8th International Quantum Cascade Laser School and...

40
Modeling electron transport in quantum cascade lasers Thomas Grange, nextnano GmbH Software for semiconductor nanodevices 8th International Quantum Cascade Laser School and Workshop (IQCLSW 2018) Cassis, France

Transcript of 8th International Quantum Cascade Laser School and...

Page 1: 8th International Quantum Cascade Laser School and ...iqclsw2018.lpa.ens.fr/IMG/pdf/tutorial_iqclsw_2018_grange.pdf · Thomas Grange, nextnano IQCLSW 2018 23. Input file Thomas Grange,

Modeling electron transport in quantum cascade lasers

Thomas Grange, nextnano GmbH

Software for semiconductor nanodevices

8th International Quantum Cascade Laser School and Workshop (IQCLSW 2018)Cassis, France

Page 2: 8th International Quantum Cascade Laser School and ...iqclsw2018.lpa.ens.fr/IMG/pdf/tutorial_iqclsw_2018_grange.pdf · Thomas Grange, nextnano IQCLSW 2018 23. Input file Thomas Grange,

Electron transport in QCLs

Essential ingredients to model electrontransport in QCLs?

- Quantum confinement

- Scattering processes

1 period

Other ingredients:

- Coherent effects? (tunneling vs hopping between eigenstates)

- Broadening effects? is energy conserved for each scattering event?

Thomas Grange, nextnano IQCLSW 2018 2

Page 3: 8th International Quantum Cascade Laser School and ...iqclsw2018.lpa.ens.fr/IMG/pdf/tutorial_iqclsw_2018_grange.pdf · Thomas Grange, nextnano IQCLSW 2018 23. Input file Thomas Grange,

Outline

• Essential ingredients for modeling QCLs: electronic structure and scattering processes

• Different formalisms from semi-classical to quantum transport

• Development of a commercial NEGF simulator: nextnano.QCL

• New physical insights QCLs

• Rate equation for populations

• Density matrix

• Non-equilibrium Green’s functions (NEGF)

Thomas Grange, nextnano IQCLSW 2018 3

Page 4: 8th International Quantum Cascade Laser School and ...iqclsw2018.lpa.ens.fr/IMG/pdf/tutorial_iqclsw_2018_grange.pdf · Thomas Grange, nextnano IQCLSW 2018 23. Input file Thomas Grange,

Hamiltonian of an electron in a QCL

3D

e-

+

e-

e-++

Hamiltonian of a single charge carrier (3D problem)

photons

phonons

Thomas Grange, nextnano IQCLSW 2018 4

Page 5: 8th International Quantum Cascade Laser School and ...iqclsw2018.lpa.ens.fr/IMG/pdf/tutorial_iqclsw_2018_grange.pdf · Thomas Grange, nextnano IQCLSW 2018 23. Input file Thomas Grange,

Hamiltonian of an electron in a QCL

3D

• Interface roughness• Alloy disorder• Charged impurity scattering

➢ Separate into an exactly solvable part and a scattering part (treated in perturbation)

1D Schrödinger equation

2D free motion

Thomas Grange, nextnano IQCLSW 2018 5

Page 6: 8th International Quantum Cascade Laser School and ...iqclsw2018.lpa.ens.fr/IMG/pdf/tutorial_iqclsw_2018_grange.pdf · Thomas Grange, nextnano IQCLSW 2018 23. Input file Thomas Grange,

Ideal case: 1D and 2D motions decoupledz

Ex,y

kx

ky

Ez

Free in-plane motion: subbands

Eigenstates = Wannier-Stark states

If no scattering: no transport, only Bloch oscillations

Thomas Grange, nextnano IQCLSW 2018 6

Page 7: 8th International Quantum Cascade Laser School and ...iqclsw2018.lpa.ens.fr/IMG/pdf/tutorial_iqclsw_2018_grange.pdf · Thomas Grange, nextnano IQCLSW 2018 23. Input file Thomas Grange,

