70823

download 70823

of 16

Transcript of 70823

  • 8/14/2019 70823

    1/16

    ON GENERALIZED MITTAG-LEFLER TYPE FUNCTIONS

    Rudolf Gorenflo, Anatoly A.Kilbas and Sergei V.Rogosin

    Department of Mathematics and Informatics, Freie Universitat Berlin,Arnimallee 2-6, 14195 Berlin, Germany

    Department od Mathematics and Mechanics, Belarusian State University,Fr Skaryny Ave 4, 220050 Minsk, Belarus

    Abstracts

    The paper is devoted to study the properties of the special functions

    E.m.l(z) =

    k=0

    ckzk

    , z C,

    c0= 1, ck =k1i=0

    ([im+l] + 1)

    ([im+l+ 1] + 1) (k= 1, 2, )

    with >0, m >0, real l and (im+l) + 1 = 0, 1, 2, for i = 0, 1, 2, .For m = 1, E,1,l(z) coincide with the Mittag-Leffler type function

    E,l+1(z) =k=0

    zk

    (k+l+ 1)

    up to the constant (l + 1). The order and type of the entire function

    E.m.l(z) are evaluated and recurrent relations are given. For the functionsEn,m,l(z) (n = 1, 2, ) connections with functions of hypergeometric type arestudied and differentiation formulae are proved.

    1. Introduction.

    Recently it turned out the role of the well-known function

    E(z) =k=0

    zk

    (k+ 1) ( C, Re()> 0) (1.1)

    introduced by Mitttag-Leffler [29] and titled his name [9]. The properties of thisentire function investigated by many mathematicians, can be found in [1],[6]-[7],

    [9], [12]-[14], [30], [37]-[38], etc. A number of applied problems were found forwhich the knowledge of properties ofE(z) are of great importance. Some ofthese problems were studied in [3]-[5], [10]-[11], [15], [25], [27], [31], [35]. Mainlythese applications are due to connections of Mittag-Leffler function (1.1) withfractional calculus [6], [14], [17], [20]-[24], [28], [33], and in particular in solutions

    1

  • 8/14/2019 70823

    2/16

    of integral equations and differential equations of fractional order [10], [16]-[17],

    [22]-[24], [28], [32], [35].At the beginning of the 50th a certain generalization of the function (1.1)

    E,(z) =k=0

    zk

    (k+) (, C, Re()> 0, Re()> 0), (1.2)

    called Mittag-Leffler type function [6]-[7], was introduced by Agarwal and Hum-bert [2], [18], [19]. The properties of (1.2) (in particular asymptotic behaviorand zero distributions) were studied in [6], [7], [9], [12], [34], [36].

    A new generalization of (1.2) was given in [20] in connection with solutionof Abel-Volterra integral equations. Such a function is defined by

    E,m,l(z) =

    k=0

    ckzk (z C)ck =

    k1

    i=1

    ([im+l] + 1)

    ([im+l+ 1] + 1)

    (k= 0, 1, 2, )

    (1.3)where an empty product is recognized equal to one, and , m and l are realnumbers such that

    >0, m > 0, (im+l) + 1=1, 2, 3, (i= 0, 1, 2, ). (1.4)

    In particular, ifm = 1, the conditions in (1.4) take the form

    >0, (i+l) + 1=1, 2, 3, (i= 0, 1, 2, ). (1.5)

    and (1.3) is reduced to the Mittag-Leffler type function given in (1.2):

    E,1,l(z) = (l+ 1)E,l+1(z). (1.5)

    Therefore we shall call E,m,l(z) generalized Mittag-Leffler type function. Thisfunction was useful to solve in closed form of new classes of integral equationsand differential equations of fractional order [21]-[24], [32].

