9 Future Power Systems PAOLONE

download 9 Future Power Systems PAOLONE

of 44

Transcript of 9 Future Power Systems PAOLONE

  • 8/12/2019 9 Future Power Systems PAOLONE

    1/44

    Impactoflightningonthereliability

    offuturepowersystems

    Prof.Mario

    Paolone

    DESL DistributedElectricalSystemslaboratorycolePolytechniqueFdraledeLausanne

    Lightning:detectionandprotectionETH,Zrich

    Oct.14th,2011

  • 8/12/2019 9 Future Power Systems PAOLONE

    2/44

    Outline

    Introduction

    Lightningperformanceofdistributionnetworks

    LightningimpactonHVDCoverheadtransmissionlines

    Conclusions

  • 8/12/2019 9 Future Power Systems PAOLONE

    3/44

    Outline

    Introduction

    Lightningperformanceofdistributionnetworks

    LightningimpactonHVDCoverheadtransmissionlines

    Conclusions

  • 8/12/2019 9 Future Power Systems PAOLONE

    4/44

    Introduction

    Themissionofmodernandfuturepowersystemsistosupplyelectricenergysatisfyingconflictingrequirements:

    reliabilityandsecurityofsupply;Economy/rationaluseofenergyenvironmental

    protection

    Massiveintroductionofrenewablesatvariousvoltagelevels.

  • 8/12/2019 9 Future Power Systems PAOLONE

    5/44

    Introduction

    RenewableElectricityGeneratingCapacityWorldwide

    Source:U.S.Dept.ofEnergy,RenewableEnergyDataBook,August 2010

  • 8/12/2019 9 Future Power Systems PAOLONE

    6/44

    Introduction

    RenewableElectricityGeneratingCapacityWorldwide

    Source:U.S.Dept.ofEnergy,RenewableEnergyDataBook,August 2010

    Globalrenewableelectricityinstallations(excluding

    hydropower)havemorethantripledfrom20002009.

    Windandsolarenergyarethefastestgrowingrenewableenergytechnologiesworldwide.WindandsolarPVgenerationgrewbyafactor

    of

    more

    than

    14

    between2000and2009.

    In

    2009,

    Germany

    led

    the

    world

    in

    cumulative

    solar

    PV

    installedcapacity.TheUnitedStatesleadstheworldinwind,geothermal,biomass,andCSPinstalledcapacity.

  • 8/12/2019 9 Future Power Systems PAOLONE

    7/44

    Introduction

    2010 Population density (prs/km2)Wind speed (annual avg m/s)

    Remark:mismatchbetweenrenewableslocationanddemand

  • 8/12/2019 9 Future Power Systems PAOLONE

    8/44

    Introduction

    2010 Population density (prs/km2)Daily solar irradiation (annual avg Wh/m2

    )

    Remark:mismatchbetweenrenewableslocationanddemand

  • 8/12/2019 9 Future Power Systems PAOLONE

    9/44

    Introduction

    Impactofrenewablesontransmissionnetworks:increaseoftransmissioncapacityoverlongdistances

    Example:

    required

    number

    of

    lines

    in

    parallel

    to

    transmit 6

    GWHVDC

    EHVandUHVACtransmissionlines

    + straightforward integration+ reliability+ investments- stability- voltage control

    - complexity in power flow control

    + power flows control

    + transfer capacity+ stability- reliability on long term

  • 8/12/2019 9 Future Power Systems PAOLONE

    10/44

    Introduction

    Impactofrenewablesontransmissionnetworks:HVDC

    Source:J.A.Fleeman*,P.E.,R.Gutman,P.E.,M.Heyeck,M.Bahrman,B.Normark,EHVACandHVDCTransmission

    WorkingTogethertoIntegrateRenewablePower,CigrIntegrationofWideScaleRenewableResourcesintothePowerDeliverySystem,Calgary,Canada.29 31July2009

    USAfutureACEHVandHVDCinstallations

    Europe

    futureHVDCinstallations

  • 8/12/2019 9 Future Power Systems PAOLONE

    11/44

    Introduction

    ImpactofembeddedgenerationondistributionnetworkstheItalianexample Primarysubstationminimumpower

