9215 Disposables

12
Biodisposables Utility and Technological Advances Authors: J. W. Terryberry and G. Thor Research Director: Alfred Doig Production Manager: Tracy Beaudoin Report 9215 June 2006

description

disposable

Transcript of 9215 Disposables

Page 1: 9215 Disposables

BiodisposablesUtility and Technological Advances

Authors: J. W. Terryberry and G. Thor

Research Director: Alfred Doig

Production Manager: Tracy Beaudoin

Report 9215 • June 2006

One Research Drive, Suite 400A • Westborough, MA 01581

Phone: +1 (508) 616-5500 • Fax: +1 (508) 616-5544

www.drugandmarket.com

Page 2: 9215 Disposables

About the Authors

J. W. Terryberry and G. Thor

Jeffery Terryberry has over a dozen peer-reviewed publications in Clinical Chemistry research.

Current areas of focus include orthobiologic drug development utilizing osteoinductive peptides,

monoclonal antibody production and immunogenicity, and the phytochemistry of novel herbal

medicines.

Gautam Thor received his PhD in Neurobiology. He has researched at UCSD in the field of

Neuroimmunology and is the author of numerous scientific and medical publications through

NeuroConsultants, and, is internationally recognized for his expertise in human diagnostics.

Biodisposables: Utility and Technological Advances

Copyright © 2006 D&MD Publications

All rights reserved. No part of this document may be reproduced in any form or by any means,

electronic or mechanical, including recording, or by any information storage and retrieval

system, without written permission from the publisher.

First published in the United States by:

D&MD Publications

One Research Drive

Suite 400A

Westborough, MA 01581

Phone: +1 (508) 616-5500

Fax: +1 (508) 616-5544

http: / / www.drugandmarket.com

An informa publication.

ISBN: 1-57936-360-1

Published in the U.S.A.

Page 3: 9215 Disposables

© 2 0 0 6

Biodisposables

Table of ConTenTs

Chapter 1: Executive Summary.................................................................... 1–1

Chapter 2: Economics of Biodisposables: Efficient, Fast and Flexible Product Development........................................................................................ 2–1

Disposable Technology and Contract Manufacturing (CMOs)..................................2–2

Drivers for Single-Use Disposable Systems ..........................................................2–4

Disposable Bag Technology—Pacific GMP, AppTec, Stedim.....................................2–7

Market Implementation.......................................................................................2–8

Industrial Advantages of Disposable Components ..............................................2–10

Disadvantages.of.Disposable.Systems..................................................................2–11

Leachables and Extractables..............................................................................2–11

Elimination of Waste in the Biodisposable Context.....................................................2–12

Return of Investment (ROI) Options...................................................................2–12

A.100.–.1000L.Pilot.Facility.Costs.$10.-.50.million...............................................2–13

Contract.Manufacturer.Xcellerex.Case.Study.–.Advantages.of.Biodisposables.............2–14

Process Comparison Models..............................................................................2–16

Model.Estimation.of.Simulations..........................................................................2–18

Monoclonal.Antibody.Production.........................................................................2–20

Disposables Reduce Overall Cost of Manufacture................................................2–23

Conversion from Stainless Steel Equipment to Disposable Filtration....................2–27

Disposable Filters—For Use in Chromatography..................................................2–30

Summary..........................................................................................................2–33

Chapter 3: Disposable Bioreactors.............................................................. 3–1

Scaling Up Logistics............................................................................................3–2

Comparison and Validation of Disposable Bioreactor Systems................................3–3

Growing Cells in Bags—Wave Cellbags® Characteristics........................................3–8

Factors that Amplify the Bioreactor’s Yield........................................................3–10

Wave.Biotech.Bioreactor.Case.Histories..............................................................3–11

CatchMab’s.Tsunami.Bioreactor..........................................................................3–16

Osmotek’s.LifeReactor.......................................................................................3–19

Cellexus.Biosystems..........................................................................................3–20

Disposable Bioreactor Flasks, Bottles, and Other Containers..............................3–22

Integra.Biosciences’.CELLine.Biodisposable.Flask...................................................3–23

FiberCell.System’s.FiberCell.Hollow.Fiber.Bioreactor...............................................3–26

Hollow.Fiber.Bioreactor.Applications:...................................................................3–27