Scattering proceesz

Ex,y

kx

ky

Ez

Free in-plane motion: subbands

Eigenstates = Wannier-Stark states

Scattering processes couple the 1D and 2D motions

Thomas Grange, nextnano IQCLSW 2018 7

Page 8: 8th International Quantum Cascade Laser School and ...iqclsw2018.lpa.ens.fr/IMG/pdf/tutorial_iqclsw_2018_grange.pdf · Thomas Grange, nextnano IQCLSW 2018 23. Input file Thomas Grange,

Non-radiative scattering processes

From Jirauschek & Kubis (2014)

▪ Disorder effects that breaks the 2D invariance induces elasticscattering processes

▪ Charged impurities (ionized dopants)▪ Alloy disorder▪ Rough interfaces

▪ Coupling to phonons: inelatic scatteringprocesses

▪ Optical phonons▪ Acoustic phonons (usually very weak)

Thomas Grange, nextnano IQCLSW 2018 8

Page 9: 8th International Quantum Cascade Laser School and ...iqclsw2018.lpa.ens.fr/IMG/pdf/tutorial_iqclsw_2018_grange.pdf · Thomas Grange, nextnano IQCLSW 2018 23. Input file Thomas Grange,

▪ Electron-electron scattering

Non-radiative scattering processes

▪ Conservation of total energy and total momentum: inelastic process for a givenelectron but energy conservation in total

Thomas Grange, nextnano IQCLSW 2018 9

Page 10: 8th International Quantum Cascade Laser School and ...iqclsw2018.lpa.ens.fr/IMG/pdf/tutorial_iqclsw_2018_grange.pdf · Thomas Grange, nextnano IQCLSW 2018 23. Input file Thomas Grange,

Non-radiative scattering processes

Elastic scattering processes alone?

▪ Combination of elastic and inelastic scattering processes

Intersubband elastic process+ intrasubband inelastic process

infinitely increasing electron temperature

Thomas Grange, nextnano IQCLSW 2018 10

Page 11: 8th International Quantum Cascade Laser School and ...iqclsw2018.lpa.ens.fr/IMG/pdf/tutorial_iqclsw_2018_grange.pdf · Thomas Grange, nextnano IQCLSW 2018 23. Input file Thomas Grange,

Outline

• Essential ingredients for modeling QCLs: electronic structure and scattering processes

• Different formalisms from semi-classical to quantum transport

• Development of a commercial NEGF simulator: nextnano.QCL

• New physical insights QCLs

• Rate equation for populations

• Density matrix

• Non-equilibrium Green’s functions (NEGF)

Thomas Grange, nextnano IQCLSW 2018 11

Page 12: 8th International Quantum Cascade Laser School and ...iqclsw2018.lpa.ens.fr/IMG/pdf/tutorial_iqclsw_2018_grange.pdf · Thomas Grange, nextnano IQCLSW 2018 23. Input file Thomas Grange,

Rate equations for populations

in steady state

Scattering rates can be calculated using Fermi Golden rule.For elastic processes:

➢Convenient expression of scattering rate➢ Ensemble Monte-Carlo method can be used➢ Fast simulations

elastic

elastic

Thomas Grange, nextnano IQCLSW 2018 12

Page 13: 8th International Quantum Cascade Laser School and ...iqclsw2018.lpa.ens.fr/IMG/pdf/tutorial_iqclsw_2018_grange.pdf · Thomas Grange, nextnano IQCLSW 2018 23. Input file Thomas Grange,

Rate equations for populations

… but problem for describing resonant tunneling

Transport time = injection time + extraction time

Tunneling time does not depend on the barrier thickness!

inj

extr

Rate equation approach works only if tunneling processes faster than scattering processesThomas Grange, nextnano IQCLSW 2018 13