    16%oftheItalianprimarysubstationsexperiencepowerflowinversionstothesubtransmissionnetwork(courtesyofENEL,Italy)

    MajorissuesVoltagecontrol

    Securenetworkoperationafter

    transientssubsequent

    to

    the

    loss

    ofmajordispersedgenerationandsubsequentreconnection

    Protectionsandshortcircuit

    levelsDetectionandoperationinislandingconditions

  • 8/12/2019 9 Future Power Systems PAOLONE

    12/44

    Introduction

    Remarks

    Transmissionanddistributionnetworksreliabilityisacrucialelementfortheintegrationofrenewables

    Revampingoftopicsrelatedtoinsulationcoordinationofbothtransmissionanddistributionlines

    Example Cigr SC4,Systemtechnicalperformances

    Lightning

    protection

    and

    insulation

    coordination,

    their

    modelingandanalysiswithchangingtechnologies(windturbines,UHVlines,activedistributionnetworks).

  • 8/12/2019 9 Future Power Systems PAOLONE

    13/44

    Outline

    Introduction

    Lightningperformanceofdistributionnetworks

    LightningimpactonHVDCoverheadtransmissionlines

    Conclusions

  • 8/12/2019 9 Future Power Systems PAOLONE

    14/44

    Lightningperformanceofdistribution

    networks

    2

    4

    6

    8

    10

    12

    14

    0 2 4 6 8

    Lightning Flash Density (flash / km2 / year)

    Sags/m

    onth/bus

    Source:E.W.GuntherandH.Metha,Asurveyofdistributionsystempowerquality,IEEETPWD,101,1995

    Impactoflightningonthepowerqualityofdistributionnetworks

  • 8/12/2019 9 Future Power Systems PAOLONE

    15/44

    Lightningperformanceofdistribution

    networks

    htl

    hdl

    Overhead transmission lines Overhead distribution lines

    Remark: the different geometry and insulation characteristics of transmissionand distribution overhead lines direct or indirect lightning events differentlyconcern the two line types:

    htl>>hdlCFOtl>>CFOdl

    direct lightning major concern for transmission lines

    indirect lightning major concern for distribution lines

  • 8/12/2019 9 Future Power Systems PAOLONE

    16/44

    Lightningperformanceofdistribution

    networksTheevaluationofthelightningperformanceofoverheaddistributionlines,availablestandards:

    IEEEStd.Guide1410;JointCigrCiredWGC4.4.02;

    Inherentcomplexityofdistributionsystems:numberoflines(mainfeederwithlaterals)presenceofpowercomponents(transformers,surge

    arresters,groundings,etc.)iswellfarfromthestraightlineconfigurationgenerallyadoptedintheliteratureandintheabovestandards.

  • 8/12/2019 9 Future Power Systems PAOLONE

    17/44

    Lightningperformanceofdistribution

    networks

    Num

    berofinducedv

    oltageswithmag

    nitude

    exceedingthevalue

    inabscissa/100km/yr

    Voltage [kV]

    LIGHTNING PERFORMANCE

    OF A DISTRIBUTION LINEDistribution systems

    insulation coordination

    Evaluation of the number ofannual flashovers due to

    indirect lightning that adistribution overhead linemay experience, as afunction of insulation level

    and line constructiondesign.

    CFO [kV]

    Numberof

    Flashovers

    Note: a so called incidence model is needed

    To distinghish between direct and indirect

  • 8/12/2019 9 Future Power Systems PAOLONE

    18/44

    Lightningperformanceofdistribution

    networks

    maxZ

    0I

    0h

    y1

    1

    2

    v

    c

    1

    11

    2

    v

    c

    2

    Ruscksimplifiedformula

    Z01/ 4

    0 / o 30

    Assumptions:

    a. singleconductor

    b. infinitelylonglinesabovea

    c. perfectlycond.ground

    d. stepcurrentwaveshape

    v returnstrokevelocity

    '1

    2

    sw sw c

    sw g

    h ZU

    U h Z R

    Toosimple:notadequate

    inmanycases!

