90338252 Proiectarea Uie Instalatii de Macinare (1)

48
1 UNIVERSITATEA POLITEHNICA BUCUREŞTI FACULTATEA DE CHIMIE APLICATĂ ŞI ŞTIINŢA MATERIALELOR CATEDRA ŞTIINŢA ŞI INGINERIA MATERIALELOR OXIDICE ŞI NANOMATERIALELOR PROIECTAREA UNEI INSTALAŢII DE MĂCINARE Profesor coordonator: S.l.dr.ing. Dumitrescu Ovidiu Student: Grupa: 1131 Bucuresti 2011

Transcript of 90338252 Proiectarea Uie Instalatii de Macinare (1)

Page 1: 90338252 Proiectarea Uie Instalatii de Macinare (1)

1

UNIVERSITATEA POLITEHNICA BUCUREŞTI

FACULTATEA DE CHIMIE APLICATĂ ŞI ŞTIINŢA MATERIALELOR

CATEDRA ŞTIINŢA ŞI INGINERIA MATERIALELOR OXIDICE ŞI NANOMATERIALELOR

PROIECTAREA UNEI INSTALAŢII DE MĂCINARE

Profesor coordonator: S.l.dr.ing. Dumitrescu Ovidiu Student:

Grupa: 1131

Bucuresti 2011

Page 2: 90338252 Proiectarea Uie Instalatii de Macinare (1)

2

Cuprins:

I. Capitolul I

1.1 Memoriu justificativ……………………………………………………..pag. 3

1.1.1 Randamentele mărunţirii ………………………………...……..pag.4

1.1.2 Legile procesului de mărunţire ………………………………...pag.6

1.1.3 Procedeele de mărunţire ………………………………..………pag.7

1.1.4 Clasificarea maşinilor de mărunţire ……………………………pag. 8

1.1.5 Mori cu bile ………………………….…………………………pag.9

1.1.6 Utilizarea morilor cu bile în industria cimentului………………pag.11

II . Capitolul II

2.1 Caracterizarea granulometrica a materialelor……………………………pag.12

2.2 Stabilirea curbei de distributie granulometrica………………………….pag. 15

III. Capitolul III

Determinarea puterii de antrenare a morii…………………………………..pag.20

IV. Capitolul IV

Determinarea dimensiunillor optime ale corpurilor de macinare…………..pag. 25

V. Capitolul V

Alegerea si dimensionarea utilajelor anexe din sectia de macinare……….pag. 30

VI. Capitolul VI

Automatizarea instalatiei…………………………………………………..pag.44

VII Capitolul VII

Norme de protectie a muncii……………………………………………….pag.47

Bibliografie………………………………………….……………………………pag.48

Page 3: 90338252 Proiectarea Uie Instalatii de Macinare (1)

3

CAPITOLUL І

1.1Memoriu justificativ

Într-o serie de procese ce se întâlnesc în industria chimică, cocso-chimică, minieră, alimentară şi

industrii similare se impune că materiile prime, produsele finite sau produsele intermediare, să fie

mărunţite fie pentru accelerarea unei faze tehnologice, fie pentru obţinerea unui anumit produs din

materia prima, fie chiar şi numai pentru realizarea comercializării produselor. Intensitatea multor procese

depinde de mărimea suprafeţei materialului solid căruia i se aplică. Aria suprafeţei are o mare importantă

pentru vitezele de reacţie, randamentele proceselor tehnologice şi calitatea produsului final. În unele

cazuri prin mărunţire se urmăreşte modificarea dimensiunilor şi granulozităţii materialelor, cerută de faza

tehnologică care urmează în cadrul procesului tehnologic. Studierea proceselor de mărunţire şi a utilajelor

aferente este deosebit de importantă datorită faptului că operaţia de mărunţire este energointensivă şi se

urmăreşte scăderea consumului de energie necesar reducerii dimensiunilor materiilor prime la dimensiuni

necesare prelucrării ulterioare.

Măcinarea este definită ca fiind operaţia care are ca scop reducerea dimensiunilor materiilor

prime sau materialelor sub acţiunea unor forţe mecanice. Materialele solide supuse mărunţirii au iniţial

forme şi dimensiuni geometrice foarte variate şi proprietăţi fizico-mecanice specifice naturii acestora.

Procesul de mărunţire sau reducere a dimensiunii se bazează pe studii probabilistice. Atât

alimentarea unui utilaj cât şi produsul rezultat se defineşte cu ajutorul funcţiei de distribuţie a

dimensiunilor particulelor, ceea ce exprimă probabilitatea ca o particulă de o anumită mărime să fie

prezentă într-un eşantion de material de măcinare. Scopul proiectării unui utilaj de mărunţire este acela de

a determina condiţiile necesare pentru creşterea probabilităţii de mărunţire a particulelor cu anumite

dimensiuni şi pentru obţinerea unei distribuţii a dimensiunilor dorite la produsul final. Procesul de

mărunţire trebuie să se realizeze în aşa fel încât materialul prelucrat să nu sufere modificări nedorite, cum

ar fi impurificarea sau încălzirea excesivă.

Mărunţirea materialelor solide se realizează prin operaţii tehnologice de :

Concasare-operaţia de sfărâmare a unui material dur în bucăţi mai mici,cu ajutorul utilajelor

speciale numite concasoare.

Page 4: 90338252 Proiectarea Uie Instalatii de Macinare (1)

4

Măcinarea-operaţia de mărunţire fină a materialelor.Ea se efectuează cu ajutorul morilor.

Granularea-operaţia de sfărâmare a unui material dur, în bucăţi mărunte,având forme geometrice

rotunjite.

Tăierea-operaţia de detaşare sau desprindere a unei porţiuni dintr-un material solid,prin strivire

locală (ceea ce constituie tăierea propriu-zisă),forfecarea,despicare sau aşchiere.

1.1.1.Randamentele mărunţirii :

Rezistenţa de rupere la întindere a corpurilor omogene şi izotrope poate fi evaluată cu ajutorul

relaţiei:

(1.1)

Unde: σt - este rezistenţa de rupere la întindere pentru corpuri omogene şi izotrope cuprinsă între

104 si 10

5 daN/cm

2

E - modulul de elasticitate, cuprins între 10

5 si 10

6 daN/cm

2

σs - energia superficială specifică~10

3 erg/cm

2

r0 - raza de acţiune a rezultantei forţelor moleculare cuprinsă între 5*10

-8 si 10

-7 cm.

In functie de cantitatea de energie luata in consideratie si raportata la consumul efectiv de energie se pot

deosebi urmatoarele trei randamente :

a.Randamentul teoretic de mărunţire :

-se exprimă prin relaţia :

(1.2)

Unde :

Page 5: 90338252 Proiectarea Uie Instalatii de Macinare (1)

5

σs -este energia superficială specifică

ΔS – creşterea suprafeţei materialului granular produsă prin operaţia de mărunţire

E – energia consumată de maşina de mărunţire

Aprecierea rezultatelor procesului de mărunţire se realizează prin stabilirea randamentului operaţiei.

b.Randamentul fizic al mărunţirii :

În acest caz se ia în consideraţie energia specifică τf preluată de granulă pâna la producerea

rupturii.