Synthecon’s.Rotary.Cell.Culture.System................................................................3–29

Fluorometrix’s.Cellstation...................................................................................3–30

Cellon’s.RollerCell.............................................................................................3–31

Integra.Biosciences’.Cellroll................................................................................3–32

Page 4: 9215 Disposables

© 2 0 0 6

��

Biodisposables

Corning’s.CellCube®...........................................................................................3–32

Multi Laminate Plastic Bags .............................................................................3–34

Stedim............................................................................................................3–34

Chapter 4: Downstream Processing and Separation Sciences............... 4–1

Disposable Downstream Processing ....................................................................4–1

Faster.Processing..............................................................................................4–1

Cleaning.Ease....................................................................................................4–2

Disposable.Filters...............................................................................................4–2

Disposable Mixing, Filling and Sampling—HyNetic, Alfa Laval Biokinetic, Millipore, LevTech, Acerta, Nova Aseptic..............................................................4–4

Sartorius..........................................................................................................4–4

LevTech............................................................................................................4–4

Millipore...........................................................................................................4–5

NovAseptic........................................................................................................4–7

Sampling Systems.............................................................................................4–7

Disposable Sampling Pump .................................................................................4–8

Sterile Connectors and Clean Room Technology....................................................4–9

Steam-in-place.(SIP).Connector...........................................................................4–11

Fully.Assembled,.Pre-sterilized.Filtration.Systems...................................................4–12

Millipore’s.Mobius.Disposable.Systems.................................................................4–14

Separation Sciences: Filtration and Chromatography..........................................4–16

Disposable.Filter.Systems..................................................................................4–16

Disposable.Filtration.Market.Statistics.................................................................4–17

Filtration.Technology.........................................................................................4–18

Enhancing.the.Efficiency.of.Disposable.Filters........................................................4–19

Sterile Filtration—Sartorius, Millipore, Pall Corp................................................4–21

Millipore.Sterile.Filtration...................................................................................4–22

Sartorius........................................................................................................4–22

Pall Corporation..............................................................................................4–24

Disposable Filter Capsules and Chromatography Columns...................................4–25

Membrane.Adsorption.Chromatography...............................................................4–27

Membrane.Chromatography.and.Viral.Clearance...................................................4–33

Affinity Chromatography and Antibody Purification.............................................4–34

Inline Filters for Disposable Bioreactors.............................................................4–36

Recovery of Cell Products through Chromatography...........................................4–37

Cross/Tangential Flow Filters in Cell Processing and Diafiltration........................4–40

Cross.Flow.Filtration.........................................................................................4–40

Sartorius BBI Systems Inc.................................................................................4–41

CellFlo Applications..........................................................................................4–41

Cross Flow Process Modes for Cell Processing........................................................4–42

Tangential.Flow.Filtration.TFF.from.SciLogic..........................................................4–45

Blood and Serum Fractionation..........................................................................4–46

Page 5: 9215 Disposables

���

© 2 0 0 6

Biodisposables

Blood.Fractionation...........................................................................................4–46

Serum.Fractionation.........................................................................................4–47

Biosep Accoustic Technology—Applikon...............................................................4–49

Chapter 5: Biodisposables—Facility Design and Future Developments........................................................................................ 5–1

Facility Design Capabilities with Disposables.........................................................5–1

Multi-Component Systems...................................................................................5–5

Flexel.3D.Mixing.System.with.Temperature.Control..................................................5–5

The.Single-Use.Rapid.Aseptic.Fluid.Transfer.(RAFT).System.......................................5–5

Kleenpak.Single-Use.Aseptic.Connectors................................................................5–5

Celsius-Pak........................................................................................................5–5

Functional and Environmental Constraints............................................................5–7

Optimizing Facility Design....................................................................................5–8

Suppliers...........................................................................................................5–8

Biocompatibility..................................................................................................5–9

Production.Volume..............................................................................................5–9

Disposal............................................................................................................5–9

Disposable.Design.Optimization...........................................................................5–10

Regulatory Considerations for Disposable Component Validation..........................5–12

Sample.Regulatory.Requirements........................................................................5–13

Future Outlook of Disposables...........................................................................5–16

Disposable.Product.Innovations...........................................................................5–18

Market Projections...........................................................................................5–19

Bags,.Bioreactors,.Filters,.etc............................................................................5–19