    Toosimple:notadequate

    inmanycases!

    What was available within IEEE Std. 1410-2004 ?

  • 8/12/2019 9 Future Power Systems PAOLONE

    19/44

    Lightningperformanceofdistribution

    networksWhat is available within the new IEEE Std. 1410-2010 ?

    Lightning return stroke current modelRSC i(z,t)

    Lightning ElectroMagnetic Pulse Model

    i(z,t) LEMP E, B

    ElectroMagnetic Coupling Model

    E, B EMC

    i(0,t)

    U(x,t)

    I(x,t)

  • 8/12/2019 9 Future Power Systems PAOLONE

    20/44

    Lightningperformanceofdistribution

    networksWhat is available within the new IEEE Std. 1410-2010 ?

    Source: A. Borghetti, C. A. Nucci, M. Paolone, An improved procedure for the assessment of overhead line indirect lightningperformance and its comparison with the IEEE Std. 1410 method, IEEE Trans. on Power Delivery, pp. 684-692, January 2007.

    Single

    conductor

    lineSingle

    conductor

    line

  • 8/12/2019 9 Future Power Systems PAOLONE

    21/44

    Lightningperformanceofdistribution

    networks

    Singleconductorline

    plus

    grounded

    conductor

    Singleconductorlineplusgroundedconductor

    Influenceofgroundings spacing

    Source: A. Borghetti, C. A. Nucci, M. Paolone, An improved procedure for the assessment of overhead line indirect lightningperformance and its comparison with the IEEE Std. 1410 method, IEEE Trans. on Power Delivery, pp. 684-692, January 2007.

  • 8/12/2019 9 Future Power Systems PAOLONE

    22/44

    ZcZc500 m

    Strokelocation

    50m

    370 m

    SWgr. point

    SWgr. point

    SW

    gr. point

    Ideal ground, Rg=0

  • 8/12/2019 9 Future Power Systems PAOLONE

    23/44

    Lightningperformanceofdistribution

    networksInfluenceofgroundings ideal/lossyground

    Comparison between phase-to-ground and phase-to-grounded-wire flashover ratecurves calculated for different ground conductivity g and grounding resistance Rg.

    (Shielding wire grounded each 200 m. A linear model is assumed for the grounding impedance ofthe neutral or shielding wire )

    Comparison between phase-to-ground and phase-to-grounded-wire flashover ratecurves calculated for different ground conductivity g and grounding resistance Rg.

    (Shielding wire grounded each 200 m. A linear model is assumed for the grounding impedance ofthe neutral or shielding wire )

    2.2

    0.52

    Singleconductorline

    plus

    grounded

    conductor

    Singleconductorlineplusgroundedconductor

  • 8/12/2019 9 Future Power Systems PAOLONE

    24/44

  • 8/12/2019 9 Future Power Systems PAOLONE

    25/44

    Lightningperformanceofdistribution

    networks

    10.8m

    a

    b

    c

    1.3 m

    10m

    CFO=125kVCoord inate Gauss-Boaga x [km]

    Coo

    rdinateGauss-Boa

    gay[km]

    5080

    5082

    5084

    5086

    5088

    5090

    5092

    2345 2347 2349 2351 2353 2355

    Influenceofnetworktopology

  • 8/12/2019 9 Future Power Systems PAOLONE

    26/44

    Lightningperformanceofdistribution

    networksInfluenceofnetworktopologyExperimentalobservations

    2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 23565081

    5082

    5083

    5084

    5085

    5086

    5087

    5088

    5089

    5090

    5091

    5092

    Venus

    Torrate

    Maglio

    Primary 132/20 kVsubstation ' Ponterosso'

    Coordinate Gauss-Boaga x (km)