Randamentul fizic al mărunţirii este dat de expresia:

(1.3)

Unde: - este energia superficială specifică a materialului mărunţit

- aria specifică nou creată

E- energia transmisă particulelor de material

c .Randamentul tehnic al mărunţirii:

-este dat de expresia:

(1.4)

-in care σr reprezintă energia specifică de mărunţire care poate fi determinate experimental.

Page 6: 90338252 Proiectarea Uie Instalatii de Macinare (1)

6

1.1.2. Legile procesului de mărunţire

a. Legea lui Rittinger

Potrivit legii Rittinger ,energia utilă de mărunţire este proporţional cu crestearea suprafeţei specific a

materialului.

(1.5)

(1.6)

b.Legea lui Kirpiciev-Kirk

Potrivit legii lui Kirpiciev-Kirk energia necesară mărunţirii unor corpuri asemănătoare şi omogene variază

direct proporţional cu volumele sau greutăţile acestor corpuri.

(1.7)

(1.8)

c.Legea lui Bond

Potrivit legii lui Bond energia transmisă corpului de mărunţit printr-un efort de compresiune şi /sau de

forfecare, se repartizează la început în masă sa şi este, în consecinţă, proporţională cu D3; odată cu

apariatia de fisuri în suprafaţa, energia transmisă corpului se concentrează pe suprafeţele fisurilor,

devenind atunci proporţională cu D2

(1.9)

sau raportată la o tonă de material mărunţit de la D80 iniţial al materialului granular la d80 la ieşirea din

maşina de mărunţire cu relaţia:

Page 7: 90338252 Proiectarea Uie Instalatii de Macinare (1)

7

(2.0)

KB – indice energetic dupa Bond

D80 – diametrul ochiurilor sitei pentru care trecerea este de 80%

1.1.3. Procedee de mărunţire

Procedeul discontinuu - şarja de material este introdusă în moară şi măcinată până

ajunge la fineţea dorită. Se foloseşte pentru debite mici de ordinul sutelor de kg/h;

Procedeul continuu în circuit deschis, la care materialul trece o singură data prin

moară.Măcinarea poate fi pe cale uscată sau pe cale umedă .Se foloseşte în general pentru debite

de ordinul zecilor de t/h ;

Procedeul continuu în circuit închis, cu recirculaţia unei părţi din material, care a

trecut prin moară, însă a rămas insuficient mărunţit.Aceste mori sunt întotdeauna urmate de un

clasor, care separă produsul morii în două fracţii:una grosieră care este reintrodusă în moară şi

una fină care reprezintă produsul finit.Se foloseşte pentru debite pană la 200-300 t/h.

Page 8: 90338252 Proiectarea Uie Instalatii de Macinare (1)

8

1.1.4. Clasificarea maşinilor de mărunţire :

După modul de solicitare principal al bucăţii de material,maşinile de mărunţit pot fi împărţite în două

mari clase :

A .maşini care realizează sfărâmarea prin compresie şi frecare :

a.concasoare cu fălci

b.concasoare conice

c.concasoare cu cilindrii

d.mori cu corpuri de rostogolire

e.moară cu inel şi valţuri

B. maşini care realizează sfărâmarea prin şoc :

f.concasoare şi mori cu ciocane

g.mori cu tambur rotativ cu corpuri libere

h.dezmembratoare şi dezintegratoare

i.mori cu jet

Page 9: 90338252 Proiectarea Uie Instalatii de Macinare (1)

9

1.1.5. Mori cu bile

Morile cu bile se folosesc la o gamă largă de aplicații pentru

măcinarea în domeniul ultra fin a materialelor moi, fibroase, dure și

casante. Sunt utilizate în mod frecvent la amestecare, omogenizare,

distrugerea celulelor, aliere mecanică și măcinare coloidală. Funcție de

model (moară planetară cu bile, sau moară mixer) moara poate fi utilizată

pentru măcinare uscată, măcinare umedă sau măcinare criogenică.

Accesoriile cu care pot fi dotate morile, asigură utilitatea morilor cu bile în

toate sectoarele din industrie și cercetare.

În acest caz strivirea bucăţilor de material se face datorită contactului cu bilele (figura 1) din

oţel sau material ceramic aflate în interiorului unui tambur rotativ. Materialul răspândit printre bile

(mediul de măcinare) suferă loviri repetate. La efectul loviturilor se adaugă şi cel al frecării dintre mediul

de măcinare şi materialul de prelucrat, precum şi frecarea cu tamburul.

Clasificarea morilor cu bile după procedeul de mărunţire :

procedeul discontinuu când şarja de material este introdusă în moară şi măcinată

până ajunge la fineţea dorită. Se foloseşte pentru debite mici de ordinul sutelor de kg/h;

Fig. 1

Moară cu bile

Page 10: 90338252 Proiectarea Uie Instalatii de Macinare (1)

10

procedeul continuu în circuit deschis, la care materialul trece o singură data prin

moară.Măcinarea poate fi pe cale uscată sau pe cale umedă .Se foloseşte în general pentru debite

de ordinul zecilor de t/h ;

procedeul continuu în circuit închis, cu recirculaţia unei părţi din material, care a

trecut prin moară, însă a rămas insuficient mărunţit.Aceste mori sunt întotdeauna urmate de un

clasor, care separă produsul morii în două fracţii:una grosieră care este reintrodusă în moară şi

una fină care reprezintă produsul finit.Se foloseşte pentru debite pană la 200-300 t/h.

Morile, funcţionand în circuit închis, pot fi cu evacuare pneumatică şi transportul pneumatic al

materialului de la moară la clasor sau cu evacuare prin curgere şi transportul mecanic, prin elevator cu

cupe la clasor.Uneori se combină aceste două metode la ansamblul mori- uscătoare.

Morile cu bile au câteva avantaje importante cum ar fi construcţia simplă, siguranţa în exploatare,

asigurarea unui grad de măcinare ridicat. De asemenea, măcinarea poate fi combinată în acest caz cu

operaţii de uscare sau sortare.

Printre dezavantaje pot fi menţionate: volumul camerei de lucru este folosit în proporţie de 35–

45%, consumul ridicat de energie este ridicat, produc un zgomot puternic.

Fig. 2 Schema de functionare a morii cu bile

Morile cu bile sunt folosite pe scară largă pentru o gamă variată de materiale în industriile

chimică, minieră, a materialelor de construcţii, alimentară. Aceste mori pot avea dimensiuni într-o

gamă foarte largă, de la modelele folosite pentru uz de laborator până la dimensiuni ale tamburului de

4 metri diametru.

