8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address...

91
8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix 6. ROM

Transcript of 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address...

Page 1: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.1

8 Memory Subsystem

1. Classification

2. Architectures

3. Circuits

1) SRAM

2) DRAM

3) Address decoders

4) Sense Amplifier

Contents

4. PLA

5. Gate Matrix

6. ROM

Page 2: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.2

1. Classification

RWM(Read-Write Memory) Random Access : SRAM, DRAM

Sequential Access : FIFO, Stack(LIFO)

Content Access : CAM(Associative Memory)

NVRWM(Nonvolatile RWM) EPROM

E2PROM

FLASH

ROM Mask Programmed

OTP(One-Time Programmable) ; PROM

Page 3: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.3

2. Architectures

1-dimensional memory : N(words) M(bits/word) Decoder reduces the number of wires

Page 4: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.4

2-dimensional array structure uses column decoder to make the chip square.

Page 5: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.5

Hierarchical memory architecture using block address Block address is used to activate only one block.

Other blocks(nonactive) are put in power-saving mode.

Page 6: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.6

Architecture of large memory

Page 7: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.7

Basic organization for a 4K SRAM(1989 Philips research).

Page 8: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.8

Schematic circuit diagram of 64K SRAM(Hitachi 1982).

Page 9: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.9

Another schematic of SRAM(column grouping).

SRAM chip block diagram

Page 10: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.10

Design Considerations

bit line precharge, sense amp enable 등을 위한 모든 clock 의 발생은 address, CS,

WE 등 신호의 transition 을 detect 하는 회로에 의해 internal clock 발생기가 tri

gger 됨으로써 이루어진다 .( 전력소모 억제 )

2-stage row address decoding : WL driver decodes A1.

Sense amp 는 column switch 앞에 , 혹은 뒤에 놓을 수 있다 .

앞에 놓을 경우 : column 의 cell pitch 에 맞추기 위해 아주 simple 한 SA 를

사용

뒤에 놓을 경우 : 상대적으로 복잡한 SA 사용가능 (SA 의 input cap. 는 증가

윗 그림은 column 을 (1024 column 의 경우 , by 4 인 경우 ) 크게 4 로 나누고 ,

각각을 16 으로 나누어 각 소 group 의 16 개의 column 을 한 SA 가

담당토록하는 compromise 임 .

Page 11: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.11

3. Circuits

Address decoders Single stage(10-to-1024) decoder

i) # of transistors =

20/NAND 10 1024 = 20,480

ii) Large fanout requirement on buff

ers generating Xi’s.

iii) series-connected transistors limit

discharge time.

Page 12: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.12

Predecoded scheme

i) Group 2 bits and predecode the word using 2-bit segments ;

(X9, X8), (X7, X6), …. (X1, X0)

ii) 2nd-stage decoder logic

# of transistors ;

10/NAND 5 1024 + 12,000

Page 13: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.13

Divided Word Line architecture

Global word line selects a block, while the local line is used to activate a word

line within the selected block.

Page 14: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.14

Hierarchical word decoding logic

Page 15: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.15

Row decoder circuits

(Complementary AND, pseudo NMOS, cascade NAND)

Page 16: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.16

Typical Symbolic Layout Style of row decoders

Page 17: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.17

Various other decoder circuits(Power saving, Decoder-powered)

Page 18: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.18

Tree style column decoder

Page 19: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.19

Sense Amplifier for SRAM

Single differential stage 의 전압이득 Av = gm·ro

gm : current/voltage(transducer gain) of M1, M2

ro : output impedance( = ro M1 ro M2)

Av 가 크기 위해서는 M1 과 P1(M2 와 P2) 가 모두 saturation 영역에 있어야 함 .

( Sat. 영역에서 gm= 가 크고 , ro 도 크기때문 )

따라서 point X 의 전압을 로 precharge 해 두는 것이 response time 을 짧게 하고 ,

signal swing 을 크게하는데 유리 .

IVG

D

s

VDD2

Page 20: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.20

Single-ended amp 를 두개 symmetric 하게 연결함으로써 voltage g

ain 을 높인다 . ( 다음 단에 latch 나 another double-ended amp. Sta

ge 혹은 diff. Input 을 갖는 output buffer 를 달면 된다 .)

Page 21: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.21

SRAM sense amp precharged to VDD2

SA 의 출력점을 로 충전하여 SA 의 high-gain 영역에서 동작토록하는 회로 .

1 : V1 은 VDD 로 prech 됨

power-down 상태

2 : WL 이 access 되면 V1 을 로 prech.