Page 14: 8th International Quantum Cascade Laser School and ...iqclsw2018.lpa.ens.fr/IMG/pdf/tutorial_iqclsw_2018_grange.pdf · Thomas Grange, nextnano IQCLSW 2018 23. Input file Thomas Grange,

Resonant tunneling

Wannier-Stark states Tight-binding states (decoupling states from left and right from the barrier)

Tunneling rate = in the coherent case

in the incoherent case (Fermi golden rule)= Thomas Grange, nextnano IQCLSW 2018 14

Page 15: 8th International Quantum Cascade Laser School and ...iqclsw2018.lpa.ens.fr/IMG/pdf/tutorial_iqclsw_2018_grange.pdf · Thomas Grange, nextnano IQCLSW 2018 23. Input file Thomas Grange,

Spatially decoupling the wavefunctions into different modules:- rate equation for populations inside each module- tunneling rate between modules

Hybrid approach

Active region

Injection region

Injection

Limitation: arbitrary distinction needed between tunneling and scattering processes

Kazarinov and Suris, 1972

Thomas Grange, nextnano IQCLSW 2018 15

Page 16: 8th International Quantum Cascade Laser School and ...iqclsw2018.lpa.ens.fr/IMG/pdf/tutorial_iqclsw_2018_grange.pdf · Thomas Grange, nextnano IQCLSW 2018 23. Input file Thomas Grange,

• Basis invariance using equations for the full density matrix

Density matrix

Two existing approaches:▪ Lindblad equation with phenonenological parameters for

dephasingWilliams, Kumar

▪ Perturbative treatment of scattering processesIotti & Rossi, Terrazi et al

Thomas Grange, nextnano IQCLSW 2018 16

Page 17: 8th International Quantum Cascade Laser School and ...iqclsw2018.lpa.ens.fr/IMG/pdf/tutorial_iqclsw_2018_grange.pdf · Thomas Grange, nextnano IQCLSW 2018 23. Input file Thomas Grange,

Time-energy uncertainty

Sequential scattering processes(rate equation / density matrix)

Energy conservation is enforced for each scattering process

Green’s functions: energy-resolveddescription

But we know that

Account for high-order processes

Thomas Grange, nextnano IQCLSW 2018 17

Page 18: 8th International Quantum Cascade Laser School and ...iqclsw2018.lpa.ens.fr/IMG/pdf/tutorial_iqclsw_2018_grange.pdf · Thomas Grange, nextnano IQCLSW 2018 23. Input file Thomas Grange,

Non-equilibrium Green’s functions (NEGF)In steady-state transport, two independent quantities

Retarded Green’s function:Imaginary part

Lesser Green’s function: energy-resolved density matrix

Energy-resolved carrier density

Spectral function (i.e. density of states)

Thomas Grange, nextnano IQCLSW 2018 18

Page 19: 8th International Quantum Cascade Laser School and ...iqclsw2018.lpa.ens.fr/IMG/pdf/tutorial_iqclsw_2018_grange.pdf · Thomas Grange, nextnano IQCLSW 2018 23. Input file Thomas Grange,

Coupling between Green’s functions

ScatteringElectron distribution

Density of state

➢ The density of state and the electron distribution needs to be solvedself-consistently

Thomas Grange, nextnano IQCLSW 2018 19

Page 20: 8th International Quantum Cascade Laser School and ...iqclsw2018.lpa.ens.fr/IMG/pdf/tutorial_iqclsw_2018_grange.pdf · Thomas Grange, nextnano IQCLSW 2018 23. Input file Thomas Grange,

Solving self-consistent NEGF equations

Final solution

Retarded Green’s function

GR

Mean-field electrostatic potential

Lesser Green’s function

G<

Self-energiesdescribingscattering

ΣR, Σ<Dyson equation

Keldyshequation

Self-consistent Born approx. forscattering

Initial guess

Density Optical gain

Poisson’s equation

Current

Implementation of NEGF in QCLs: Lee & Wacker (2002)Thomas Grange, nextnano IQCLSW 2018 20

Page 21: 8th International Quantum Cascade Laser School and ...iqclsw2018.lpa.ens.fr/IMG/pdf/tutorial_iqclsw_2018_grange.pdf · Thomas Grange, nextnano IQCLSW 2018 23. Input file Thomas Grange,

Linewidths of radiative transitions

T. Ando (1985):

Broadening of radiative transitions:

Intersubandscattering(lifetime limit)

Pure dephasing arises fromthe difference in intrasubband scattering.