1.1.6. Utilizarea morilor cu bile in industria cimentului

Page 11: 90338252 Proiectarea Uie Instalatii de Macinare (1)

11

Principalele materii prime necesare pentru producerea cimentului (calcarul, argila) sunt extrase din

cariere, unde după concasarea primară, sunt transportate pe amplasamentul fabricii pentru depozitare şi

pregătire ulterioară. Argila are umiditate mare la exploatare astfel incat necesita uscare. Alte materii

prime, minereul de fier (cenusa de pirita), zgura granulata de furnal etc sunt aprovizionate de la furnizori

externi.

Amestecul de materii prime se realizeaza in proportia stabilita prin retetele de fabricatie realizate

in urma analizelor oxidice efectuate asupra materiilor prime: continut de CaO, SiO2, Al2O3, Fe2O3,

MgO etc.

Materiile prime în proporţiile stabilite dozate si cântărite cu ajutorul cântarelor de bandă sunt

măcinate şi uscate in mori cu bile sub forma unei pulberi fine numite faina bruta, folosindu-se mai ales

gazele provenite de la instalaţia de exhaustare a cuptorului. Făina este omogenizată şi depozitată în

silozuri dupa care este introdusa in sistemul cuptorului rotativ.

Cimentul Portland este produs prin macinarea clincherului impreuna cu gipsul in morile de ciment.

În cimenturile compozite există alţi compuşi (aditivi) precum zgura granulată de furnal care este macinata

impreuna cu clincherul. Pentru ca este aprovizionata cu umiditate mare, zgura este uscata in uscatoare

rotative ce utilizeaza gaze calde de la cuptor sau racitorul gratar dar utilizeaza si pacura sau gaze.

Cimentul produs este insilozat si expediat vrac sau ambalat in saci auto sau pe calea ferata.

Page 12: 90338252 Proiectarea Uie Instalatii de Macinare (1)

12

CAPITOLUL II

2.1.Caracterizarea granulometrica a materialelor

Caracterizarea granulometrică a amestecului se face prin analiză granulometrică (bazată pe

operaţia de clasare volumetrica sau gravimetrica) sau pe baza unor funcţii teoretice de repartiţie

granulometrică.

Distribuţia granulometrică reprezintă unul din factorii importanţi ce determină în tehnologia

cimentului, ceramicii şi refractarelor, indicii de calitate ai semifabricatelor şi produselor finale.

De obicei, în practica industrială caracterizarea cantitativă a unui amestec polidispers din punct de

vedere granulometric se face prin valorile reziduurilor pe una, eventual două site sau/şi prin valoarea

suprafeţei specifice. În anumite cazuri, cantitatea de informaţii este suficientă - pe baza acestei

metodologii. În acelaşi timp, în cele mai multe cazuri, acest mod simplu de abordare nu poate furniza,

calitativ şi cantitativ, informaţia necesară unei procesări optimale a materiilor prime. Repercusiunea

negativă se poate resimţi - în cazul unui proces tehnologic tip - în operaţii de: mărunţire-măcinare,

omogenizare, transfer termic în strat filtrant, fluidizat sau suspensie, presare.

Clasarea (volumetrică sau gravimetrică) poate avea ca scop:

separarea granulelor care depăşesc o limită superioară sau care nu ating o mărime limită

(superioară sau inferioară);

separarea în mai multe fracţii granulometrice pentru determinarea suprafeţei specifice a

materialului granular.

Distribuţia granulometrică a dispersiilor granulare se determină, în funcţie de mărimea

particulelor, cu ajutorul următoarelor metode de analiză:

cernerea uscată sau umedă;

separarea pneumatică în câmp gravitaţional şi în câmp centrifugal;

Page 13: 90338252 Proiectarea Uie Instalatii de Macinare (1)

13

levigarea;

sedimentarea în câmp gravitaţional şi câmp centrifugal;

determinarea la microscopul optic a ponderii diferitelor particule, după dimensiuni;

dispersia unui fascicol laser.

Din efectuarea multor analize granulometrice a rezultat că distribuţia mărimii particulelor

urmează destul de exact o lege simplă, denumită legea distribuţiei granulometrice. În acest caz se indică

totalitatea particulelor mai mici sau mai mari decât ochiul sitei, spre deosebire de exprimarea diferenţială

care dă numai mărimea unei fracţiuni granulometrice dintre două site consecutive.

Una din relaţiile matematice cele mai mult folosite pentru determinarea distribuţiei granulometrice

cumulative a dispersiilor grosiere este legea Rosin-Rammler-Sperling (cunoscută ca legea R.R.S.):

, unde (2.1)

Rx = procentul granulelor mai mari decât x (reziduu cumulativ);

x = dimensiunea granulelor (mărimea ochiului sitei), în mm sau m;

n = parametru granulometric (indice de uniformitate);

x’ = dimensiunea (diametrul) caracteristică a particulelor (indică gradul de fineţe a dispersiei).

Când x = x’, rezulta Rx =36.8%.

Legea RRS poate fi reprezentată grafic în diagrama Bennet. Prin logaritmare dublă a ecuaţiei [1] se obţine

relaţia liniară:

(2.2)

Suprafaţa specifică a unei dispersii se poate calcula cu relaţia:

Page 14: 90338252 Proiectarea Uie Instalatii de Macinare (1)

14

unde :

ρ = densitatea materialului [Kg/m3];

ΔRi = cantitatea de particule între două site consecutive, [%];

xmi = dimensiunea medie a particulelor unei clase granulometrice, [m]

(xmi = (xi + xi+1)/2)

Page 15: 90338252 Proiectarea Uie Instalatii de Macinare (1)

15

2.2. Stablirea curbei de distribuţie granulometrica

Distributiile granulometrice ale materiilor prime

Tabel 1.

Calcar

clasa

granulometrica <1 1 5 5 10 10 18 1825 2533 > 33

% grav 7 12 20 25 20 12 4

Rxi 93 81 61 36 16 4 0

xi 1 3 7.5 14 21.5 29 33

Tabel 2.

Argila

clasa

granulometrica < 0.1 0.10.4 0.40.8 0.81.4 1.42.4 2.43.6 > 3.6

% grav 3 10 18 26 23 14 6

Rxi 97 87 69 43 20 6 0

xi 0.1 0.25 0.6 1.1 1.9 3 3.6

Metoda analitica

Ecuaţia (2.2) arată o dependenţă liniară între ln(ln 100/Rx) şi ln x, deci ecuaţia (2.2) se poate scrie :

(2.4)

unde s-a notat: Y = ln(ln 100/Rx);

X = ln x,

a = n şi b = - n.ln x’ .

Page 16: 90338252 Proiectarea Uie Instalatii de Macinare (1)

16

Determinarea constantelor a şi b se face pe baza datelor experimentale (măsurătorilor de distribuţie).