    When = n N ={1, 2, }, En,m,l(z) takes the form

    En,m,l(z) = 1 +k=1

    k1i=0

    1

    [n(im+l) + 1] [n(im+l) +n]

    zk, (1.6)

    wheren, mand l are real numbers such that

    n N, m > 0, n(im+l)=1, 2, , n (i= 0, 1, 2, ). (1.7)

    Our paper is devoted to study the properties of the generalzed Mittag-Lefflertype functionsE,m,l(z) andEn,m,l(z) given by (1.3) and (1.6). Section 2 deals

    with evaluating the order and type of an entire function E,m,l(z)( > 0).Section 3 is devoted to recurrent formulas for such a function. In section 4 weshow that functions En,m,l(z) (n = 1, 2, ) are functions of hypergeometrictype. Differentiation properties ofEn.m.l(z

    nm) andEn.m.l(znm) are studied in

    Section 5.

    2

  • 8/14/2019 70823

    3/16

    2. Order and type of the entire function E,m,l(z).

    In this section we find some characteristics ofE.m.l(z). First of all we showthat the generalized Mittag-Leffler type function (1.3) is an entire function.

    Lemma 1. If, m and l are real numbers such that the condition (1.4) issatisfied, thenE,m,l(z) is an entire function of the variablez.

    Proof. According to (1.3) and the relation [8, 1.18(4)]

    (z+a)

    (z+b) =zab

    1 +

    (a b)(a+b 1)

    2z +O

    1

    z2

    (z ), (2.1)

    we have the asymptotic estimate

    cn+1

    cn

    = [(nm+l) + 1]

    [(nm+l+ 1) + 1]

    (mn) 0 (n ).

    Therefore by DAlembert criterion the power series in (1.2) converges in thewhole complex plane, and hence E,m,l(z) is an entire function.

    Corollary 1. For > 0, m > 0 and l > 1/ E,m,l(z) is an entirefunction ofz.

    Corollary 2. If n N, m > 0 and l are real numbers such that thecondition (1.7) is satisfied, then the generalized Mirrag-Leffler type functionEn,m,l(z) given by (1.6) is an entire function ofz.

    The main characteristics of an entire functions are its order and type.Definition 1. [26] An entire functionF(z) is said be to be a function of

    finite order if there exists a positive constantk such that the inequality

    max|z|=r

    |F(z)|< exp(rk) (2.2)

    is valid for all sufficiently large values of r (r > r0(k)). The greatest lowerbound of such numbersk is called the order of the entire functionF(z):

    = inf{k >0 : (2.1) takes place }. (2.3)

    For a function of a given order a more precise characterization of the growthis given by the type of the function.

    Definition 2. [26] By the type of an entire functionF(z) of order wedenote the greatest lower bound of positive numbersA for which asmptotically

    max|z|=r

    |F(z)|< exp(Ar) : (2.4)

    = inf{a > 0 : (2.3) takes place }. (2.5)

    3

  • 8/14/2019 70823

    4/16

    If the entire function F(z) can be represented in the form of power series

    F(z) =

    n=0

    cnzn, (2.6)

    being convergent for all z C, then the order and type ofF(z) are evaluatedby [26]

    = limsupn

    n log(n)

    log(1/|cn|), (2.7)

    (e)1/ = limsupn

    n1/(|cn|)

    1/n

    . (2.8)

    The order and type of the generalized Mittag-Leffler type function (1.3) isgiven by the following statement.

    Theorem 1. If, m and l are real numbers such that the condition (1.4)is satisfied, then E,m,l(z) is an entire function of order = 1/ and type= 1/m. Moreover the following asymptotic estimate holds

    |E,m,l(z)|< exp

    1

    m+

    |z|1/

    , |z| r0 > 0, (2.9)

    whenever >0 is sufficiently small.Proof. Applying (2.7) we first find the order ofE,m,l(z). According to

    (1.3) we have

    cn= (l+ 1)(l+m+ 1) (l+m[n 1] + 1)

    (l++ 1)(l++m+ 1) (l++m[n 1] + 1).