    CoordinateGauss-Boaga

    y(km)

    fl.num:30260#4 del 30/8/2007 11:23:36.407205945 -48.4 kA

    CESISIRFeventn.302604Aug.30,2007Ip= 48.4kA

  • 8/12/2019 9 Future Power Systems PAOLONE

    27/44

    Lightningperformanceofdistribution

    networks

    0.0001

    0.0010

    0.0100

    0.1000

    1.0000

    50 100 150 200 250

    Voltage [kV]

    Annualnumberofeventsex

    ceedingthevalue

    in

    abscissa

    straight line

    H-shaped network (type 1)H-shaped network (type 2)

    T-shaped network

    Influenceofnetworktopology

  • 8/12/2019 9 Future Power Systems PAOLONE

    28/44

    Outline

    Introduction

    Lightningperformanceofdistributionnetworks

    LightningimpactonHVDCoverheadtransmissionlines

    Conclusions

    Li h i i HVDC h d

  • 8/12/2019 9 Future Power Systems PAOLONE

    29/44

    LightningimpactonHVDCoverhead

    transmission

    linesHVDCtypicalconfiguration

    Li ht i i t HVDC h d

  • 8/12/2019 9 Future Power Systems PAOLONE

    30/44

    LightningimpactonHVDCoverhead

    transmission

    linesThedesignerofapowersystemneedstoknowtheflashoverrateofanoverheadpowerlineforaselectedinsulationleveltomeetthereliabilitycriteriasetforthesystem.

    Thelightningflashoverrate(lightningperformanceoftheline)isthesumof:directstrikesflashoverrate;nearbystrikesflashoverrate(disregardedinviewofTLCFO);

    flashoverratefromfailuresofprotectiveequipment.Onlyfirststrokesofnegativedownwardflashesaregenerallytakenintoaccountinlightningperformancestudies.

    Topredictthelightningperformanceoneneedstheknowledgeof:thelightningactivity(thegroundflashdensityNg(fl/km2/yr));theexposuretolightning;lightningconsequences.

    Li ht i i t HVDC h d

  • 8/12/2019 9 Future Power Systems PAOLONE

    31/44

    LightningimpactonHVDCoverhead

    transmission

    linesExposure(i.e.lightningincidence)

    Themodelsappliedtocalculatelightningincidenceontransmission

    lines

    are

    based

    on

    consideration

    of

    the

    physical

    processes

    involved

    duringthefinalstagesofprogressionofachargeddownwardlightningleader(usuallyassumednegative)initsapproachtotheearth,ortowardstructuressuchasalineortransmissiontower.

    Thesemodels,basedondownwardleaderapproach,couldbedividedinto:

    conventionalmodels

    electrogeometric

    model;

    morerecentmodels leaderprogressionmodel(LPM).

    Li ht i i t HVDC h d

  • 8/12/2019 9 Future Power Systems PAOLONE

    32/44

    LightningimpactonHVDCoverhead

    transmission

    lines

    rc

    rg

    nearbystroke

    directstroke

    h dl

    rc:strikingdistancestoaphaseconductor;

    rg:strikingdistancestoground;

    dl:lateralattractivedistanceoftheline

    Singleconductoroverheadlineofagivenheighth:

    22 hrrd gcl

    rc rg

    A b k

    Armstrong andWhitehead

    6.7 0.8 0.9

    IEEE WG 10 0.65 0.55

    cg rkr b

    rg IAr g

    b

    rc IAr c

    Conventionalelectrogeometricmodel:basicconcept

    Lightning impact on HVDC overhead

  • 8/12/2019 9 Future Power Systems PAOLONE

    33/44

    LightningimpactonHVDCoverhead

    transmission

    linesAdvanced models: leader progression modelSequential solution of the Poissons equation: )( 0 PV

    Electric

    potential

    iso

    surfaces

    associatedtoadownwardleadercorrespondingtoapeakcurrentof20kA.Downwardleaderat360mfromtheground.Inceptionconditionsforthe

    formationof

    the

    upward

    leader

    fromtheearthedstructurehavenotyetbeenreached.