Relaţiile de calcul pentru determinarea constantelor a şi b, sunt :

unde- N reprezintă numărul de date (măsurători) experimentale.

Se completează tabelele corespunzatoare fiecarei distribuţii urmând apoi calcularea constantelor a si b.

Tabel 3.

CALCAR

xi Xi Xi^2 Rxi Yi Xi*Yi

1 0 0 93 -2,623 0

3 1,098 1,205604 81 -1,557 -1,70959

7,5 2,015 4,060225 61 -0,705 -1,42058

14 2,639 6,964321 36 0,021 0,055419

21,5 3,068 9,412624 16 0,606 1,859208

29 3,367 11,33669 4 1,169 3,936023

33 3,497 12,22901 0 0 0

Σ 15,684 45,20847

-3,089 2,720489

a=0.9577

b= -2.5870

n=a=0.9577 n=0.9577

2.7012

Page 17: 90338252 Proiectarea Uie Instalatii de Macinare (1)

17

Tabel 4.

ARGILA

Nr. xi Xi Xi^2 Rxi Yi Xi*Yi

1 0,1 -2,3025 5,301506 97 -3,4913 8,038718

2 0,25 -1,3863 1,921828 87 -1,9713 2,732813

3 0,6 -0,5108 0,260917 69 -0,9913 0,506356

4 1,1 0,0953 0,009082 43 -0,1696 -0,01616

5 1,9 0,6418 0,411907 20 0,4759 0,305433

6 3 1,0986 1,206922 6 1,0344 1,136392

7 3,6 1,2809 1,640705 0 0 0

Σ

-1,083 10,75287

-5,1132 12,70355

a= 1.127

b= - 0.556

0.4933 1.6377

2.498

ngrafic=9.6/8.2

Alegem doua valori X1 si X2 :

X1=1.098 ln(ln 100/Rx1)= a*X1 + b ln(ln 100/Rx1)= 0.9577*1.098-2.5870

Rx1=80.62

La valoarea X1 i se atribuie valoarea x1=3

X2=2.639 ln(ln 100/Rx2)= a*X1 + b ln(ln 100/Rx2)= 0.9577*2.639-2.5870

Rx2=39

La valoarea X2 i se atribuie valoarea x2=14

Page 18: 90338252 Proiectarea Uie Instalatii de Macinare (1)

18

CALCAR

n X’ D80

analitic 0,95 14,09 24,48

grafic 1,17 14 23

Pentru argila :

X1=0.0953 ln(ln 100/Rx1)= a*X1 + b ln(ln 100/Rx1)= 1.127*0.0953 – 0.556

Rx1=52.9

La valoarea X1 i se atribuie valoarea x1=1.1

X2=1.0986 ln(ln 100/Rx2)= a*X1 + b ln(ln 100/Rx2)=1.127*1.0986-0.556

Rx2=7.17

La valoarea X2 i se atribuie valoarea x2=3

ngrafic=11.4/8.7

ARGILA

n X’ D80

analitic 1,127 1,6377 2,498

grafic 1,31 1,6 2,4

Făină bruta:

Se stie R90 =7.8, n=

1 ) ln(ln(100/R90))= n*ln90-n*lnx’

2) ln(ln(100/20))= n lnd80 – n lnx’

Page 19: 90338252 Proiectarea Uie Instalatii de Macinare (1)

19

-Se scad ecuatiile 1) si 2)

-se alege un n є (1.2-1.3) si se inlocuieste in relatia rezultata in urma scaderii relatiilor 1) si 2) de

unde se obtine d80= 61.56µm

-se inlocuieste d80 in relatia 2) si se obtine : x’=42.05mm

Page 20: 90338252 Proiectarea Uie Instalatii de Macinare (1)

20

CAPITOLUL III

Determinarea puterii de antrenare a morii

Se cunosc: = 0.75 si = 0.25 ;

[KWh/t] (3.6)

Pentru determinarea puterii necesare antrenarii morii, se poate intrebuinta formula empirica

indicata de Blanc:

[kW],unde: (3.1)

C- coeficient de putere depinzand de gradul de umplere a morii, de masa corpurilor de

macinare si este indicat pentru n=32/√D r.p.m. si pentru captuseala neteda a morii.

G- greutatea totala a corpurilor de macinare [KN];

N-puterea necesara pentru antrenarea morii [kW];

Conform tabelului 5.17, pentru bile mici de otel si un grad de umplere υ=0.3, coeficientul C este

egal cu 0.68;

[kN] (3.2)

[g/cm3] (3.3)

γ=74 kN/m3 ;

Porozitatea bilelor este ε=0.40 ;

ρa=74*(1-0.4)=44.4

Page 21: 90338252 Proiectarea Uie Instalatii de Macinare (1)

21

G=Π*D2*D*0.3*44.4 G=41.8248*D

3

Cunoscandu-se valoarea raportului L/D=4, rezulta L= 4 D ;

,unde : (3.4)

EB – energia specifica de maruntire dupa Bond ; [KWh/t]

K’- coeficient complex de corectie ;

- energia specifica de maruntire medie dupa Bond ; [KWh/ts]

[KWh/ts] (3.5)

[KWh/t] (3.6)

[KWh/t]

[KWh/t]

[KWh/t] (3.7)

[KWh/t]

[KWh/t]

[KWh/ts]

, unde (3.8)

– coeficient pentru macinarea in circuit inchis ; ( =1.3)

– coeficient pentru macinarea in circuit deschis ;

- coeficient ce face corectia pentru mori cu diametru diferit de 2.45 ;

Page 22: 90338252 Proiectarea Uie Instalatii de Macinare (1)

22

- factor ce tine cont de efectul de aglomerare ;

- factor ce tine cont ca o parte de material poate trece fara a fi macinat ;

- factor cu ajutorl caruia se face trecerea de la tone scurte la tone metrice ;

Pentru ca tot materialul este macinat si nu exista nici o parte care trece nemacinata =1 ;

Cunoscandu-se ca 1 ts = 0.907 t, rezulta ca =1.1 ;

Deoarece macinarea se realizeaza in circuit inchis =1;

;

[KWh/ts]

[kW]

(3.9)

P=99 [t/h]

0.68*41.8248*D3

D=3.28 m [KWh/t]

Page 23: 90338252 Proiectarea Uie Instalatii de Macinare (1)

23

G=1475.89kN

L= 4 D =12.72 m

N=

Motorul electric de antrenare va avea puterea de :

[kW] (3.10)

– randamentul pentru transmisia intermediara, pinion de antrenare si coroana dintata, fixat pe

corpul morii, egal cu 0.89 ;

- randamentul pentru reductorul de viteza, cuplat cu motorul electric, egal cu 0.96 ;

[kW]

[rot/min] ; (3.11)

[rot/min] ,

unde na reprezinta turatia critica ;

[rot/min] ; (3.12)

[rot/min] ,

unde no reprezinta turatia optima ;

[%] ;

[%] ;

Page 24: 90338252 Proiectarea Uie Instalatii de Macinare (1)

24

unde este turatia relativa a morii.