    Letzk = l+mk+ 1 (k N ={1, 2, }). (2.10)

    Using (2.1) with z = zk, a = 0 and b= we obtain that for any d > 0 thereexistk0 N such that

    (1 d)zk

    (zk+)(zk) (1 +d)zk k > k0. (2.11)

    Therefore forn > k0 we have

    log

    1

    |cn|

    =

    n1

    k=0log

    (zk+)

    (zk)

    =

    k0k=0

    log

    (zk+)(zk) +

    n1k=k0+1

    log

    (zk+)(zk)

    4

  • 8/14/2019 70823

    5/16

    d1+

    n1k=k0+1

    log(1 +d) + +

    n1k=k0+1

    log(zk )

    =d1 + (n k0 +1)log(1+d) + n1

    k=k0+1

    log(k) + log(m) + log

    1 +

    l + 1

    klm

    and hence

    log

    1

    |cn|

    d3+nd4+n log(n), (2.12)

    whered3 andd4 are certain positive constants. Similarly

    log

    1

    |cn|

    d4+ (n k0+ 1) log(1 d)

    +n1

    k=k0+1

    log(k) + log(m) + log

    1 +

    l+ 1

    klm

    and

    log

    1

    |cn|

    d5+nd6+n log(n). (2.13)

    It follows from (2.12) and (2.13) that the following usual limit exists

    limn

    n log(n)

    log(1/|cn|)=

    1

    (2.14)

    and hence in accordance with (2.7) order ofE,m,l(z) is given by

    = 1

    . (2.15)

    Next we use (2.8) to find the type ofE,m,l(z). Applying (2.11), (2.10) and(1.3) we have

    k0k=0

    (zk+)(zk)

    1

    1 +c

    nk01 n1k=k0+1

    zk |cn|

    k0k=0

    (zk+)

    (zk)

    1

    1 c

    nk01 n1k=k0+1

    zk . (2.16)

    Using this formula and asymptotic relation

    n1k=k0

    1

    km

    1

    n!

    1

    m

    n e

    nm

    n(n ),

    5

  • 8/14/2019 70823

    6/16

    from (2.8) we obtain =m and hence type ofE,m,l(z) is given by

    = 1

    m. (2.17)

    The asymptotic estimate (2.9) follows from (2.7)-(2.8) and Definitions 1 and2. This completes the proof of theorem.

    Corollary 1. If n N, m > 0 and l are real numbers such that thecondition (1.7) is satisfied, then the generalized Mirrag-Leffler type functionEn,m,l(z) given by (1.6) is an entire function ofz with order= 1/n and type= 1/m.

    Corollary 2. The Mittag-Leffler functionE(z)and the Mittag-Leffler typefunctionE,(z) given in (1.1) and (1.2), have the same order and type:

    = 1

    , = 1. (2.18)

    Remark 1. The assertions of Corollary 2 are well known - see [6], [7], [26].Remark 2. Theorem 1 shows that the generalized Mittag-Leffler type func-

    tion (1.3) has the same order as Mittag-Leffler function (1.1) and Mittag-Lefflertype function (1.2). But the type ofE,m,l(z) depends onm.

    3. Recurrent relations for E,m,l(z).

    In this section we give recurrent relations for E,m,l(z).Theorem 2. Let, mandl be real numbers such that the condition (1.4) is

    satisfied and letn N. Then for generalized Mittag-Leffler type function (1.3)the recurent relation

    zn [E,m,l+nm(z) 1] =n1j=0

    [(jm +l+ 1) + 1][(jm+l) + 1]

    E,m,l(z) 1 n

    i=1

    i1

    j=0

    [(jm+l) + 1]

    [(jm+l+ 1) + 1]

    zi

    (3.1)

    is valid.Proof. By (1.3) we have

    E,m,l+nm(z) = 1 +k=1

    k1i=0

    [(im+nm+l) + 1]

    [(im+nm+l+ 1) + 1]

    zk.