3 : BL, BL 에 전압차가 생기면 high-gain SA

동작하면서 column decoder/switch 인 pass gate가 동작

data output bus 로 신호전달

4 : power-down 상태

VDD2

VDD2

Page 22: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.22

2 차구간에서 Static

전력소모가 있음

Page 23: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.23

SRAM circuit before sense Amp.

Page 24: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.24

Evolution of SRAM cells

i) 6- and 4-transistor SRAM cells

Page 25: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.25

ii) Dual-port/double-ended access and dual-port/single access

Page 26: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.26

iii) Content-addressable memory cell

Page 27: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.27

Evolution of DRAM cells

(a) basic bi-stable f/f w/o load (b) 2C-2D(C:control lines, D:data lines)

Page 28: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.28

( c) 1C-2D (d) 2C-1D scheme

Page 29: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.29

(e) 1C-1D (f) 1C-1D(industry standard DRAM)

Page 30: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.30

DRAM read cycle

Page 31: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.31

Page 32: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.32

Page 33: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.33

Dummy word line scheme

Page 34: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.34

Page 35: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.35

DRAM differential sense amp with dummy cell structure

Page 36: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.36

Cross-coupled Latch

Assume node 1 & 2 are precharged, and node 2 begins to drop.

When clk is on, node 3 pulls down. N2 strongly turns on, leaving n1 off.

주의 ) cross-coupled TR pair 의 layout 이 대칭이어야 함 .

threshold 전압차이에 의한 영향

Page 37: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.37

Charge transfer-based Circuit

Page 38: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.38

Charge-transfer Circuit(cont’d)

Operation Sequence

As clk goes high, node 1 & 2 are precharged;

V1 (Vref-Vth, n2), V2 min(VDD, Vclk-Vth, n3) > Vref

n3 turns off.

Cell(n1, Cc) is selected(Assume Vc was ‘0’)

Due to charge sharing between Cc & Clarge,

V1 becomes

n2 is turned on until is transferred from

Cout .i.e., until V1 reaches Vref-Vth.

Voltage drop at node 2 due to charge transfer is

V V V V

V V V CC Cref th

ref th c c

c l e1 1

( )

arg

( ) arg

arg

V V C VC

C Cref th l e c c

c l e

Q V C Cc l e 1( )arg

VQ

CCC

V V Vout

c

outref th c2 ( )

V V C C Cout c l e2 1 ( )arg

C C

Cc l e

out

arg : amplif. factor

Page 39: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.39

Sense amplifier for single - Tr. DRAM cells.

dummy cell(Cd=Cc), dummy bit line complete Symmetry

Page 40: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.40

Operation

1. Precharge 전에는 BL, DBL 모두 로 되어 있다 .*

precharge(n1, n2 on) 를 통해 node 1,2 가 pull up 된다 .

그리고 n1 과 n2 는 off 된다 .

2. Cc 와 Cd 가 select 되어 charge transfer 에 의해 ( =0 라 하자 )

node 1 의 전압은 node 2 의 전압보다 많이 강하 된다 .

( Cd 는 로 충전되어 있었기 때문 )*

3. Clk1 이 high 가 되어 n4 는 on, n5 는 off(V1 은 Vss 로 됨 )

n7 이 다시 conduction 되어 BL 이 Vss 로 방전되어

Cc 가 ‘ 0’ 으로 restore 된다 .

4. Sel ‘0’ 로 하여 Cc 를 isolate 한 후에 clk2 를 on 하여 BL 과 DBL 을 로 함 . 그 후에 seld ‘0’ 하여 Cd 에 를 만들고 n3 를 off 시킴 .

(Cc 에 ‘ 1’ 이 저장되어 있는 경우도 비슷한 방식으로 동작한다 .)

VDD2

VDD2

VDD2

VDD2

VCC

Page 41: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.41

Column SA 와 main SA 를 사용한 SRAM SA 회로 매 column 마다 n 개의 colunm 간에 multiplex

Page 42: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.42

(input 신호 )

(Column SA 가 있는 경우 )

Page 43: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.43

(Column SA 가 없는 경우 )

Page 44: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.44

Resistive-load SRAM cells

Undoped polysilicon as resistors with R 1 /

Just enough(10-12A) to compensate for leakage current of 10-15A

BL & BL precharged to VDD, thus preventing slow charging of BL, BL.

Page 45: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.45

TFT SRAM cell

Instead of traditional PMOS devices, pull-up transistors realized by PMOS TFT(thin-film transistor) on top of the cell structure.