    Lightning impact on HVDC overhead

  • 8/12/2019 9 Future Power Systems PAOLONE

    34/44

    LightningimpactonHVDCoverhead

    transmissionlines

    Lightningleaderapproachingground:downwardmotionunperturbed unlesscriticalfieldconditionsdevelopjuncturewiththenearbytower,calledfinaljump.

    Foreachelectricfieldstreamlineconnectingthetwo

    leadersithasdeterminedwhethertheelectricfield

    exceedsthevalueof500 kV/malongtheoverallstreamline

    length.

    Peakcurrentof20kAlocatedat23mfromthe30mhighearthedstructure:electricfieldisosurfacesandstreamlines.

    Lightning impact on HVDC overhead

  • 8/12/2019 9 Future Power Systems PAOLONE

    35/44

    LightningimpactonHVDCoverhead

    transmissionlines

    Shieldingfailure:basicconcept

    Foraspecificvalueofstrokecurrent,arcsofradiircaredrawnfromthephaseconductorsandfromtheshieldwireswiththehorizontallineatadistancergfromtheearth.Ashieldingfailure

    isastrokethatterminatesonaphaseconductor,inspiteofthepresenceofoverheadgroundwires.Theflashcollectionrateis:

    min

    )()]()([2

    I

    cggs dIIfIDIDLNN

    max

    min2

    I

    Icg dIIfDLNSFR

    Integratingonlytheexposureareaofthephaseconductors,weobtaintheshieldingfailurerate(SFR)

    rg

    rc

    rc

    Dc Dg

    Where: Iministheminimumlightningcurrent(2or3kA); Imaxisthemaximumcurrentatandabovewhich

    no

    stroke

    will

    terminate

    on

    the

    phase

    conductor.

    Lightning impact on HVDC overhead

  • 8/12/2019 9 Future Power Systems PAOLONE

    36/44

    LightningimpactonHVDCoverhead

    transmissionlines

    Shieldingfailureflashoverrate:SFFOR

    IfthevoltageEissettotheCFO,negativepolarity,

    thenthecriticalcurrent

    Ic,atandabovewhich

    flashoveroccurs.TheinitialconditionoftheHVDCcouldbetakenintoaccountintotheestimationofI

    c.

    ThereforeSFFORis:

    SFFOR 2NgL Dcf I dIIc

    Imax

    Lightning impact on HVDC overhead

  • 8/12/2019 9 Future Power Systems PAOLONE

    37/44

    LightningimpactonHVDCoverhead

    transmissionlines

    ShieldingfailureonHVDC:experimentalobservations

    Source: Hengxin He, Junjia He, Zhang, D., Li Ding, Zhenglong Jiang, Cheng Wang, Huisheng Ye, Experimental Study on Lighting ShieldingPerformance of 500 kV HVDC Transmission Lines, 2009 Asia-Pacific Power and Energy Engineering Conference (APPEEC 2009).

    Lightning impact on HVDC overhead

  • 8/12/2019 9 Future Power Systems PAOLONE

    38/44

    LightningimpactonHVDCoverhead

    transmissionlines

    ShieldingfailureonHVDC:experimentalobservations

    Source: Hengxin He, Junjia He, Zhang, D., Li Ding, Zhenglong Jiang, Cheng Wang, Huisheng Ye, Experimental Study on Lighting ShieldingPerformance of 500 kV HVDC Transmission Lines, 2009 Asia-Pacific Power and Energy Engineering Conference (APPEEC 2009).

    Lightning impact on HVDC overhead

  • 8/12/2019 9 Future Power Systems PAOLONE

    39/44

    LightningimpactonHVDCoverhead

    transmissionlines

    Remark: it seems that the applied DC voltage on the polar conductor, as well as itspolarity, plays a role into the upward streamer inception criterion and, therefore, into theattachment process.

    ShieldingfailureonHVDC:experimentalobservations

    Source: Hengxin He, Junjia He, Zhang, D., Li Ding, Zhenglong Jiang, Cheng Wang, Huisheng Ye, Experimental Study on Lighting ShieldingPerformance of 500 kV HVDC Transmission Lines, 2009 Asia-Pacific Power and Energy Engineering Conference (APPEEC 2009).