    Making the changes of the order of summation j = i+ n and i = k+ n, weobtain

    E,m,l+nm(z) = 1 +k=1

    n+k1

    j=n

    [(jm+l) + 1]

    [(jm+l+ 1) + 1]

    zk

    6

  • 8/14/2019 70823

    7/16

    = 1 +

    i=n+1

    i1j=n

    [(jm +l) + 1]

    [(jm +l+ 1) + 1]

    zin

    = 1 +n1j=0

    [(jm+l+ 1) + 1]

    [(jm+l) + 1]

    i=n+1

    i1

    j=0

    [(jm +l) + 1]

    [(jm +l+ 1) + 1]

    zin

    = 1 + 1

    zn

    n1j=0

    [(jm +l+ 1) + 1]

    [(jm +l) + 1]

    1 +

    i=1

    i1j=0

    [(jm +l) + 1]

    [(jm +l+ 1) + 1]

    zi

    n

    i=1

    i1

    j=0

    [(jm +l) + 1]

    [(jm+l+ 1) + 1]

    zi 1

    = 1 + 1

    zn

    n1j=0

    [(jm +l) + 1]

    [(jm+l+ 1) + 1]E,m,l(z) n

    i=1

    i1

    j=0

    [(jm +l) + 1]

    [(jm +l+ 1) + 1]

    zi 1

    and (3.1) is proved.Corollary 1. If the conditions of Theorem 2 are valid, then

    zE,m,l+m(z) =(l++ 1)

    (l+ 1) [E,m,l(z) 1] (3.2)

    and

    znE,m,l+nm(z) =n1j=0

    [(jm+l+ 1) + 1]

    [(jm+l) + 1]E,m,l(z) 1 n1

    i=1

    i1

    j=0

    [(jm +l) + 1]

    [(jm +l+ 1) + 1]

    zi

    (3.3)

    forn= 2, 3, .Corollary 2. If > 0, > 0 and n N, then for Mittag-Leffler type

    functionE,n+(z) the recurrent relations hold

    zE,+(z) = E,(z) 1

    () (3.4)

    7

  • 8/14/2019 70823

    8/16

    and

    zn(n+)E,n+(z) =

    =n1j=0

    (j++)

    (j+)

    ()E,(z) 1 n1

    i=1

    i1

    j=0

    (j+)

    (j++)

    zi

    (3.5)

    forn= 2, 3, .Corollary 3. If > 0 and n N, then Mittag-Leffler type function

    E,n+1(z) is expressed via Mittag-Leffler function (1.1) by

    zE,+1(z) = E(z) 1 (3.6)

    and

    znE,n+1(z) = E(z) n

    i=1

    zi

    (i+ 1)

    (3.7)

    forn= 2, 3, .

    4. Connection ofEn,m,l(z) with functions of hypergeometric type.

    As we have mentioned in Introduction, E,m,l(z) is generalization of theMittag-Leffler type functionE,(z) in (1.2), in particular of the Mittag-LefflerfunctionE(z) in (1.1). When= n N,En,m,l(z) in (1.6) becomes a functionof hypergeometric type. Such a function pFq(a1, a2. , ap; b1, b2. , bq; z) for

    p N0 = N

    {0},q N0, a1, a2. , ap C, b1, b2, , bq C and z C, |z|< 1, is defined by the hypergeometric series [8]

    pFq(a1, a2. , ap; b1, b2. , bq; z) =

    k=0

    (a1)k(a2)k (ap)k

    (b1)k(b2)k (aq)k

    zk

    k! , (4.1)

    where(a)0 = 1, (a)k = a(a+ 1) (a+k 1) (k= 1, 2, ). (4.2)

    Theorem 3. Let the condition (1.7) be satisfied. Then En,m,l(z) is givenby

    En,m,l(z) = 1Fn

    1;

    nl+ 1

    nm ,

    nl+ 2

    nm

    nl+n

    nm ;

    z

    (nm)n

    (4.3)

    and it is an entire function ofz with order = 1/n and type = 1/m.Proof. According to (1.3), (4.1) and (4.2) we have

    En,m,l(z) = 1 +

    k=1

    k1i=1

    (n[im+l] + 1)

    (n[im+l+ 1] + 1)

    zk

    = 1 +k=1

    k!

    (nl+ 1) (n[(k 1)m+l]) (nl+n) (n[(k 1)m+l] +n)

    zk

    k!