Disposable.Biosensors......................................................................................5–24

Page 6: 9215 Disposables

© 2 0 0 6

�v

Biodisposables

Table of exhibiTs

Exhibit.2.1. Strategic.Outlook.for.Biodisposables.......................................................... 2–1

Exhibit.2.2. Disposable.Components.and.Suppliers.for.Manufacturing.of.Biologics..and.Pharmaceuticals.............................................................................. 2–2

Exhibit.2.3. Hierarchical.Representation.of.Biomanufacturing.Tasks................................ 2–4

Exhibit.2.4. Reasons.for.Implementing.Biodisposables.................................................2–14

Exhibit.2.5. Costs.of.a.Model.Monoclonal.Antibody.Plant..............................................2–20

Exhibit.2.6. Cost.of.Goods.Cap-Ex,.Materials,.and.Labor.in.a.Disposable.Module.Plant......2–21

Exhibit.2.7. COGS.from.100.L.Plant.........................................................................2–21

Exhibit.2.8. COGS.from.1,000L.Plant.......................................................................2–22

Exhibit.2.9. COGS.from.10,000.L.Plant....................................................................2–22

Exhibit.2.10. Analysis.Reported.by.the.FDA.CBER.on.Cost.Manufacturing.........................2–23

Exhibit.2.11. Capital.Required.and.Cost.Savings.of.Disposable.Model...............................2–23

Exhibit.2.12. Cost.Analysis.of.Reusable.Fermenters.vs..Disposable.Bioreactors.................2–25

Exhibit.2.13. Input.and.Output.Parameters.of.an.Analysis.Tool........................................2–25

Exhibit.2.14. Disposable.Technology.and.Conventional.Pilot.Plant.COG.Analyses.................2–27

Exhibit.2.15. Comparison.of.Equipment.and.Consumables.in.the.Model.Study....................2–28

Exhibit.2.16. Annual.(COG/g).on.a.Cost.Category.Basis.for.Pilot.Plant,..Disposables-based.(DISP).Pilot.Plant,.and.Hybrid.(HYB).Pilot.Plant.................2–29

Exhibit.2.17. Comparison.of.Set-up.Times.and.Cost.of.Single-use.Cartridge..Filter.and.Stainless.Steel.Housing............................................................2–32

Exhibit.2.18. Comparison.of.Process.Time.and.Cost.for.Traditional.Column.and..Membrane.Chromatography.Capsule........................................................2–32

Exhibit.3.1. Types.of.Disposable.Bioreactors............................................................... 3–4

Exhibit.3.2. Principle.of.the.Wave.Bioreactor.............................................................. 3–7

Exhibit.3.3. Cellbag.Connectors.and.Biocompatibility.Testing.......................................... 3–8

Exhibit.3.4. Research,.Pilot,.and.Production.Scale.Wave.Bioreactors.............................. 3–9

Exhibit.3.5. Comparison.of.Daily.Recombinant.Protein.Yields.(mg/L).for.Three.Wave.Bioreactors..........................................................................................3–10

Exhibit.3.6. Monoclonal.Antibody.Yields.for.System20/50EH........................................3–11

Page 7: 9215 Disposables

v

© 2 0 0 6

Biodisposables

Exhibit.3.7. Carriers.Used.to.Cultivate.Attachment-dependent.Cells.in.the..Wave.Bioreactor...................................................................................3–12

Exhibit.3.8. Adenovirus.Production.and.Recovery.in.HEK293.Cells.using.a..Wave.Bioreactor.with.Cytodex-3.Micro.Carriers.........................................3–13

Exhibit.3.9. Use.of.Floating.Perfusion.Filter.with.Perfusion.Controller.in..Wave.Bioreactor...................................................................................3–14

Exhibit.3.10. Comparison.of.Batch.and.Perfusion.Modes.for.MAb.Production.in.the..Wave.Bioreactor.(System.20/50EH).......................................................3–15

Exhibit.3.11. Comparisons.of.Batch.and.Perfusion.MAb.Production.with.2L.Cellbag...........3–15

Exhibit.3.12. Tsunami.Multiple.Wave.Agitated.Culture.System.........................................3–16

Exhibit.3.13. Excellerex.Disposable.Bioreactors............................................................3–17

Exhibit.3.14. AppliFlex.Disposable.Cell.Culture.Bag.System.............................................3–19