D[m] L[m] N[Kw] Nm[Kw] na[rot/min] no[rot/min] [%]

3.28 12.72 1622 1898 23 18 78

Page 25: 90338252 Proiectarea Uie Instalatii de Macinare (1)

25

CAPITOLUL IV

Determinarea dimensiunilor optime ale corpurilor de

macinare

, (4.1)

in care: A80-dimensiunea materialului de alimentare, caracterizata prin

dimensiunea ochiului sitei prin care trec 80% din material;

K- parametrul egal cu 350 pentru macinarea umeda si cu 335 pentru macinarea uscata in circuitul

deschis sau inchis;

-indicele energetic, rapotat la tona metrica;

- densitatea materialului supus maruntirii [g/cm3];

Ψ- turatia relativa egaal cu raportul n/ncr, in %;

D- diametrul util al morii [m];

In cazul nostru avem:

D80= 2460.5µm

K=335

[KWh/t] (4.2)

=11.53

Page 26: 90338252 Proiectarea Uie Instalatii de Macinare (1)

26

ρ= ρcalcar+ ρargila (4.3)

ρ=2.77 [Kg/m3]

Ψ=78 [%]

D=3.28 m

dmax=20.17 2.71 0.60 dmax=32.8 ;

Placi de blindaj

Placile de blindaj servesc la protejarea corpului morii de uzura suprafetelor de lucru,

provocata de corpurile triturante si de materialul de macinat.

Forma geometrica a suprafetelor active ale placilor de blindaj influenteaza considerabil

procesul de maruntire in morile cu bile. Aceasta se datoreaza coeficientului de frecare dintre

suprafata blindajului si umplutura morii (corpuri de macinare si materialul de macinare) care

contribuie la asigurarea inaltimii optime de ridicare a incarcaturii in tambur.

Se poate constata o anumita analogie intre functionarea curelelor de transmisie si placile

de captuseala, deoarece in ambele cazuri se transmite energie motrica unui receptor prin

intermediul fortelor de frecare.

Se pot folosi blindaje cu suprafete ondulate, cu suprafete striate sau cu proeminente

pentru a mari coeficientul de aderenta intre suprafata de lucru a blindajului si incarcatura morii.

Placile din blindaj se confectioneaza in general din otel turnat; nu se recomanda folosirea

placilor din otel manganos austenitic din cauza ductilitatii lor mari, din cauza ca pot provoca

ruperea suruburilor de fixare si chiar deformarea corpului morii. Cel mai indicat este otelul cu

crom.

Page 27: 90338252 Proiectarea Uie Instalatii de Macinare (1)

27

Se alege oţel rezistent la uzură conform STAS 11513-88

Obiect şi domeniu de aplicare

Prezentul standard se referă la oţeluti inoxidabile turnate în piese, utilizate la temperatura

ambiantă sau la temperaturi de maxim 300º C în industria chimică, alimentară, energetică,

construcţii navale, construcţii mecanice.

Tabel 5. Compoziţia chimică

Marca

oţelului

C

Si Mn P

max

S

max

Cr

max

Ni

max

Cu

max

35 Mn 16 0.32

...

0.40

0.17

...

0.37

1.40

...

1.80

0.035

0.035

0.30

0.30

0.30

Tabel 6. Abateri limită faţă de compoziţia chimică pe oţel lichid

Element Abateri limită

Carbon ± 0.02

Mangan ± 0.05

Siliciu ± 0.02

Page 28: 90338252 Proiectarea Uie Instalatii de Macinare (1)

28

Caracteristici mecanice şi tehnologice ale oţelutrilor

Tabel 7. Valorile caracteristicilor mecanice

Marca

oţelului

Diametrul

probei

de tratament

termic

[mm]

Tratament

termic

Rezistenţa la

rupere, Rm

N/mm2

min

Limita de curgere

Rp0.2

N/mm2

min

Alungirea la

rupere, A5

%

min

Gâtuirea

Z

%

min

Rezilien

ţa

j/cm2

min

25 N 629 360 13 - -

16 C+R 740 510 12 - 59

N –normalizare; C –călire; R –revenire

Tabel 9. Temperaturi de recoacere şi duritatea HB maximă după deformarea plastică

Marcă oţel

Temperatura de recoacere Duritatea HB

max

35Mn16

650...700 229

Page 29: 90338252 Proiectarea Uie Instalatii de Macinare (1)

29

Alegerea plăcilor de blindaj

Ablindaj=Π·D·L+ [m2] (4.4)

Ablindaj=3,14·3,28·12,72+ =147,89[m2]~ 148[m

2]

Aria plăcii de blindaj se alege între [0.2 - 1] m2; S-a ales 0.5 m

2 aria plăcii de blindaj.

Nr. Plăci de blindaj = = =296 plăci (4.5)

Page 30: 90338252 Proiectarea Uie Instalatii de Macinare (1)

30

CAPITOLUL V

Alegerea si dimensionarea utilajelor anexe din sectia de

macinare

Schema instalatiei de macinare:

Page 31: 90338252 Proiectarea Uie Instalatii de Macinare (1)

31

1- Moara cu bile;

2- Buncar;

3- Dozator celular rotativ;

4- Banda transportoare;

5- Separator pneumatic cu disc de imprastiere si ventilator exterior;

6- Elevator cu cupe;

7- Filtru electric;

8- Rigola pneumatica;

Pentru realizarea sectiei de macinare s-au ales ca utilaje de baza:

A. separator pneumatic

B. buncăr de alimentare

C. bandă transportoare

D. dozatorul celular rotativ

E. rigolă pneumatică

F. elevator cu cupe

G. electrofiltru

A. Separatorul pneumatic cu disc de imprastiere si ventilator exterior.

Separatorul pneumatic cu disc de împrăştiere este folosit în industria silicaţilor şi se poate

clasifica în :

Page 32: 90338252 Proiectarea Uie Instalatii de Macinare (1)

32

-cu ventilatorul principal de circulaţie a aerului amplasat în interiorul separatorului

-cu ventiloatorul principal de circulaţie a aerului amplasat în exteriorul separatorului.

Se alege separator pneumatic centrifugal cu disc de împrastiere si ventilator principal amplasat în

exterior.

Se aleg supragranulaţia din A, a=0,55 si supragranulaţia din F, g=0,06

Se cunoaste faptul ca subgranulaţia din A, b=1-a, de unde rezulta b=0.45

(5.1)

Din relatia de mai sus rezulta = 0.05

Se cunoaste debitul de material ce alimenteaza separatorul egal cu A= 99 t/h

A=F+G , unde (5.2)

F- debitul de material finit ce paraseste separatorul. [t/h]

G- debitul de material refuzat de separator. [t/h]

(5.3)

Din relatia (5.3) rezulta F= 44.49t/h.