    8

  • 8/14/2019 70823

    9/16

    = 1 +

    k=1

    (1)k

    ([nl+ 1])/[nm])k ([nl+n]/[nm])k

    1

    (nm)nk

    zk

    k!

    =1 Fn

    1;

    nl + 1

    nm ,

    nl+ 2

    nm

    nl+n

    nm ;

    z

    (nm)n

    and (3.3) is proved. The last assertion follows from Theorem 1. This completesthe proof.

    Corollary 1. Ifn N and >0, then the Mittag-Leffler functionEn,(z)is given by

    En,1,(1)/n(z) = ()En,(z)

    = 1Fn

    1;

    nl+ 1

    n ,

    nl+ 2

    n

    nl +n

    n ;

    z

    (n)n

    (4.4)

    and it is an entire function of order= 1/n and type = 1.Corollary 2. If

    m > 0, l R, im+l=1, 2, 3, (i= 0, 1, 2, ), (4.5)

    thenE1,m,l(z) is given by

    E1,m,l(z) = 1F1

    1;

    l+ 1

    m ;

    z

    m

    =

    l+ 1

    m

    E1,(l+1)/m

    zm

    (4.6)

    and it is an entire function ofz with order = 1 and type = 1/m.Corollary 3. If l=1, 2, 3, , thenE1,1,l(z) is given by

    E1,1,l(z) = 1F1(1; l+ 1; z) = (l+ 1)E1,l+1(z) (4.7)

    and it is an entire function ofz with order = 1and type = 1. In particular,if l N0,

    E1,1,l(z) = l!E1,l+1(z) = l!

    zl

    ez

    l1k=0

    zk

    k!

    (4.8)

    andE1,1,0(z) = E1(z) = e

    z. (4.9)

    5. Differentiation properties ofEn,m,l(z).

    In this section we give two differentiation formulae for the generalized Mittag-Leffler type function (1.3). The first such a relation is given by the followingstatement.

    9

  • 8/14/2019 70823

    10/16

    Theorem 4. Letn N, m > 0 andl , R be numbers such that conditions

    in (1.7) are satisfied and leta C (a= 0). Then forEn,m,l(aznm)the followingdifferentiation formula

    d

    dz

    n zn(lm+1)En,m,l(az

    nm)

    =

    nj=1

    [n(lm)+j]zn(lm)+aznlEn,m,l(aznm)

    (5.1)holds. In particular, if

    n(l m) = j f or some j = 1, 2, , n, (5.2)

    then

    d

    dzn

    zn(lm+1)En,m,l(az

    nm)

    = znlEn,m,l(az

    nm). (5.3)

    Proof. By (1.3) we haved

    dz

    n zn(lm+1)En,m,l(az

    nm)

    =

    d

    dz

    n zn(lm+1) + j=1

    cjajzn(lm+1)+nmj

    = [n(l m+ 1)][n(l m+ 1) 1] [n(l m+ 1) n+ 1]zn(lm)

    +

    j=1

    j1

    i=1

    (n[im+l] + 1)

    (n[im+l+ 1] + 1)

    [n{(j 1)m+l+ 1} + 1]

    [n({(j 1)m+l} + 1] ajzn(lm)+nmj

    =

    nj=1

    [n(l m) +j]zn(lm) +aznl

    +j=2

    j2i=1

    (n[im+l] + 1)

    (n[im+l+ 1] + 1)

    ajzn(lm)+nmj.

    Taking the change of summation k = j 1, we obtaind

    dz

    n zn(lm+1)En,m,l(z

    nm)

    =

    nj=1

    [n(l m) +j]zn(lm)

    +aznl

    +k=1

    k1i=1

    (n[im+l] + 1)

    (n[im+l+ 1] + 1)

    ak+1znl+nmk

    10

  • 8/14/2019 70823

    11/16

    =

    nj=1

    [n(lm)+j]zn(lm)

    +aznl

    1 +

    k=1

    k1i=1

    (n[im+l] + 1)

    (n[im+l+ 1] + 1)

    (aznm

    )k

    and (5.1) is proved in accordance with (1.3). (5.3) follows from (5.1). Theoremis proved.