Exhibit.3.15. LifeReactor.Plant.Cell.Bag.Culture.System.................................................3–20

Exhibit.3.16. Cellexus.Biosystems.Optimized.Cell.Growing.Chamber.................................3–21

Exhibit.3.17. Bags.are.more.Stable.than.Bottles..........................................................3–22

Exhibit.3.18. Integra.CELLine.Disposable.Bioreactor.Flask..............................................3–23

Exhibit.3.19. Cost.and.Yield.for.Monoclonal.Production.in.CELLine.and.Other.Systems........3–24

Exhibit.3.20. Comparisons.of.CellLine,.Roller.Bottle.Grown,.and.Bioreactor.......................3–25

Exhibit.3.21. FiberCell.Module.and.Flowpath.Assembly.with.Medium.Reservoir.Bottle.........3–28

Exhibit.3.22. Rotary.Perfusion.RCCS-D.and.-4D.Disposable.Bioreactors...........................3–29

Exhibit.3.23. Cellstation.High-throughput.Bioreactor.with.Disposable.Culture.Vessels..........3–31

Exhibit.3.24. RollerCell40.Automated.Bottle.System.....................................................3–32

Exhibit.3.25. Corning’s.CellCube®.System....................................................................3–33

Exhibit.3.26. Growth.of.Cells.under.Different.Seeding.Densities.in.the.CellCube.System......3–34

Exhibit.3.27. Flexel.3D.Bag.Bioreactor.Harvesting.System.............................................3–36

Exhibit.3.28. Composition.of.Flexel.3D.Bags................................................................3–37

Exhibit.3.29. Xcellerex.Disposable.Bags.and.Mixing.Systems..........................................3–38

Exhibit.4.1. Downstream.Processing.Applications.for.Disposables.................................. 4–3

Exhibit.4.2. Disposable.Fluid.Paths:.Final.Fill.and.Finish................................................. 4–6

Exhibit.4.3. Acerta.4.Head.Filler............................................................................... 4–7

Page 8: 9215 Disposables

© 2 0 0 6

v�

Biodisposables

Exhibit.4.4. NovAseptic.Sampling.System.with.9-Port.NovaSeptum.Connector.................. 4–8

Exhibit.4.5. Pall’s.Kleenpak.Sterile.Disposable.Connector.System...................................4–10

Exhibit.4.6. Millipore’s.Lynx.S2S.“Sliding.Gate”.Sterile.Connector...................................4–10

Exhibit.4.7. Ready.to.Run.SIP.Connected.System:.Sterilization.of.the..Connection.Between.Millipore’s.Lynx.ST.and.SS.Tank.Interface......................4–11

Exhibit.4.8. NovAseptic.SIP.Connected.System.with.Welded.Connectors.and..Disposable.Sampling..............................................................................4–12

Exhibit.4.9. Matching.Downstream.Processing.to.Disposable.Product............................4–15

Exhibit.4.10. Disposables.in.Separation.Sciences..........................................................4–17

Exhibit.4.11. Applications.of.Sterile.Filtration................................................................4–22

Exhibit.4.12. Applications.of.CUNO’s.LifeAssure.Filters..................................................4–23

Exhibit.4.13. Disposable.Manifolded.Filtration.System.with.SupraClean.Depth.Filters..........4–24

Exhibit.4.14. Phases.of.Biomanufacturing.Utilizing.Disposable.Filters.and..Chromatography.Units...........................................................................4–26

Exhibit.4.15. Typical.Production.Scale.Enzyme.Purification.with.Multiple.Filtration.Steps......4–27

Exhibit.4.16. Sartorius.SingleSep.Disposable.“Multiuse”.(Autoclavable).Capsules................4–32

Exhibit.4.17. Virus.Elimination.from.Monoclonal.Antibody.Preparation.(Eluate.from.Affinity.Column).Prior.to.Sterile.Filtration.and.Fill:.High.LRV.and.MAb.Recovery.........4–34

Exhibit.4.18. Antibody.Downstream.Processing............................................................4–36

Exhibit.4.19. Inline.Filters.for.Disposable.Bioreactors....................................................4–37

Exhibit.4.20. Online.Affinity.Purification.System.............................................................4–39