➢ Linewidth can be smaller than individual subband broadening if intrasubband processes are correlated

➢ NEGF: self-consistent calculation of gain needed to account for thesecorrelation effects

Thomas Grange, nextnano IQCLSW 2018 21

Page 22: 8th International Quantum Cascade Laser School and ...iqclsw2018.lpa.ens.fr/IMG/pdf/tutorial_iqclsw_2018_grange.pdf · Thomas Grange, nextnano IQCLSW 2018 23. Input file Thomas Grange,

Outline

• Essential ingredients for modeling QCLs: electronic structure and scattering processes

• Different formalisms from semi-classical to quantum transport

• Development of a commercial NEGF simulator: nextnano.QCL

• New physical insights QCLs

• Rate equation for populations

• Density matrix

• Non-equilibrium Green’s functions (NEGF)

Thomas Grange, nextnano IQCLSW 2018 22

Page 23: 8th International Quantum Cascade Laser School and ...iqclsw2018.lpa.ens.fr/IMG/pdf/tutorial_iqclsw_2018_grange.pdf · Thomas Grange, nextnano IQCLSW 2018 23. Input file Thomas Grange,

nextnano.QCL

Scattering processes- Charged impurities- Interface roughness- Alloy disorder- Electron-electron- Optical phonons- Acoustic phonons

Electronic structure

- Effective mass approximation with non-parabolicity

- Wurzite materials (piezo and pyro-electric effects)

- Group IV materials

NEGF solver

Input file:• Heterostructure geometry• Material parameters• Simulation parameters

(energy grid, …)

Simulation results• Physical observables

(current density, gain)• Analysis in different basis

Thomas Grange, nextnano IQCLSW 2018 23

Page 24: 8th International Quantum Cascade Laser School and ...iqclsw2018.lpa.ens.fr/IMG/pdf/tutorial_iqclsw_2018_grange.pdf · Thomas Grange, nextnano IQCLSW 2018 23. Input file Thomas Grange,

Input file

Thomas Grange, nextnano IQCLSW 2018 24

Page 25: 8th International Quantum Cascade Laser School and ...iqclsw2018.lpa.ens.fr/IMG/pdf/tutorial_iqclsw_2018_grange.pdf · Thomas Grange, nextnano IQCLSW 2018 23. Input file Thomas Grange,

Visualization of results

Thomas Grange, nextnano IQCLSW 2018 25

Page 26: 8th International Quantum Cascade Laser School and ...iqclsw2018.lpa.ens.fr/IMG/pdf/tutorial_iqclsw_2018_grange.pdf · Thomas Grange, nextnano IQCLSW 2018 23. Input file Thomas Grange,

Visualization of results

Thomas Grange, nextnano IQCLSW 2018 26

Page 27: 8th International Quantum Cascade Laser School and ...iqclsw2018.lpa.ens.fr/IMG/pdf/tutorial_iqclsw_2018_grange.pdf · Thomas Grange, nextnano IQCLSW 2018 23. Input file Thomas Grange,

Analysis of results

Wannier-Stark basis Tight-binding basis Local basis

• Analysis of populations, density matrix, oscillatorstrengths etc in different basis

