6.PG Binder Tests 2013...Rotational#viscometer(RV)# ... 6.PG Binder Tests 2013.ppt Author: jhaddock...

19
1/26/13 1 CE 535 Bituminous Materials and Mixtures Behavior Depends on Temperature Time of Loading Age also important 60C 25C 1 hour 1 hour 10 hours

Transcript of 6.PG Binder Tests 2013...Rotational#viscometer(RV)# ... 6.PG Binder Tests 2013.ppt Author: jhaddock...

  • 1/26/13

    1

    CE  535  Bituminous  Materials  and  Mixtures  

      Behavior  Depends  on    Temperature    Time  of  Loading    Age  also  important  

    60C  

    25C  

    1  hour  

    1  hour   10  hours  

  • 1/26/13

    2

      High  Temperature    Desert  climate    Summer    

      Sustained  Loads    Slow  moving  trucks    Intersections  

    viscous  liquid  

      Permanent  deformation  is  concern      Mixture  is  plastic  

     Wheel  path  rutting    Shoving  at  intersections  

      Depends  on    Asphalt  binder  (some)   Mineral  aggregate  (much  more)  

    Function  of  warm  weather  and  traffic  

    Courtesy of FHWA

  • 1/26/13

    3

      Low  temperature    Cold  climate   Winter    

      Rapid  loads    Fast  moving  trucks  

    elastic  solid  

      Thermal  cracks  are  concern    Internal  stresses  induced  by  temperature  change    Stresses  exceed  strength  

      Mixture  is  brittle    Transverse  cracks  

      Depends  mostly  on  asphalt  binder    Not  affected  much  by  aggregate  

    Courtesy of FHWA

  • 1/26/13

    4

      Asphalt  reacts  with  oxygen    “Oxidative”  or  “age”  hardening  

      During  construction  –  short  term   Mixing    Placing/compaction  

      In-‐service  –  long  term    Hot  climate  worse  than  cool  climate    Summer  worse  than  winter  

      Volatilization  –  short  term    Volatile  components  evaporate  during  construction  

      Physical  hardening    Not  aging...asphalt  stiffens  at  low  temperatures    Reversible  

      Durability  cracks    Mixture  is  brittle  

      Random,  wandering  cracks    Depends  on  

      Asphalt  cement  (much)   Mineral  aggregate  (some)  

  • 1/26/13

    5

      Fundamental  properties  related  to  pavement  performance  

      Environmental  factors    In-‐service  and  construction  temperatures    Short-‐  and  long-‐term  aging  

      Based  on  rheological  testing    Rheology-‐study  of  flow  and  deformation  

      Asphalt  cement  is  a  viscoelastic  material    Behavior  depends  on:  

      Temperature    Time  of  loading    Aging  (properties  change  with  time)  

  • 1/26/13

    6

    PG  Binder  Specification  

    The  grading  system  is  based  on  climate  

    PG  64  -‐  22  

    Performance  Grade  

    Average  7-‐day  maximum  pavement  temperature  

    Minimum  pavement  

    temperature  

    Calculated  Temperatures  

    • Calculated  by  LTPPBind  software  • High  temperature    

    – 20  mm  below  the  surface  of  mixture  •  Low  temperature  

    – At  mixture  surface  

    Pavement  temperature  =  f  (air  temp,  depth,  latitude)  

      High/intermediate  temperature  properties    Dynamic  shear  rheometer  (DSR)    Rotational  viscometer  (RV)  

      Low  temperature  properties    Bending  beam  rheometer  (BBR)    Direct  tension  tester  (DTT)  

      Durability  Properties    Rolling  thin  film  oven  (RTFO)    Pressure  aging  vessel  (PAV)  

  • 1/26/13

    7

    Pavement  Temperature,  C  -‐  20    20    60    135  

    Low  Temp  Fatigue      Construction  Cracking  Cracking  Rutting  Workability  

    Asphalt  Binder  Tests  

      Evaluates    Elastic  and  viscous  properties    Loading  time  and  temperature  effects  

      Output    Complex  shear  modulus  (G*)    Phase  angle  (δ)  

    Applied  Stress  or  Strain  

    Fixed  Plate  Binder  

    Oscillating  Plate  

    Position  of  Oscillating  Plate  

    Time  A   A  

    C  

    A  

    1  cycle  B   C  A  

    B  

  • 1/26/13

    8

    Viscous:    δ  =  90  deg  Elastic:    δ  =  0  deg  

    Resulting  Shear  Strain  

    time  

    τmax  τmax  Applied  Shear  Stress  

    γmax   time  lag  =  δ

    γmax  

    time

    Elastic  and  Viscous  Behavior  

    Viscoelastic:    0  <  δ  <  90  o  

    Resulting  Shear  Strain  

    τmax  Applied  Shear  Stress  

    γmax   δ

    τmax  

    G*  =     γmax  

    δ  =  time  lag  

    time  

    time  

    Viscoelastic  Behavior  

    DSR  Equipment  

  • 1/26/13

    9

    Liquid  bath  

    Motor  

    Parallel  plates  with  sample  

    Dynamic  Shear  Rheometer  

    25 mm Plate with Sample

    Dynamic  Shear  Rheometer  

      For  the  early  part  of  service  life    G*/sin  δ  on  unaged  binder  >  1.00  kPa    G*/sin  δ    on  RTFO  aged  binder    >    2.20  kPa  