    Corollary 1. If n = 1, 2, , > 0 and a C (a = 0), then for theMittag-Leffler type functionEn,(azn) in (1.2)

    d

    dz

    n z1En,(az

    n)

    = 1

    ( n)zn1 +az1En,(az

    n). (5.4)

    Corollary 2. Ifn = 1, 2, , k N (1 k n) anda C (a= 0), thenfor the Mittag-Leffler type functionEn,k(az

    n)d

    dz

    n

    zk1En,k(azn)

    = azk1En,k(zn). (5.5)

    In particular whenk= 1, for the Mittag-Leffler functionEn(azn) in (1,1)

    d

    dz

    n[En(az

    n)] = aEn(azn). (5.6)

    Remark 3. By (1.2), the relation (5.4) can be represented in the formd

    dz

    n z1En,(az

    n)

    = zn1En,n(azn), (5.7)

    which is known for a = 1 [6, (1.6)].Remark 3. Whena = 1, the relation (5.6) is well known - see [9, 18.1(15)].Next differentiation relation for the generalized Mittag-Leffler type function

    (1.3) is given byTheorem 5. Letn N, m > 0 andl , R be numbers such that conditions

    in (1.7) are satisfied and let a C (a = 0). Then for En,m,l(aznm) the

    following differentiation formulad

    dz

    n zn(ml)1En,m,l(az

    nm)

    =

    n

    j=1

    [n(m l) j]zn(ml1)1 + (1)nazn(l+1)1En,m,l(aznm) (5.8)

    holds. In particular, if the conditions in (5,2) are satisfied, thend

    dz

    n zn(ml)1En,m,l(az

    nm)

    = (1)nazn(l+1)1En,m,l(znm). (5.9)

    11

  • 8/14/2019 70823

    12/16

    Proof. By (1.3) we haved

    dz

    n zn(ml)1)En,m,l(az

    nm)

    =

    d

    dz

    n zn(ml)11 + j=1

    cjajzn(ml)nmj1

    = [n(m l) 1] [n(m l) n]zn(ml)1n

    +

    j=1

    aj

    j1i=1

    (n[im+l] + 1)

    (n[im+l+ 1] + 1)

    [n(m l) nmj 1] [n(m l) nmj n]zn(ml)nmjn1

    =n

    j=1

    [n(m l) j]zn(ml1)1

    +(1)nj=1

    j1i=1

    ([im+l] + 1)

    ([im+l+ 1] + 1)

    (n[{j 1}m+l+ 1] + 1)

    (n[{j 1}m+l] + 1) ajzn(ml)nmjn1

    =n

    j=1

    [n(m l) j]zn(ml1)1

    +(1)nazn(l+1)1

    1 +

    j=2

    aj

    j2i=1

    (n[im+l] + 1)

    (n[im+l+ 1] + 1)

    ajznm(j1)

    .

    Making the change of summation k = j 1, we obtaind

    dz

    n zn(ml)1En,m,l(az

    nm)

    =

    nj=1

    [n(m l) j]zn(ml1)1+

    +(1)nazn(l+1)1

    1 +

    k=1

    k1i=1

    (n[im+l] + 1)(n[im+l+ 1] + 1)

    (aznm)k

    and (5.8) is proved in accordance with (1.3). (5.9) follows from (5.8). Theoremis proved.

    12

  • 8/14/2019 70823

    13/16

    Corollary 1. If n = 1, 2, , > 0 and a C (a = 0), then for the

    Mittag-Leffler type functionEn,(azn) in (1.2)d

    dz

    n znEn,(az

    n)

    = (1)n

    ( n)z + (1)naznEn,(az

    n). (5.10)

    Corollary 2. Ifn = 1, 2, , k N (1 k n) anda C (a= 0), thenfor the Mittag-Leffler type functionEn,k(az

    n)d

    dz

    n znkEn,k(az

    n)

    = (1)naznkEn,k(azn). (5.11)

    In particular whenk= 1, for the Mittag-Leffler functionEn(azn) in (1,1)

    ddzn

    zn1En(azn)