ON current : 10-8A, OFF current : 10-13A

Complementary CMOSComplementary CMOS Resistive LoadResistive Load TFT cellTFT cell

Number of transistorsNumber of transistors 66 44 4(+2 TFT)4(+2 TFT)

Cell sizeCell size 58.2m2

(0.7 m rule)58.2m2

(0.7 m rule)40.8 m2

(0.7 m rule)40.8 m2

(0.7 m rule)41.1m2

(0.8 m rule)41.1m2

(0.8 m rule)

Standby current(per cell)Standby current(per cell) 10-15A10-15A 10-12A10-12A 10-13A10-13A

Page 46: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.46

Bipolar SRAM cells :

Very fast SRAMs are necessary for cache & microcode memory in high-s

peed computers.

SBD(Schottky Barrier Diode) bipolar SRAM

Page 47: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.47

3-T DRAM cell :

Resulted by removing the loads to obtain 4-T DRAM cell and further removing redundemt complementary pull down device

Separate Read Word line(RWL) & Write word line(WWL)

Refreshing by writing the inverted BL2 signal onto BL1.

Page 48: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.48

1-T DRAM cell :

V V V V VC

C CBL PRECH BIT PRECHC

C BL

( )C

C CC

C BL : charge transfer ratio

Page 49: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.49

1-T DRAM cell structure :

Page 50: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.50

Trench capacitor type & Stacked-capacitor type

Page 51: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.51

NOR-type address decoder

Page 52: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.52

NAND-type address decoder

Page 53: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.53

Reducing coupling noise bet. WL&BL : Folded bit line.

Page 54: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.54

Reducing coupling noise bet. BL & neighbor bit lines :

Transposed bit line

VC

C CVcross

cross

cross BLSwing

2

Vcross : worst-case variation on each bit line.

Vswing : signal swing on bit line.

Page 55: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.55

4. PLA(Programmable Logic Array)

Generally two classes exist for implementing control logic functions.

Multi-level logic through logic optimization on random logic

Regular structure type, i.e.,

ROM : firmware, mask-programmable

PLA : Customized logic to remove unnecessary

Product(AND) terms and sum(OR) terms.

Page 56: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.56

Sum of product form, F = ab+c d

i) NAND-NAND PLA

이러한 2-level Boolean 식은 decoder 를 2 단 연속 붙인것으로 볼 수 있다 .

ab

cd

FdcbadcbaF

a

b

c

d

AND OR

F

Page 57: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.57

i) NOR-NOR PLA

NOR-NOR is faster, but requires larger space

( 30% additional) than NAND-NAND.

F a b c d a b c d ( ) ( )

F a b c dab

c

d

F

a b

F

c d

Page 58: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.58

Various ways for decoding

(NOR 형 decoder) (NAND 형 decoder)

NOR : fastNAND : compact

: diffusion

: polysilicon

: metal

Page 59: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.59

Complementary 형 decoder(CMOS-like)

저전력 소모 large area

Page 60: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.60

MOS ROM vs. MOS PLA

Page 61: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.61

P x y z x y z5

P x y z x y z7

P x y z x y z4

f P P P2 5 7 2 f P P P P P3 4 5 7 4 2 P P P x z2 5 7

(PLA) (ROM)

Page 62: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.62

Various Programmable Logic Devices(PLD’s)

FSM(Finite State Machine) FPLA(Field-Programmable PLA)

: PLA with latched feedback

Page 63: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.63

PLA(Programmable Array Logic)

= FPLA where the OR array is not

programmable, AND array is field

programmable.

ROM : (single)mask programmable

PLA:(multiple) mask programmable

FPLA:field programmable, bulky

PAL:field programmable, less bulky

Page 64: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.64

MGA(Multilevel Gate Array)

Page 65: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.65

Associative LogicMatrix

Page 66: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.66

Pseudo-NMOS PLA

Page 67: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.67

Dynamic NMOS PLA

NOR 형 NAND 형

T1 : product line precharge, input latch in

T2 : sum line precharge

T3 : product line evaluate

T4 : sum line evaluate, output latch out

Page 68: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.68

Dynamic CMOS PlA(2-phase) - I

Page 69: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.69

T1 : product line precharge, latch input

T2 : product line evaluate, T2’:sum line precharge

T3 : sum line evaluate

T4 : latch output Dummy row 는 모든 TR pair 중의 하나는 항상 ‘ ON’ 상태이므로

큰 capacitance, C 가 있는것과 같아 Vx

파형 은 파형이 delay 된 것과 같다 .11 C

Page 70: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.70

Dynamic CMOS PLA - II

T1 : product line precharge, latch input/output(master-slave 방식 )T2 : product line evaluateT3 : AND-OR plane connect, sum line evaluateT4 : sum line evaluate

Page 71: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.71

Dynamic CMOS PLA - V (NORA type)

AND plane : NMOS

OR plane : PMOS

T1 T2

T2(=low) : p-line precharge, s-line predischarge latch input

T1(=high) : p-line, s-line evaluate, latch output

Page 72: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.72

Decoded PLA partition input variables into multiple groups

Page 73: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.73

row folding : partition inputs into

two groups such that one can find

an order of rows(product lines)

with one input group fed from

below while the other input group

fed from top.