Din relatia (5.2) rezulta G= 54.51t/h.

, R- gradul de recirculare

R=1.23

Page 33: 90338252 Proiectarea Uie Instalatii de Macinare (1)

33

B. Buncarul de alimentare

Pentru îndeplinirea funcţiei lor buncărele trebuie să asigure utilizarea integrală a

volumului util şi să permită extracţia continuă a meterialului conţinut..La golirea buncărelor pot

apărea dificultăţi care provin atât din comportarea materialelor granulare cât şi din construcţia

părţii inferioare de evacuare.

Modul de golire a buncărului este influenţat în mod hotărâtor de dimensiunea orificiului de

evacuare.

Capacitatea buncarelor

(5.4)

(5.4)

(5.5)

(5.6)

Se cunoaste umiditatea calcarului, 0,04 si umiditatea argilei =0,07.

Cu ajutorul relatiilor (5.4) se calculeaza = 33.37 t/h si = 11.12 t/h.

Page 34: 90338252 Proiectarea Uie Instalatii de Macinare (1)

34

Cu ajutorul relatiilor (5.5) si (5.6) se calculeaza debitul umed de calcar si argila:

= 34.70 t/h.

= 11.9 t/h.

Dimensionarea buncarelor

Se stie timpul de tampon τ =72 h.

(5.7)

Cu ajutorul relatiei (5.7) se calculeaza = 2498 t si = 857 t.

(5.8)

Din relatia (5.8) rezulta = 886 m3 si = 323 m

3.

Stiind ca dcil=hcil , si ca , se calculeaza :

hcil_calcar=10 m

dcil_calcar=10 m

hcon_calcar= 7.5m.

hcil_argila=7 m

dcil_argila=7 m

hcon_argila= 5.25 m.

Page 35: 90338252 Proiectarea Uie Instalatii de Macinare (1)

35

C. Dozatorul celular rotativ

Acest dozator este întrebuintat pe sacară largă în industria silicaţilor pentru dozare de

ciment, var, ipsos, mase ceramice, cărbuni, pentru evacuarea prafului din cicloane , instalaţii de

transport pneumatic, de desprăfuire.

Dozatorul celular rotativ se compune dintr-un corp cilindric din fontă care este montat la

gura de ieşire a buncărului . Lateral se găsesc două capace prevazute cu lagăre care se roteşte un

ax care sunt fixate 2-3 palete, care împart cilindrul în celule.Pentru a mării reziztenţa la uzură,

corpul şi capacele aparatului sunt blindate cu materiale rezistente la uzură.

La rotirea tamburului, materialele intră din buncar în celule şi se deplasează împreună cu

acestea descarcandu-se în pâlnia de evacuare.

Page 36: 90338252 Proiectarea Uie Instalatii de Macinare (1)

36

Debitul dozatorului celular rotativ se poate determina cu ajutorul relatiei :

,unde (5.9)

V-volumul unei celule [m3]

i – numărul celulelor tamburului ;

n – turaţia tamburului [rot/min] ;

υ – coeficient de umplere;

ρm – densitatea în grămadă a materialului [t/m3];

Se alege numarul de celule i=5, coeficientul de umplere al unei celule, υ=0,8.

Stiind ca turatia tamburului ncalcar= 17 rot/min si nargila= 12 rot/min si introducand in relatia (5.9)

se calculeaza:

Vcelula_dozator_calcar= 0,002 m3.

Vcelula_dozator_argila= 0,001 m3.

Page 37: 90338252 Proiectarea Uie Instalatii de Macinare (1)

37

D. Benzile transportoare

Transportoarele cu bandă flexibilă continuă, se utilizează pentru transportul materialelor

granulare vărsate şi uneori, al sarcinilor individuale grele (saci ,lăzi)

Transportoarele cu bandă prezintă multiple avantaje : construcţie simplă capacitate de

transport mare (pana la 20 000 t/h) ,lungime mare de transport , viteza de transport până la 6 m/s

,uneori chiar mai mare, înclinaţii ale transportorului până la 300 faţă de orizontală pentru benzi

din cauciuc cu suprafaţa netedă, si până la 600 pentru benzi din cauciuc cu nervuri. Temperatura

materialului de transportat poate fi cuprinsă între 230-400 0 K

Page 38: 90338252 Proiectarea Uie Instalatii de Macinare (1)

38

Determinarea productivităţii transportoarelor cu bandă şi a lăţimii benzii

55111

mvKK

QB

[mm], (5.10)

Q – capacitatea de transport [t/h];

Kα – coeficient care ţine seama de unghiul de înclinaţie a celui mai înclinat traseu al ramurii

purtătoare de material a benzii de transport;

K – coeficient care ţine seama de forma secţiunii transversale a ramurii purtătoare de material a

benzii de transport (plată sau jgheab);

v – viteza de deplasare a benzii de transport [m/s];

m - densitatea medie a materialului de transportat [t/m3].

Se alege transportor cu bandă plată

K=2

α = 0Kα = 1

vc = 3.3 m/s, de unde rezulta Bc = 207mm

va = 2.6 m/s, de unde rezulta Ba =158 mm

Puterea transportorului cu bandă

[kw] , unde: (5.11)

v- viteza de transport [m/s] ;

f- coeficient de frecare a lagărelor – se alege între 0.015 – 0.030 ;

Q – debit de transportat [t/h] ;

Page 39: 90338252 Proiectarea Uie Instalatii de Macinare (1)

39

H – îinaltimea [m] ;

C – coeficient ce depinde de lungimea de transport pentru distanta de 20 m. C = 3.3

Gm - masa rolelor şi a benzilor 100 -200 Kg/m;

L – lungimea de transport [m] – 20 m

Cunoscandu-se f=0,02, Gm=160 kg/m, ccalcar=3,3 si cargila =4,5 si inlocuindu-se in relatia (5.11) se

calculeaza:

Nc = 6.93 kw ;

Na = 6.4kw;

E. Elevatorul cu cupe

Pentru transportul pe verticală sau sub un unghi mare de înclinare faţa de orizontală a

materialelor granulare vărsate, se întrebuinţează elevatoarele cu cupe.

Pentru sarcini individuale se folosesc elevatoarele cu leagăne sau platane.

Viteza de transport are o mare influenţă asupra procesului de încărcare şi mai ales de

descărcare a cupelor, în funcţie de raportul dintre valoarea forţei centrifuge şi a celei de

gravitaţie.Din acest punct de vedere se disting :

-elevatoare cu descărcare centrifugală care fac parte din categoria elevatoarelor rapide ;

-elevatoare cu descărcare gravitaţională liberă care fac parte din categoria elevatoarelor lente

-elevatoare cu descărcare gravitaţională dirijată, care sunt totodată elevatoare lente;

-elevatoare cu descărcare mixtă în general din categoria elevatoarelor rapide.

