8.5 Writing and Graphing Exponential Functions · 2014. 1. 30. · 8.5 Writing and Graphing...

17
8.5 Writing and Graphing Exponential Functions Consider the table of value and accompanying graph below: x 2 1 0 1 2 y 4 1 2 5 8 This function is _______________ 1) x 0 1 2 3 4 y 1 3 9 27 81 This function is _______________ 2) Equation: Equation: There is a constant difference between yvalues (slope) There is a constant ratio between yvalues

Transcript of 8.5 Writing and Graphing Exponential Functions · 2014. 1. 30. · 8.5 Writing and Graphing...

Page 1: 8.5 Writing and Graphing Exponential Functions · 2014. 1. 30. · 8.5 Writing and Graphing Exponential Functions Consider the table of value and accompanying graph below: x 2 1 0

8.5 Writing and Graphing Exponential Functions

Consider the table of value and accompanying graph below:

x ­2 ­1 0 1 2

y ­4 ­1 2 5 8

This function is _______________

1)

x 0 1 2 3 4

y 1 3 9 27 81

This function is _______________

2)

Equation:

Equation:

There is a constant difference between y­values (slope)

There is a constant ratio between y­values

Page 2: 8.5 Writing and Graphing Exponential Functions · 2014. 1. 30. · 8.5 Writing and Graphing Exponential Functions Consider the table of value and accompanying graph below: x 2 1 0

Exponential Function ­

Are the following exponential functions?

y = a(b)x

growth (or decay) factor

initial (starting) amount(y­intercept)

a function that grows (or decays) very rapidly

1) y = 2x 2) y = x2

3) y = 5(10)x 4) y = 4(.3)x

5) y = 4x + 2 x 1 2 3 4 5

y 4 8 12 16 206)

Page 3: 8.5 Writing and Graphing Exponential Functions · 2014. 1. 30. · 8.5 Writing and Graphing Exponential Functions Consider the table of value and accompanying graph below: x 2 1 0

­3 ­2 ­1 0 1 2 3 4

­3 ­1 1 3 5 7 9 11

Linear Function:

Let's learn how to write a linear and exponential function rule from a table of values:

y = mx + b

Exponential Function:

­3 ­2 ­1 0 1 2 3 4

4 8 16 32 64 128 256 512

x

x

y

y

y = a(b)x

initial (starting) amount(y­intercept)

growth (or decay) factor

­3 ­2 ­1 0 1 2 3 4

2 8 32 128 512 2048 8,192 32,768

Page 4: 8.5 Writing and Graphing Exponential Functions · 2014. 1. 30. · 8.5 Writing and Graphing Exponential Functions Consider the table of value and accompanying graph below: x 2 1 0

Recall:  y = a(b)x Exponent (always "x")

Initial amount(y­intercept)

Growth/Decay Factor

1)

2)

3)

Write the rule for the following functions:

Exponential Functions (continued)

Page 5: 8.5 Writing and Graphing Exponential Functions · 2014. 1. 30. · 8.5 Writing and Graphing Exponential Functions Consider the table of value and accompanying graph below: x 2 1 0

y = (2)Graph:x y­2­1 0 12

y = (3)Graph:

x y­2­1 0 12

y = (4)Graph:

x y­2­1 0 12

xGraph:

x y­2­1 0 12

y = (.5)

x

x

x

xGraph:

x y­2­1 0 12

y = (.25)

Graphing Exponential Functions

3

3

3

3

3

xGraph:

x y­2­1 0 12

y = (.1)

3

Page 6: 8.5 Writing and Graphing Exponential Functions · 2014. 1. 30. · 8.5 Writing and Graphing Exponential Functions Consider the table of value and accompanying graph below: x 2 1 0

Exponential Growth and Decay

Exponential Growth

You have $100 to deposit in the bank.  The bank will pay you 5% interest at the end of the year.  How much money will you have?

Page 7: 8.5 Writing and Graphing Exponential Functions · 2014. 1. 30. · 8.5 Writing and Graphing Exponential Functions Consider the table of value and accompanying graph below: x 2 1 0
Page 8: 8.5 Writing and Graphing Exponential Functions · 2014. 1. 30. · 8.5 Writing and Graphing Exponential Functions Consider the table of value and accompanying graph below: x 2 1 0

Exponential Decay

Starting in the year 2000, City ABC's population of 90,000 decreased by 2.5% every year.  Use an exponential decay model to find City ABC's current population in 2013.