    = (1)nazn1En(azn). (5.12)

    Remark 5. The relations (5.1), (5.8) and (5.3), (5.9) can be consideredas nonhomogeneous and homogeneous dfferential equations of order n for thefunctionszn(lm+1)En,m,l(az

    nm) andzn(ml)1En,m,l(aznm), respectively. In

    this way explicit solutions of new classes of differential equations were obtainedin [24], [32]. In particular, (5.4), (5.10) and (5.5), (5.11) are nonhomogeneousand homogeneous differential equations for the functions z1En,(az

    n) and[znjEn,(azn). The function zj

    1En,(azn) as explicit solution of diferen-tial equation was found earlier by reduction of the differential equation to thecorresponding Volterra integral equation [33, Section 42.1].

    AcknowledgmentThe work was fulfilled under partial financial support of Belarusian Fund of

    Fundamental Scientific Research.

    References

    [1] Abramovitz M. and Stegan I.A., Handbook of Mathematical Functions,Dover, New York, 1965.

    [2] Agarwal R.P., A propos dune note de M.Pierre Humbert, C.R. Acad. Sci.Paris236 (1953), no. 21, 2031-2032.

    [3] Bagley R.L., On the fractional order initial value problem and its engineer-

    ing applications, In Fractional Calculus and its Applications, Proc. Int.Conf. (Tokyo, 1989), College of Engineering, Nihon Univ., 1990, 12-20.

    [4] Beyer Y. and Kempfle S,, Definition of physically consistent damping lawswith fractional derivatives, ZAAM75 (1995), 623-635.

    13

  • 8/14/2019 70823

    14/16

    [5] Caputo M. and Mainardi F., Linear models of dissipation in anelastic solids,

    Riv. Nuovo Cimento(Ser. II) 1 (1971), 161-198.

    [6] Djrbashian M.M.,Harmonic Analysis and Boundary Value Problems in theComplex Domain, Birkhauser Verlay, Basel-Boston-Berlin, OI-65, 1996.

    [7] Dzherbashyan M.M.,Integral Transforms and Representations of Functionsin Complex Domain(Russian), Nauka, Moscow, 1966.

    [8] Erdelyi A., Magnus W., Oberhettinger F. and Tricomi F.G., HigherTranscendental Functions, Vol. 1, McGraw-Hill Coop., New York, 1953.(reprinted in Krieger, Melbourne-Florida, 1981).

    [9] Erdelyi A., Magnus W., Oberhettinger F. and Tricomi F.G., HigherTranscendental Functions., Vol. 3, McGraw-Hill Coop., New York, 1955.

    (reprinted in Krieger, Melbourne-Florida, 1981).

    [10] Goldsmith P.L., The calculation of true partical size distributions from thesizes observed ia a thin slice, J. Appl. Phys. 18 (1967), 813-830.

    [11] Gorenflo R., The Tomato Salad Problem in Spherical Stereology, PreprintNo A-25/96, Freie Universitat Berlin, Serie A Mathematik.

    [12] Gorenflo R., Luchko Yu. and Rogosin S., Mittag-Leffler type functions:notes on growth properties and distribution of zeros, Preprint No A04-97,Freie Universitat Berlin, Serie A Mathematik

    [13] Gorenflo R. and Mainardi F., Fractional oscillations and Mittag-Lefflertype functions, Preprint No A-14/96, Freie Universitat Berlin, Serie A

    Mathematik

    [14] Gorenflo R. and Mainardi F., The Mittag-Leffler type function in theRiemann-Liouville fractional calciulus, In: Kilbas A.A. (ed.) BoundaryValue Problems, Special Functions and Fractional Calculus, Proc. Int.Conf. (Minsk, 1996), Belarusian State University, Minsk, 1996, 215-225.

    [15] Gorenflo R. and Rutman R., On ultraslow and intermediate processes, In:P.Rusev, I.Dimovski, V.Kiryakova (eds) Transforms Methods and SpecialFunctions, Proc. Int. Workshop (Sofia, 1994), Publised by Science CulturTechnology, Singapure, 1995, 61-81.