  • 1/26/13

    10

      Why  a  minimum  G*/sin  δ  to  address  rutting    A  stiff,  elastic  binder    contributes  to  mixture  rutting  resistance  

      Increase  G*  or  decrease  δ  

      G*(sinδ)  on  RTFO  and  PAV  conditioned  residue    The  parameter  addresses  the  latter  part  of  fatigue  life  

      Value  must  be  <  5,000  kPa  

      Why  a  minimum  G*(sinδ)  for  fatigue  cracking    A  softer,  more  elastic  binder  is  less  prone  to  fatigue  cracking  

      Decrease  G*  or  δ  

  • 1/26/13

    11

      Evaluates    Consistency  during  handling,  pumping  

      ASTM  D  4402    Other  Names  

      Brookfield  viscometer    Output  

      Viscosity  at  135C    Viscosity  temperature  chart  for  mixture  design  

    Sample  chamber  

    Spindle  

    Asphalt  sample  

    Applied  torque  

    Rotational  Viscosity  

    Motor  and  controller  

    Temperature  controller  

    Thermo  -‐  container  

    Spindle  extension  

    Rotational  Viscosity  

  • 1/26/13

    12

    Rotational  Viscometer    

    Inner  Cylinder  

    Torque  motor  

    Thermosel  Environmental  

    Chamber  Digital  Temperature  

    Controller  

    .1

    .2

    .3

    .5

    1

    10 5

    100 110 120 130 140 150 160 170 180 190 200

    Temperature, C

    Viscosity, Pa s

    Compaction Range

    Mixing Range

    Mixing  and  Compaction  Chart    

      Evaluates    Low  temperature  stiffness  properties    

      Output    Creep  stiffness  (S)    Logarithmic  creep  rate  (m)  

  • 1/26/13

    13

    Air  Bearing  

    Load  Cell  

    Deflection  Transducer  

    Fluid  Bath  

    Computer  

    Constant  (creep)  load  

    Deflection  

    Time  

    Deflection  

    Time  

    Load  

  • 1/26/13

    14

    Cooling System

    Fluid Bath Loading Ram

    Log  creep  stiffness  

    Log  loading  time  (s)  

    slope  =  m-‐value  

    60  8  15  30          120              240    

      Determined  for  RTFO  and  PAV  conditioned  residue    Creep  stiffness  (S)  <  300  Mpa   m-‐value  >  0.300  

  • 1/26/13

    15

      Why  a  maximum  S  to  address  thermal  cracking    A  softer,  more  elastic  binder  better  resists  cracking  at  low  temperatures  

      Decrease  S  at  low  temperatures    Why  a  minimum  m-‐value  to  address  thermal  cracking    A  softer,  more  elastic  binder  better  resists  cracking  at  low  temperatures  

      Increase  m-‐value  at  low  temperatures,  binder  stiffness  changes  more  rapidly  

      Is  stiffness  enough    Not  necessarily,  assess  strain  needed  to  break  specimen  

      Thermal  cracking  occurs  when  strain  is  too  great  

      Direct  tension  test    Currently  in  specification      New  equipment  

    Stress  

    Strain  

    Brittle  

    Brittle-‐ductile  

    Ductile  

  • 1/26/13

    16

      Evaluates    Low  temperature  ability  to  stretch  

      Output    Tensile  strain  at  failure  

    elongation Original length

    Original length

    Load

    Load

    Length at failure

    Elongation at failure

    failure strain =

    Courtesy of FHWA

  • 1/26/13

    17

      Test  RTFO  and  PAV  conditioned  binder    Failure  strain  >  1  percent  

      Rolling  Thin  Film  Oven    Simulates  construction  aging    Determines  mass  loss  

      Pressure  Aging  Vessel    Simulates  long  term  aging  

      Output    Conditioned  residue  for  testing  with  DSR,  BBR,  and  DTT  

    163 C empty  bottle  before  

    coated  bottle  after  

    controls   fan  

    bottle  carriage  air  jet  

    Rolling  Thin  Film  Oven  

  • 1/26/13

    18

    Opening  in  Bottle  

      Simulates  approximately  5  years  of  in-‐service  binder  aging  

      50  gram  sample  conditioned  for  20  hours    Pressure  at  2,070  kPa  (300  psi)    Temperature  of  90  (194),  100  (212),  or  110C  (230F)  

      Depends  on  expected  in-‐service  climate  

    Pressure  Aging  Vessel  

  • 1/26/13

    19

    Fatigue  Cracking  Rutting  

    RTFO  Short  Term  Aging  No  aging    

    Construction  

    [RV]   [DSR]  

    Low  Temp  Cracking  

    [BBR]  

    [DTT]

    PAV  Long  Term  Aging