Page 40: 90338252 Proiectarea Uie Instalatii de Macinare (1)

40

Puterea de antrenare a motorului elevatorului cu cupe se calculeaza cu formula:

[kw] (5.12)

Se alege inaltimea elevatorului H=20 m, viteza elevatorului v=1,2 m/s.

Introducand in relatia (5.12) se calculeaza puterea de antrenare: N=6.6 kw

F. Electrofiltru cu placi

În procedeele mecanice de desprăfuire a gazelor reţinerea particulelor solide aflate în

suspensie este însoţită de o pierdere de presiune datorită rezistenţelor hidraulice întâlnite.Un

aparat care permite separarea prafului fin la temperaturi ridicate şi cu un grad de separare ridicat

, cu o rezistenţă hidraulică mică este filtrul electric.Procedeul se bazează pe fenomenul că

particulele solide în suspensie într-un curent de gaz, pot fi încărcate electric şi separate din gaz,

în timpul trecerii gazului brut prin filtru.

O influenţă sensibilă asupra funcţionării filtrului electric o are valoarea conductivităţii

electrice şi a concentraţiei particulelor în suspensie în curentul de gaz..Conductivitatea electrică

Page 41: 90338252 Proiectarea Uie Instalatii de Macinare (1)

41

a particulelor de praf poate fi mărită prin umezirea gazului brut, împiedicând astfel o aderenţă

prea puternică a particulelor încarcate negativ pe electrodul de depunere.

Capacitatea de separare a unui filtru electric depinde foarte mult de viteza cu care

particulele de praf se deplasează înspre electrodul de depunere.

Gradul de separare al unui filtru electric se calculează cu relaţia :

[%], unde (5.13)

η – gradul de separare a electrofiltrului ;

w – viteza de separare în electrofiltru a particulelor de praf [ m/s] ;

Q – debitul curentului de gaz [ m3/s] ;

F – suprafaţa activă de depunere [ m2] ;

PQQ g [Nm3/s] (5.14)

Qg – debitul de gaz încărcat cu particule care intră în filtru [Nm3/kg];

P – productivitatea separatorului [kg/s].

Se alege w între 0,060 şi 0,080 m/s.

w = 0,075 m/s

Se alege Qgîntre 1,6 şi 2,0 Nm3/kg.

Qg = 1,9 Nm3/kg

Q= 39 Nm2/kg

F=13,7 [m2]

pfpf lLnF 2 [m2] (5.15)

n - numărul de plăci;

Page 42: 90338252 Proiectarea Uie Instalatii de Macinare (1)

42

Lpf – lungimea unei plăci; = 1 [m];

lpf – lăţimea unei plăci; = 1 [m].

Inlocuind in relatia (5.15) rezulta n=6.9 placi

G. Rigola pneumatic

Rigola pneumatică este formată dintr-un canal despărţit pe toată lungimea lui, printr-o

placă poroasă în raportul H1/H2 = 2. Rigola este formată din tronsoane de cca. 2 m lungime

asamblate prin şuruburi şi montate cu o înclinaţie de 4 – 10 % fată de orizontală.Înclinaţia este

cu atât mai mare cu cât sunt mai mari particulele de material şi debitele curente.Materialul curge

în lungul plăcii poroase, fiind în permanenţă menţinut în stare fluidizată de aerul suflat în spaţiul

inferior şi care străbate placa poroasă şi stratul pulverulent de material.Aerul uscat este suflat de

unul sau mai multe ventilatoare cu suprapresiunea de 2.5 – 5 kN/m2.

Avantajele rigolei pneumatice sunt urmatoarele :construcţie simplă, investiţii reduse, întreţinere

uşoară din lipsă de piese în mişcare, consum specific redus de energie electrică, gabarit mic,

funcţionare fără emisie de praf.

Caracteristicile rigolei:

G

t/

h

L

[m]

B

[mm]

h1 h

2 aer

[m3/

h]

Presiunea

ventilatorului

[kN/m2]

Puterea motorului

ventilatorului

[kw]

9

0

20 250 200 7

0

600 2.6 1.7

Page 43: 90338252 Proiectarea Uie Instalatii de Macinare (1)

43

Page 44: 90338252 Proiectarea Uie Instalatii de Macinare (1)

44

CAPITOLUL VI

Automatizarea instalatiei

Nivelul atins de producţia de ciment, un consum de ciment pe cap de locuitor comparabil

cu al ţărilor dezvoltate din punct de vedere economic, în curs de stabilizare, şi un export limitat

la pieţe accesibile din punct de vedere al distanţei de transport au determinat limitarea dezvoltării

extensive a industriei de ciment din Romania. Capacităţile de producţie existente asigură

consumul intern, precum şi disponibilităţile necesare pentru un export eficient.

Etapa urmatoare a dezvoltării industriei de ciment trebuie să vizeze modernizarea

instalaţiilor existente drept principal mijloc de crestere a eficienţei economice şi a

competitivităţii. Acestea se referă la reducerea consumului energetic, creşterea fiabilităţii

utilajelor, creşterea productivităţii muncii, modernizarea organizării şi conducerii producţiei.

Evoluţia perfecţionărilor tehnice arată că, şi în industria de ciment progresul se realizează pe o

spirală în care soluţiile fundamentale revin în actualitate dar pe o treaptă superioară.

Primele tehnologii de clincherizare au fost dezvoltate în cuptoare pe verticaă, au urmat apoi

cele dezvoltate pe orizontală în cuptoare lungi, ca din nou să apară tehnologia de calcinare în

instalaţii pe verticală, în suspensie cu reducerea continuă a parţii rotative orizontale. Este deci de

asteptat ca tehnologiile de varf ale viitorului din domeniul clincherizării sa se dezvolte în

continuare pe verticală, în cadrul unor instalaţii în care întregul proces, inclusiv clincherizarea

vor avea loc în suspensie în instalaţii statice cu reducerea consumului de combustibil 100

t.c.c./1000 [t] clincher.

Cu tot programul realizat, în tehnologia cimentului mai există instalaţii cu randamente

reduse. Instalaţiile de măcinare de pretutindeni, continuă sa aibă randamente scăzute.

Imbunătăţirile susceptibile de aplicat se referă la reducerea plajei granulometrice a materialului

la intrarea în mori prin pretensionarea în instalatii de sfărâmare cu randamente superioare fată de

ale celor cu bile. Pe de altă parte se urmareşte îmbunătăţirea randamentului măcinării prin

perfecţionarea instalaţiilor de separare a produsului finit, astfel particulele fine circulate să

Page 45: 90338252 Proiectarea Uie Instalatii de Macinare (1)

45

reprezinte sub 30–40% din grişul recirculat. Pe această cale se contează pe o reducere a

consumului de energie electrică la măcinare cu 20 – 30 % .