Exhibit.4.21. CUNO’s.Bioassure.PES.Filters.for.Cell.and.Immunoglobulin.Recovery..............4–41

Exhibit.4.22. CFF.Process.Modes.Affecting.Cell.Yield....................................................4–43

Exhibit.4.23. Cross.Flow.Hollow.Fiber.Membrane.System.for.Aseptic.Cell.Processing.........4–44

Exhibit.4.24. Purification.of.Biopharmaceuticals.Using.Amersham..Biosciences.CFF.Columns.......................................................................4–45

Exhibit.4.25. SciLog’s.Automated.Bioprocessing.System.with.Disposable.TFF.Filtration.......4–46

Exhibit.4.26. Disposable.CUNO.Filter.Types.Used.In.Multilevel.Blood.Fractionation..............4–47

Exhibit.4.27. Comparison.of.Single-use.and.Stainless.Steel.BSA.Purification.Systems..........4–49

Exhibit.4.28. BioSep.Cell.Retention.System..................................................................4–50

Exhibit.5.1. Single-use.Technology.Implementation.Approach.......................................... 5–3

Page 9: 9215 Disposables

v��

© 2 0 0 6

Biodisposables

Exhibit.5.2. Layout.of.Facility.Implementing.Disposables.with.Functional.and..Environmental.Classifications.................................................................... 5–7

Exhibit.5.3. Disposable.Design.Optimization...............................................................5–10

Exhibit.5.4. Validation.Testing.Methods.and.Standards.................................................5–16

Exhibit.5.5. Automated.Remote.FlexFactory.Operation.................................................5–23

Page 10: 9215 Disposables

1–1

© 2 0 0 6

Biodisposables

ChapTer 1: exeCuTive summary

The current economic and regulatory realities, highlighted by the imminent establishment

of drug pricing controls and tightening regulatory and quality standards, indicates the added

pressures that are emerging for pharmaceutical companies to restrategize their overall approach.

There is a trend toward fewer blockbuster drugs as patient populations become smaller, and the

associated histories and genetic make up become stratified as personalized medicine begins to

come into its own. Biodisposable manufacturers’ responses to these trends is to develop fully

integrated, turnkey manufacturing–production line that combines single-use components with

modular software; a disposable stir-tank and mixing system; and disposable bioreactors, along

with single-use membranes, filters, bags, tubing, and connectors.

Several commercial scale, process steps have biodisposables at numerous points in the pilot

scale as they are well suited for a multi-product clinical manufacturing setting with frequent

product change-overs. Single-use technologies are not only available for an increasing range of

applications, but they are also expanding from stand-alone devices to multi-component systems.

With this growing trend comes a greater number of benefits and implementation considerations

from pilot scale modules to complete production facilities.

Advantages of utilizing biodisposables in pilot and commercial scale operations involve reduced

downtime for cleaning, sterilization, and process engineering, as well as improved equipment

lead time, and process utility requirements such as validation, quality and regulatory compliance.

Biodisposables are well established in the industry, and there is an increasing trend toward

their use because they contribute to ensure the production of a safe, therapeutic product.

Biodisposables decrease capital costs, cost of goods, and labor, improve operability, flexibility,

and optimize utilization of space. Furthermore, components that integrate biodisposables with

stainless steel allow hybrid plant operation.

The average time required to construct a biotech facility is about five years, putting tremendous

pressure on drug manufacturers to expend capital when the risk of drug failure is still high. Existing

manufacturing plants costs linger between $10 – 50 million depending upon required output and

therapeutic bioproduct. At the two extreme price ranges, a 100 L, $10,000 monoclonal antibody

plant scales up to a 10,000 L plant costing $120 million. The value of the primary and secondary

US biomanufacturing market in 2006 is estimated to be approximately $50 billion with a healthy

growth rate almost approaching double digits due to the escalating number of biotech drugs in

the pipeline and skyrocketing sales of approved high value, life saving biopharmaceticals.

Page 11: 9215 Disposables

5–1

© 2 0 0 6

Biodisposables

ChapTer 5: biodisposables—faCiliTy design and fuTure developmenTs

Facility Design Capabilities with Disposables

Single-use technologies are not only available for an increasing range of applications, but

they are also expanding from stand-alone devices to multi-component systems. With this

growing trend comes a greater number of benefits and implementation considerations.