Active region

Injection region

➢Analysis of the physics in the more adapted/intuitive basis

Thomas Grange, nextnano IQCLSW 2018 27

Page 28: 8th International Quantum Cascade Laser School and ...iqclsw2018.lpa.ens.fr/IMG/pdf/tutorial_iqclsw_2018_grange.pdf · Thomas Grange, nextnano IQCLSW 2018 23. Input file Thomas Grange,

Comparison with experimental data

Lasing thresholdassuming cavitylosses of 27/cm

Maximum operating temperature

Current threshold vs temperatureCurrent-voltage characteristics

No phenomenological fitting parameterOnly material parameters: Conduction band offsets, interface roughness

THz QCL of Fathololoumi et al (record temperature of 200 K)

THz QCL of Amanti et al (2010)

Thomas Grange, nextnano IQCLSW 2018 28

Page 29: 8th International Quantum Cascade Laser School and ...iqclsw2018.lpa.ens.fr/IMG/pdf/tutorial_iqclsw_2018_grange.pdf · Thomas Grange, nextnano IQCLSW 2018 23. Input file Thomas Grange,

Outline

• Essential ingredients for modeling QCLs: electronic structure and scattering processes

• Different formalisms from semi-classical to quantum transport

• Development of a commercial NEGF simulator: nextnano.QCL

• New physical insights QCLs

• Rate equation for populations

• Density matrix

• Non-equilibrium Green’s functions (NEGF)

Thomas Grange, nextnano IQCLSW 2018 29

Page 30: 8th International Quantum Cascade Laser School and ...iqclsw2018.lpa.ens.fr/IMG/pdf/tutorial_iqclsw_2018_grange.pdf · Thomas Grange, nextnano IQCLSW 2018 23. Input file Thomas Grange,

Analyse the physics

Input file: Possibility to tune individual scattering processes

▪ LO-phonons▪ Charged impurities▪ Interface roughness▪ …

➢ New physical insights

Thomas Grange, nextnano IQCLSW 2018 30

Page 31: 8th International Quantum Cascade Laser School and ...iqclsw2018.lpa.ens.fr/IMG/pdf/tutorial_iqclsw_2018_grange.pdf · Thomas Grange, nextnano IQCLSW 2018 23. Input file Thomas Grange,

Coulomb scattering: a major source of broadening

Full calculation

• Coulomb scattering processes are a dominant source of dephasing• Transition from coherent to incoherent tunneling

Without e-impurity nor e-e scattering

Thomas Grange, nextnano IQCLSW 2018 31

Page 32: 8th International Quantum Cascade Laser School and ...iqclsw2018.lpa.ens.fr/IMG/pdf/tutorial_iqclsw_2018_grange.pdf · Thomas Grange, nextnano IQCLSW 2018 23. Input file Thomas Grange,

Ionized impurities

Coulomb potential created by a ionized impurity

Efficient scatteringbetween closed subbands

Slow scatteringbetween distant subbands

Thomas Grange, nextnano IQCLSW 2018 32

Page 33: 8th International Quantum Cascade Laser School and ...iqclsw2018.lpa.ens.fr/IMG/pdf/tutorial_iqclsw_2018_grange.pdf · Thomas Grange, nextnano IQCLSW 2018 23. Input file Thomas Grange,

Influence of doping density on THz QCL

T. Grange, PHYSICAL REVIEW B 92, 241306(R) (2015)

Current

Gain

➢ Explanation of the contrasting influence of doping density on current (linear) and gain (non-linear)

Thomas Grange, nextnano IQCLSW 2018 33

Page 34: 8th International Quantum Cascade Laser School and ...iqclsw2018.lpa.ens.fr/IMG/pdf/tutorial_iqclsw_2018_grange.pdf · Thomas Grange, nextnano IQCLSW 2018 23. Input file Thomas Grange,