Informatizarea şi conducerea cu ajutorul calculatoarelor a procesului de producţie, ca rezultat

al evoluţiei tehnicii, constituie o principală verigă a creşterii productivităţii muncii. In acest scop,

eforturile specialiştilor se îndreaptă atât spre stabilirea proceselor şi asigurarea continuităţii

funcţionării cât şi spre eliminarea variaţiilor compoziţionale din materia primă prin dotarea

fabricilor cu instalaţie de preomogenizare. In acelaşi timp, o implicaţie a măsurii menţionate, o

constituie preocuparea susţinută pentru creşterea fiabilităţii aparatelor şi instruirea informatică,

specifică a personalului.

Conducerea unui proces tehnologic complex cum este procesul de fabricaţie a cimentului nu

poate fi concepută fară a menţine parametrii tehnologici constanţi şi la o anumită valoare cerută

de proces. Această funcţie poate fi realizată decât cu ajutorul buclelor de reglare. Fie că aceste

bucle sunt realizate cu regulatoare clasice cu posibilităţile lor limitate, fie că sunt realizate prin

intermediul sistemelor de calcul complexe în care regulatoarele clasice sunt înlocuite cu

regulatoare software, buclele de reglare nu pot fi eliminate.Principalii parametri reglaţi în ordinea

desfăşurării procesului tehnologic sunt:

- raportul dintre cantităţile de materii prime diferite la intrarea în concasorul de materii prime –

se obţine prin stabilirea unui raport între turaţiile benzilor de alimentare a concasorului;

- compoziţia făinii la ieşirea din moară se obţine prin dozarea materiilor prime la intrare în moară

- temperatura de iesire din moară – se obţine prin comanda debitului de gaze recirculate prin

moară;

- raportul gaz – păcură – aer – combustibil la arzătorul focarului auxiliar;

- presiunea la ieşirea gazelor din focarul auxiliar;

- temperatura gazelor la intrarea în electrofiltre;

- cantitatea de făină la intrarea în schimbătorul de căldura;

- turaţia cuptorului;

-debitele de aer ale ventilatoarelor răcitorului grătar;

-presiunea în camera I a răcitorului grătar;

Page 46: 90338252 Proiectarea Uie Instalatii de Macinare (1)

46

- compoziţia cimentului la ieşirea din moara de ciment se obţine prin comanda debitului de

ieşire.

Cu cât anume trebuie modificat un parametru al unui utilaj, dacă îi trebuie dată de la început o

valoare mai mare, iar apoi aceasta să fie redusă treptat?

In cât timp noua valoare devine stabilă etc.

Cu toate acestea trebuie să se ocupe cineva competent, iar acel “cineva” este aparatul denumit

regulator.

Acest aparat lucrează “de unul singur” dar va trebuii să ofere utilizatorului posibilitatea

de a verifica dacă reglarea funcţionează corespunzator. El va trebuii să ofere utilizatorului

posibilitatea de a modifica mărimea impusă ori de cate ori este necesar, să afşeze valoarea

mărimii impuse, în marimi fizice sau în poate si sa o compare cu valoarea marimii masurate.

Dacă cele doua valori sunt egale înseamna că parametrul reglat se menţine constant la valoarea

impusă.

Daca valoarea impusă se modifică, trebuie ca în cel mai scurt timp valoarea masurată să

ia o nouă valoare, egală cu cea impusă. Regulatorul va avea deci un mod de lucru automat.

Automatul programabil este un sistem care funcţionează ca un automat, adică execută secvenţe şi

operaţii bine stabilite, în funcţie de diverse condiţionări care pot apare în proces.

Atributul programabil se referă la faptul că logica de funcţionare a automatului nu este fixă. Ea

poate fi definită, adoptată sau modificată de utilizator în funcţie de aplicaţia concretă la care este

folosit echipamentul.Odată stabilită, logica de funcţionare a automatului programabil este

memorată de el şi este legea după care se lucrează.

In privinţa chimiei procesului, cercetările se vor adâncii spre descifrarea mecanismului

de întărire a cimentului, la nivel subatomic, ceea ce ar permite descoperirea legităţilor acestui

mecanism şi influenţarea lui în sensul dorit, cu eforturi energetice esenţiale micşorate faţă de cele

necesare dacă se acţionează pe căile clasice. O etapă ar putea-o constitui cercetările pentru

identificarea unor noi aditivi, care îndeplinind funcţia unor stimulatori să influenţeze

performanţele cimentului în sensul dorit.

Page 47: 90338252 Proiectarea Uie Instalatii de Macinare (1)

47

CAPITOLUL VII

Norme de protectie a muncii

Instalaţiile de mărunţire sunt constituite în principal din agregate mari în continuă

mişcare. Pentru evitarea accidentelor este necesară respectarea riguroasă a normelor de protectie a

muncii:

- montarea utilajelor să se facă pe fundatii solide;

- piesele in miscare să fie prevazute cu plase protectoare din sârmă, iar de-a lungul morilor sa fie

montate parapete din profile laminate sau din lanţuri;

- platformele şi scările să fie prevăzute cu balustrade;

- în timpul funcţionării este interzisă circularea pe sub moară; aceasta este permisă numai prin

locurile special amenajate având dimensiuni de un metru lăţime şi doi metri lungime şi acoperite

cu apărători din plasă sau din sarmă;

- în timpul lucrărilor de reparaţii în interiorul morii se impune blocarea utilajului pentru a se evita

rotirea accidentală; de asemenea, se impune ventilarea corespunzatoare a incintei morii.

Circulaţia prafului din atmosferă nu trebuie să depăşească 150 [mg/Nm3]. Pentru aceasta este

necesară echiparea tuturor instalaţiilor de măcinare şi transport cu dispozitive pentru captarea

prafului.

Deosebit de nocivă pentru sănătatea oamenilor este depăşirea unui anumit nivel de

intensitate a zgomotului. Se impun astfel măsuri speciale cum ar fi:

- izolarea utilajului producător de zgomot cu materiale fonoabsorbante;

- aplicarea de plăci fonoabsorbante pe pereţii halelor în care funcţionează utilajele;

- purtarea de dopuri fonoizolante pentru protejare.

Page 48: 90338252 Proiectarea Uie Instalatii de Macinare (1)

48

Bibliografie

1. M. Thaler, D. Becherescu, E.Beilich- “ Cuptoare si Utilaje in

industria silicatilor vol II- Masini si aparate”, ed. Didactica si

Pedagogica, Bucuresti 1973

2. M. Georgescu, A. Puri- “ Tehnologia liantilor”, Institutul

Politehnic Bucuresti, Bucuresti 1978

3. Internet: Norme de protectie a muncii