Contract manufacturing organizations (CMOs) and biotech start-ups were among the earliest

adopters of disposables technology. CMOs saw them as a way of minimizing the risks of cross-

contamination, whereas new biopharmaceutical companies enjoyed a considerable reduction

in the need for capital investment.

Both groups recognized the significant time and cost benefits of eliminating cleaning, cleaning

validation, and steam sterilization validation, as well as the reduced potential for operator

error. Today, the single-use model is attracting new converts, particularly in the area of patient-

specific therapies. Given the small batches in which such therapies are processed, it is now

practical to move toward a totally disposable manufacturing paradigm. Availability of disposable

technologies for increasingly larger scale processes both upstream and downstream is reshaping

the way biopharmaceuticals are made and providing an efficient path to manufacturability for

emerging therapies.

Single-use technologies have gained increasing acceptance by the industry as a means of

achieving safe, compliant, and efficient processes. As the industry adopts to the technology

benefits, there is a demand for further integration of disposables into processes. The goal is

to develop integrated single-use solutions that offer certain process functionalities (such as

mixing, temperature control, aseptic connection, disconnection, and controlled freeze–thaw)

within a closed system. Recently there has been a strong emphasis on changing the mindset in

the biotech industry by moving the focus to process optimization and operational efficiency as

a way to reduce overhead.

An expansive and growing array of disposable technologies exists for downstream processing

applications, including direct-flow filtration (DFF) filters, tangential-flow filtration (TFF)

cassettes, membrane chromatography capsules, lenticular depth filters, filling equipment,

aseptic connections devices, tubing, adaptors, clamps, and bags. The availability of this array

of disposables technology has catalyzed new thinking with regard to processing approach and

facility design.

As a closed-loop system, it prevents the need to disassemble, transport, clean, validate, and

reassemble components in a classified cleanroom environment. In many cases, disposable

Page 12: 9215 Disposables

© 2 0 0 6

5–2

Biodisposables

products are supplied pre-sterilized to eliminate the need for steam-in-place (SIP) or autoclaving.

Opening a package and plugging a single-use device or multi-component disposable system

into a product train offers a simplification to process development staff that otherwise must

develop extensive cleaning protocols. The result is not only labor savings, but also a shift in

facility design toward fewer cleanrooms and reduced environmental monitoring requirements.

With single-use operations, applications no longer need to be physically segregated. Instead,

they can be performed side by side as closed-loop systems. This allows for the more efficient

use of facility space, especially for CMOs and biotech start-ups.

Even as disposable systems seal off processes from contamination, their translucency provides

operators with visibility into manufacturing operations. Users can observe flow and fluid levels

as well as spot fluid discoloration and air pockets immediately. Single-use processes also allow

for a high degree of modularity in that capacity can be built out gradually in phases as demand

increases. Within conventional facilities, not only do hard-piped systems need to be factored

into the initial facility design, but also oversized utility systems are specified in anticipation

of future needs. Retrofitting is significantly easier with disposables than with fixed equipment

since disposable components are inherently modular.

Disposables can also simplify transfer of the drug production processes to other manufacturing

sites, such as CMOs, or other facilities within a company. Also, without the need for significant

capital investment in hard-piped systems, single-use technologies have allowed biotech start-

ups to manufacture their products in-house. This option provides these companies with more

control over the development process and enables production to be accelerated as needed.

Previously, outsourcing production was the only economical option. This new flexibility enables

companies to better manage their own manufacturing expenses and investments during later

development stages, when greater drug supply requirements for advanced clinical trials can still

carry considerable risk of product failure.

The FDA has been a major proponent of disposables technology. Considering that validation

accounts for 10–20% of the cost of a new plant, disposables provide the industry with practical

solutions to alleviate the challenges and costs associated with cleaning operations. Single-

use (disposable) manufacturing technology can be particularly useful in clinical phases of

development, when a company may handle a variety of drugs each year with limited quantities

required. The burden of conducting necessary changeovers and associated validation studies

when using stainless steel equipment reduces available production time in a multi-product

facility. Disposables may be substituted in numerous unit operations in a biological production

process such as production (bioreactors), mixing, product transfer, connection/disconnection,

filtration, chromatography, centrifugation, storage, sampling, and filling.

Exhibit 5.1 provides design consideration steps when considering the use of disposables in a

single or in multiple biomanufacturing unit operations.