Leakage into the continuum

➢ Tune the number of minibands considered in the simulation

4 minibands

7 minibands

10 minibands

Current-voltage characteristics

➢ Clear identification of the leakage into the high-energystates

Thomas Grange, nextnano IQCLSW 2018 34

Page 35: 8th International Quantum Cascade Laser School and ...iqclsw2018.lpa.ens.fr/IMG/pdf/tutorial_iqclsw_2018_grange.pdf · Thomas Grange, nextnano IQCLSW 2018 23. Input file Thomas Grange,

Influence of interface roughness

Impact of interface roughness on mid-infrared QCL Design of Yu et al, SST 2010

Increasinginterface roughness

Gain spectrum

➢ Gain in MIR QCL very sensitive to interface roughness

Thomas Grange, nextnano IQCLSW 2018 35

Page 36: 8th International Quantum Cascade Laser School and ...iqclsw2018.lpa.ens.fr/IMG/pdf/tutorial_iqclsw_2018_grange.pdf · Thomas Grange, nextnano IQCLSW 2018 23. Input file Thomas Grange,

Decoupling THz transitions from LO phonons?

Decoupling THz radiative transition from optical phonons. Two possible strategies:

▪ Using non-polar materials: no polar (Fröhlich) coupling in group IV materials (Ge/SiGe)

▪ Using a material with a high optical phonon energy (e.g. GaN)

Thomas Grange, nextnano IQCLSW 2018 36

Page 37: 8th International Quantum Cascade Laser School and ...iqclsw2018.lpa.ens.fr/IMG/pdf/tutorial_iqclsw_2018_grange.pdf · Thomas Grange, nextnano IQCLSW 2018 23. Input file Thomas Grange,

Ge/SiGe THz QCL?

See posters:- D. Stark- C. Ciano- T. Grange

➢ Increasing temperature robustness with decreasing coupling to opticalphonons

Temperature dependence of gain : GaAs/AlGaAs vs Ge/SiGe

Thomas Grange, nextnano IQCLSW 2018 37

Page 38: 8th International Quantum Cascade Laser School and ...iqclsw2018.lpa.ens.fr/IMG/pdf/tutorial_iqclsw_2018_grange.pdf · Thomas Grange, nextnano IQCLSW 2018 23. Input file Thomas Grange,

Optical phonons in GaN

See talk of Ke Wang (Friday)

Broadening in GaN THz QCL is not limitedby LO-phonon

K Wang et al, APL 2018

▪ Large LO-phonon energy (90 meV)▪ But Fröhlich constant 16 times stronger than

in GaAsIs LO-phonon induced broadening a limitation?

Thomas Grange, nextnano IQCLSW 2018 38

Page 39: 8th International Quantum Cascade Laser School and ...iqclsw2018.lpa.ens.fr/IMG/pdf/tutorial_iqclsw_2018_grange.pdf · Thomas Grange, nextnano IQCLSW 2018 23. Input file Thomas Grange,

• Different transport models available for QCLs from semiclassical to fully quantum

• NEGF allows an accurate description of both quantum transport and scattering processes

• Predictive simulations with nextnano.QCLwww.nextnano.com/nextnano.QCL

• Explore new material systems and new physics: tuning opticalphonons with group IV and nitride materials

• Further improvement: transport under lasing action

Summary

Thomas Grange, nextnano IQCLSW 2018 39

Page 40: 8th International Quantum Cascade Laser School and ...iqclsw2018.lpa.ens.fr/IMG/pdf/tutorial_iqclsw_2018_grange.pdf · Thomas Grange, nextnano IQCLSW 2018 23. Input file Thomas Grange,

Acknowledgements

EU Funding:

▪ Zoltán Jéhn, Carola Burkl, Alexander Wirthmüller, Stefan Birner (nextnano)

▪ Michele Virgilio, Giacomo Scalari, Douglas Paul, Giovanni Capellini, Monica DeSeta (FLASH consortium)

▪ Ke Wang, Li Wang, Tsung-Tse Lin, Joosun Yun, Hideki Hirayama (RIKEN)

Thomas Grange, nextnano IQCLSW 2018 40