

∫ t

0‖e(t−s)4u(s)p‖

L1ds

≥∫ t

0‖e(t−s)4(es4kGα)p‖

L1ds

≥∫ t

0‖(es4kGα)p‖

L1ds

44

Page 47: A blow-up problem of a class of axisymmetric Navier-Stokes ...homepages.warwick.ac.uk/~masbu/turb_symp/sept05... · Fujita eq. 0 0.5 1 1.5 2 2.5 3 0 2 4 6 8 10 W(r) r 'uf.fujita.10k.t00.dat'

(es4Gα

)p=

(Gα+s

)p

= [4π(s+α)]−n(p−1)/2p−n/2G(s+α)/p

= [4π(s+α)]−1p−n/2G(s+α)/p

‖u(t)‖L1 ≥ kpp−N/2(4π)−1

×∫ t

0(s+α)−1‖G(s+α)/p‖L1ds

= kpp−N/2(4π)−1 log

(t +α

α

)

45

Page 48: A blow-up problem of a class of axisymmetric Navier-Stokes ...homepages.warwick.ac.uk/~masbu/turb_symp/sept05... · Fujita eq. 0 0.5 1 1.5 2 2.5 3 0 2 4 6 8 10 W(r) r 'uf.fujita.10k.t00.dat'

reaction-diffusion eqs with advection

∂u∂ t

+(a·∇)uq = up+4u,

pc = min

(1+

2N

,1+2q

N+1

)

Aguirre & Escobedo (1993)

46

Page 49: A blow-up problem of a class of axisymmetric Navier-Stokes ...homepages.warwick.ac.uk/~masbu/turb_symp/sept05... · Fujita eq. 0 0.5 1 1.5 2 2.5 3 0 2 4 6 8 10 W(r) r 'uf.fujita.10k.t00.dat'

∂u∂ t

+(b·∇)u = up+4u,

u(x, t = 0) = u0(x)(≥ 0)

(b·∇)u = ∇ ·B, |B| ≤ cup

1 < p < 1+2N→ blowup

Bandle-Levine (1994)

47