    Lightning impact on HVDC overhead

  • 8/12/2019 9 Future Power Systems PAOLONE

    40/44

    LightningimpactonHVDCoverhead

    transmissionlines

    Backflashover:basicconcepts

    Whenlightningstrikesthetower(ortheOHGWs),thecurrent

    on

    the

    tower

    and

    ground

    impedances

    causes

    the

    rise

    of

    the

    towervoltage.Asmallfractionofthetowerandshieldwiresvoltageisinducedinthephaseconductorsduetotheelectromagneticcoupling,neverthelessthetowerandshieldwiresvoltagebecomesgreaterthenphaseconductorsvoltage.

    IfthevoltageexceedsthelineCFO,flashoveroccurscalledbackflashorbackflashoverandthecorrespondingminimumlightningcurrentthatproducessuchaflashoveriscalledcriticalcurrent.

    Thetermback referstothefactthatthehighestvoltageisonapartofthepowersystemnormallyatgroundpotential.

    Lightning impact on HVDC overhead

  • 8/12/2019 9 Future Power Systems PAOLONE

    41/44

    LightningimpactonHVDCoverhead

    transmissionlines

    Estimationofthebackflashrate

    UseoftheElectromagneticTransientProgram

    The

    calculation

    of

    the

    critical

    current

    Icby

    means

    of

    EMTP

    like

    programs

    allowstotakeinaccount:

    waveshapeofthecurrentsource;

    flashovercriteriaintheformofvolttimecharacteristics;

    transmission

    line

    models

    including

    all

    line

    conductors

    (em

    coupling); representationofthesoilionization;

    frequencydependentgroundingmodels;

    surgearresters;

    representationofallthepowersystemcomponents;ForHVDC:

    conductorspotential(prelightningDCvoltagestatus);

    frequencydependencyofinputimpedanceofHVDCpowerelectronics.

    ForHVDC:

    conductorspotential(prelightningDCvoltagestatus);

    frequencydependencyofinputimpedanceofHVDCpowerelectronics.

    Lightning impact on HVDC overhead

  • 8/12/2019 9 Future Power Systems PAOLONE

    42/44

    LightningimpactonHVDCoverhead

    transmissionlines

    BFR 0.6NL f Itf

    f tf

    Ic

    0

    dIdtf fl100km yr

    Calculationofthebackflashoverrate(BFR)TheBFRistheprobabilityofexceedingthecriticalcurrentmultipliedbythenumberofflashestothelineNL.However,sincethecrestvoltageandtheCFOarebothfunctions

    of

    the

    time

    to

    crest

    tfofthelightningcurrent,thecriticalcurrent

    previouslydeterminedisvariable.Therefore,theBFRconsideringallthepossible

    timetocrestvaluesis:

    Where

    f(I/tf)

    is

    the

    conditional

    probability

    density

    function

    of

    the

    stroke

    current

    given

    thetimetocrestandf(tf)istheprobabilityfunctionofthetimetocrest.

    Note:inordertoobtaintheBFRforstrokestothetowerandstrokeandtothespans,theBFRobtainedforstrokestothetowerismultipliedbyacoefficient,equalto0.6[Hileman,1999]

    O li

  • 8/12/2019 9 Future Power Systems PAOLONE

    43/44

    Outline

    Introduction

    Lightningperformanceofdistributionnetworks

    LightningimpactonHVDCoverheadtransmissionlines

    Conclusions

    C l i

  • 8/12/2019 9 Future Power Systems PAOLONE

    44/44

    Conclusions

    Renewablesintegrationisincreasingtheneedofelectricalnetworkreliability revampingof thestudiesoninsulationcoordinationofT&Dsystems.

    Distribution:advancedmodelsintegratedintointernationalstandardfortheevaluationoflightningperformancetakingintoaccountrealisticnetwork

    configurations. TransmissionwithHVDC:inherentcharacteristics

    influencethelightningperformance needofmore

    research

    on attachmentprocessandrelevantanalytical

    formulation; highfrequencymodelsforlineterminations.