Example

Page 9: 8.5 Writing and Graphing Exponential Functions · 2014. 1. 30. · 8.5 Writing and Graphing Exponential Functions Consider the table of value and accompanying graph below: x 2 1 0

WARMUP

Page 10: 8.5 Writing and Graphing Exponential Functions · 2014. 1. 30. · 8.5 Writing and Graphing Exponential Functions Consider the table of value and accompanying graph below: x 2 1 0
Page 11: 8.5 Writing and Graphing Exponential Functions · 2014. 1. 30. · 8.5 Writing and Graphing Exponential Functions Consider the table of value and accompanying graph below: x 2 1 0
Page 12: 8.5 Writing and Graphing Exponential Functions · 2014. 1. 30. · 8.5 Writing and Graphing Exponential Functions Consider the table of value and accompanying graph below: x 2 1 0
Page 13: 8.5 Writing and Graphing Exponential Functions · 2014. 1. 30. · 8.5 Writing and Graphing Exponential Functions Consider the table of value and accompanying graph below: x 2 1 0
Page 14: 8.5 Writing and Graphing Exponential Functions · 2014. 1. 30. · 8.5 Writing and Graphing Exponential Functions Consider the table of value and accompanying graph below: x 2 1 0

Scenario 1:You deposit $100 in Bank A and they offer to pay you 12% interest at the end of the year.  How much money will you have at year's end?

Scenario 2:You deposit $100 at Bank B and they offer to pay you 6% interest every six months (for a total of 12% for the entire year).  How much money will you have at year's end?

Applications of Exponential Functions:Compound Interest

Which option is best?

It is said that the two best friends of any investor are compound interest and time.  In fact, Albert Einstein called compound interest “the greatest mathematical discovery of all time.”

Compound interest simply means that you are earning interest (payment from a bank) not only on your principal (how much you invest out­of­pocket), but also on previously accrued interest.  

EXAMPLE: You invest $100 and earn $6 interest.  You now have $106.  Any new interest you earn will now be based on your full $106 instead of just the original $100.  Obviously, the more money you have to invest and the longer you have to invest it, the more exponentially powerful the effect of compound interest.

Let's investigate compound interest:

Conclusion: The more times interest is paid (or "compounded"), the more money you will earn. That's the magic of compound interest.

Scenario 3:

You deposit $100 at Bank C and they offer to pay you 3% interest every three months               (for a total of 12% for the entire year).  How much money will you have at year's end?

Page 15: 8.5 Writing and Graphing Exponential Functions · 2014. 1. 30. · 8.5 Writing and Graphing Exponential Functions Consider the table of value and accompanying graph below: x 2 1 0

1) You deposit $1,000 in an account that pays 6% annual interest.  Find the balance in the account after 8 years if the interest is compounded monthly.

3) You invest $500 in an account that pays 3.5% annual interest, compounded bi­monthly.  Find the balance in the account after 12 years.

2) You invest $1,245 with a bank that pays 2.25% annual interest, compounded quarterly.  Find the balance in the account after 20 years.

4) Nine years ago, you invested some money with a bank that offered 7.5% annual interest, compounded daily.  If your ending balance today is $6,459, how much money did you initially invest?

5) You want to make an investment with a bank that pays 11% annual interest, compounded monthly.  If your goal is to have $18,540 at the end of five years, how much money should you invest now?

*6) You invested $1,950 in an account that paid a great interest rate, compounded quarterly.  If your ending balance after 3 years was $3,540, what was the interest rate on your investment?

Example Problems

COMPOUND INTEREST FORMULA

y = a(1 +    )rny = ending amount (also called the "balance")a = initial amount (also called the "principal")r = interest rate (written as a decimal)n = number of times you are compounding per yeart = number of years invested

nt

Compound Interest ­ Practice Problems

Page 16: 8.5 Writing and Graphing Exponential Functions · 2014. 1. 30. · 8.5 Writing and Graphing Exponential Functions Consider the table of value and accompanying graph below: x 2 1 0

8.5 ­ 8.6 QUIZ:                        Exponential Functions

Exponential Growth

Exponential Decay

Compound Interest

General format for an Exponential Function: y = a(b)x

y = a(1 + r)t

y = a(1 ­ r) t

y = a(1 +   )ntnr

starting point (y­intercept) Growth 

Factor

Page 17: 8.5 Writing and Graphing Exponential Functions · 2014. 1. 30. · 8.5 Writing and Graphing Exponential Functions Consider the table of value and accompanying graph below: x 2 1 0

Compound Interest Worksheet ­ Answers

1) $8,973.56

2) $1,114.91

3) $30,525.87

4) $1,837.56

5) $1,446.34

6) $74,826.89

7) $33,393.66

8) $35,854.85

9) $13,842.19

10) $156.55