PLA folding(row & column folding)

Page 74: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.74

PPL(Programmable Path Logic)

merging of AND and OR plane.

Do=1 if

i.e., ; two-level Boolean eq.

A C K

A C K

o

o

0

0OR

D A C A C Ko o o ( )

Page 75: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.75

Associative Logic Array(subset of Storage Logic Array)

y D C

y D x x C

y x C

y x x

1

2 1 2

3 1

4 1 2

x y y y D C x C

x y y y x x x C

1 1 2 3 1

2 2 3 4 1 2 1

Ex.

Page 76: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.76

MGA(Multiple Gate Array, or Multi-level PLA)

Page 77: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.77

MGA with three associative logic matrices

Page 78: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.78

5. Gate Matrix Use regularly-spaced polysilicon lines for both gate electrode and inter

connect.

(a) : NMOS TR 과 채널이 분리됨

(b) : 각 TR 을 polysilicon grid 상에 배치

(c) : series( 혹은 parallel) 로 연결된 TR group 을 한 row 에 배치하고 연결 .

Page 79: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.79

Rule

1. Polysilicon 은 일정간격으로 수직방향으로 달린다 .

2. 인접한 column 같은 row 에 위치한 TR 의 series 연결은 diffusi

on butting 으로 한다 .

3. Metal 은 parallel 연결 , 인접되지 않은 TR 의 series 연결 및 각

gate 간의 연결을 하며 , 수평 및 수직방향으로 달린다 .

4. Transistor 는 polysilicon column 상에서만 존재한다 .

5. Diffusion wire 는 polysilicon grid 중간으로 수직방향으로 ( 짧게 )

달릴 수 있다 .

Page 80: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.80

Static CMOS layout in Gate Matrix

L(f,h) is realizable if h is realizable. h is realizable if every diffusion runs(vertical) it generates is legal.

Page 81: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.81

Automation of Gate Matrix Layout : Ref. O.Wing et.al. “Gate Matrix Layo

ut”, IEEE Trans. on CAD, Vol.4, July. 1985

Find a function f(gate assignment)

: assign the transistor gate and output terminal to each column(TR gat

es connected to the same node must be assigned same column)

Find function(net assignment)

: assign the net(segment of horiz. Metal line) to each row.

Find layout L(f,h) which is realizable* & has min. rows.

Page 82: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.82

Problem Formulation for Gate Matrix Optimization

Page 83: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.83

Example : CMOS Half-Adder Circuit

Page 84: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.84

Gate Nets

1 N1, N2 2 N1, N3 3 N4 4 N2, N4 5 N1, N2, N3, N5 6 N3, N4 7 N5

Net Representation(Case I)

Net Representation(Case II)

Problem Statement ;

Given a set of nets which connectat gates, find a permutation of gates and an assignment of nets totracks, such that the number of tracks is minimized.

Problem Statement ;

Given a set of nets which connectat gates, find a permutation of gates and an assignment of nets totracks, such that the number of tracks is minimized.

Page 85: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.85

6. ROM(Read Only Memory) ROM cells

Diode cell : consumes large power from WL

Transistor(BJT) cell : consumes less current(IB vs. IC)

MOSFET cell :

Page 86: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.86

Sharing supply voltage lines and mirroring cells

Page 87: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.87

NOR ROM with contact programming

Page 88: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.88

NOR ROM with Vth-raising implant or thick-oxide implants.

Page 89: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.89

NAND Rom

Page 90: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.90

논문을 쓰려면 두 가지 중의하나를 고르라 . 현재 매우실용적이거나 , 당신의 시기에파급효과가 큰 기술 분야를 고르든지 ,아니면 매우 학문적 , 이론적인탁월성을 추구하라 .

논문을 쓰려면 두 가지 중의하나를 고르라 . 현재 매우실용적이거나 , 당신의 시기에파급효과가 큰 기술 분야를 고르든지 ,아니면 매우 학문적 , 이론적인탁월성을 추구하라 .

논문을쓰기 전에논문을

쓰기 전에

Page 91: 8.1 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier Contents 4. PLA 5. Gate Matrix.

8.91

힘든 일을 시작하라 .

그러면 심각해 질 것이다 .

물러서지만 않으면성공할 것이다 .

힘든 일을 시작하라 .

그러면 심각해 질 것이다 .

물러서지만 않으면성공할 것이다 .

성공의 비결성공의 비결