    [16] Gorenflo R. and Vessela S., Abel Integral Equations: Analysis and Appli-cations, Lecture Notes in Mathematics 1461, Springer Verlag, Basel-

    Boston-Berlin, 1991.

    [17] Hille E. and Tamarkin J.D., On the theory of linear integral equations,Ann. Math.31 (1930), 479-528.

    14

  • 8/14/2019 70823

    15/16

    [18] Humbert P., Quelques resultats a la fonction de Mittag-Leffler,C. R. Acad.

    Sci. Paris236 (1953), 1467-1468.

    [19] Humbert P. and Agarwal R.P., Sur la fonction de Mittag-Leffler et quelquesunes de ses generalisations, Bull. Sci. Math. (2) 77 (1953), 180-185.

    [20] Kilbas A.A and Saigo M., On solution of integral equations of Abel-Volterratype,Differential and Integral Equations8 (1995), no. 5, 993-1011.

    [21] Kilbas A.A and Saigo M., Fractional integrals and derivatives of Mittag-Leffler type function (Russian), Doklady Akad. Nauk Belarusi39 (1995),no 4, 22-26.

    [22] Kilbas A.A and Saigo M., Solution of Abel type integral equations of secondkind and differential equations of fractional order (Russian), Doklady Akad.

    Nauk Belarusi39 (1995), no 5, 29-34.

    [23] Kilbas A.A and Saigo M., On Mittag-Leffler type function, fractional calcu-lus operators and solutions of integral equations, Integral Transforms andSpecial Functions4 (1996), no 4, 355-370.

    [24] Kilbas A.A and Saigo M., Solution in closed form of a class of linear differ-ential equations of fractional order (Russin), Differentsialnye Uravneniya37 (1997), no. 2, 195-204.

    [25] Koeller R.C., Applications of fractional calculus to the theory of viscoelas-ticity, J. Appl. Math. (Trans. AJME) 51 (1984), 299-307.

    [26] Levin B. Ja., Distribution of Zeros of Entire Functions, AMS, Rhode Is-

    land, Providence, 1980, 2nd printing.

    [27] Mainardi F., Fractional relaxion-oscillation and fractional diffusion-waveequation, In: Chaos, Solitons and Fractals7(9) (1996), 1461-1477.

    [28] Miller K.S nd Ross B., An Introduction to the Fractional Calculus andFractional Differential Equations, Wiley, New York, 1993.

    [29] Mittag-Leffler G., Sur la nouvelle fonction E(x), C.R. Acad. Sci. Paris137 (1903), 554-558.

    [30] Mittag-Leffler G., Sur la representation analytique dune branche uniformedune fonction monogene (cinquieme note), Acta Math.29 (1905), 101-181.

    [31] Nonnenmacher T.F. and Glockle W.G., A fractional model for mechanicalstress relation, Phil. Mag. Letters64 (2) (1991), 89-93.

    [32] Saigo M. and Kilbas A.A., On Mittag-Leffler type function and applica-tions,Integral Transforms and Special Functions, to appear.

    15

  • 8/14/2019 70823

    16/16

    [33] Samko S.G., Kilbas A.A. and Marichev O.I., Fractional Integrals and

    Derivatives. Theory and Applications, Gordon and Breach, New York etc.,1993.

    [34] Schneider W.R., Complete monotone generalized Mittag-Leffler functions,Expositiones Mathematicae14 (1996), 3-16.

    [35] Schneider W.R. and Wyss W., Fractional diffusion and wave equations, J.Math. Phys.30 (1989), 134-144.

    [36] Sedletskii A.M., Asymptotic formulas for zeros of a function of Mittag-Leffler type (Russian), Analysis Mathematica20 (1994), 117-132.

    [37] Wiman A., Uber Fundamentalsatz der Theorie der FunktionenE(x),ActaMath.29 (1905), 191-201.

    [38] Wiman A., Uber die Nullstellen der Funktione E(x), Acta Math. 29(1905), 217-234.

    16