6924 04 Winfried Kaiser

download 6924 04 Winfried Kaiser

of 16

Transcript of 6924 04 Winfried Kaiser

  • 7/27/2019 6924 04 Winfried Kaiser

    1/16

    The future of EUVL

    by

    Winfried Kaiser,

    Udo Dinger, Peter Kuerz,

    Martin Lowisch,

    Hans-Juergen Mann,

    Stefan Muellender,

    . ,

    Jos Benshop,

    Steven G. Hansen,

    Koen van Ingen-Schenau

    Outline

    Introduction

    Imaging requirements of future nodes

    High NA optics

    Infrastructure and Technology

    For public use Seite 20940_tuesday_6924-4_Winfried_Kaiser.ppt

    Summary

  • 7/27/2019 6924 04 Winfried Kaiser

    2/16

    Status Alpha Demo Tool

    30 nm

    42 mJ/cm232 nm

    40 mJ/cm2

    30 nm

    24 mJ/cm232 nm

    24 mJ/cm2

    For public use Seite 30940_tuesday_6924-4_Winfried_Kaiser.ppt

    1st scanner able to print dense features in single exposure

    See also: Emerging Lithographic Technologies XII

    Hans Meiling: Field performance of the EUV alpha demo tools

    Tuesday, 26 February 2008, 1:20 PM 1:50 PM

    (nm)

    200

    Why EUV?

    ASML Product

    XT:1400

    XT:1700i

    AT:1200

    Resolution,

    Shrin

    100

    80

    60

    40 Immersion

    For public use Seite 40940_tuesday_6924-4_Winfried_Kaiser.ppt

    Year of Production Start*

    Introduction XT:1900iNEXT

    EUV30

    20

    02 10 121107 090804 060503 13 14

    EUV

    Double patterning

    Note: Process development

    1.5 ~ 2 years in advance / updated 12/07

  • 7/27/2019 6924 04 Winfried Kaiser

    3/16

    Why EUVL: 22nm SRAM approaches

    cell area

    0.16u2

    approx SE

    standard layout

    (optimized) more DFM?

    asym shrink

    ??

    more DFM?

    DPT, 3PT, 4PT

    ??

    higher NA SE

    or EUV

    1.35NA

    0.10u2

    limit with

    1.35NA and

    standard

    design

    Best 2-way split

    k1=0.31

    k1=0.31

    4

    k1 relative to

    0.09u2 target

    1.7NA

    193nm SE

    38 nm

    For public use Seite 50940_tuesday_6924-4_Winfried_Kaiser.ppt

    EUV allows the patterning of complex, dense features in a single exposure step!

    0.06u2

    22nm node

    target range

    -

    k1=0.55

    k1=0.53

    k1=0.48

    k1=0.48

    0.25NA EUV

    m cm

    Outline

    Introduction

    Imaging requirements of future nodes

    High NA optics

    Infrastructure and Technology

    For public use Seite 60940_tuesday_6924-4_Winfried_Kaiser.ppt

    Summary

  • 7/27/2019 6924 04 Winfried Kaiser

    4/16

    EUV Optics: The future

    EUV is introduced as a high k1 technology

    Node \ NA 0.25 0.32 0.45

    32 nm 0.59 0.76 1.07

    22 nm 0.41 0.52 0.73

    16 nm 0.30 0.38 0.53

    11 nm 0.20 0.26 0.37

    NAkRES

    1=

    k1reduction

    For public use Seite 70940_tuesday_6924-4_Winfried_Kaiser.ppt

    opportunity

    EUV will follow the optical path with high NA and k1 reduction

    32 nm features

    Dense Lines

    conventional illumination0.6

    0.7

    0.8

    1.5

    2

    2.5

    3

    0.6

    0.7

    0.8

    1.5

    2

    2.5

    3best focus 75 nm defocus

    NILS NILS

    lcoherence

    Dense contacts

    conventional illumination

    0.6

    0.7

    0.8

    1.5

    2

    2.5

    3

    0.6

    0.7

    0.8

    1.5

    2

    2.5

    3

    0.2 0.3 0.4

    0.3

    0.4

    0.5

    0

    0.5

    1

    0.2 0.3 0.4

    0.3

    0.4

    0.5

    0

    0.5

    1

    tialcoherence

    Parti

    For public use Seite 80940_tuesday_6924-4_Winfried_Kaiser.ppt

    0.2 0.3 0.4

    0.3

    0.4

    0.5

    0

    0.5

    1

    0.2 0.3 0.4

    0.3

    0.4

    0.5

    0

    0.5

    1Pa

    NA NA

    Flare: 6%, WFE: 0.5 nm rms

    NILS target: 2

  • 7/27/2019 6924 04 Winfried Kaiser

    5/16

    0.6

    0.7

    0.8

    1.5

    2

    2.5

    3

    0.6

    0.7

    0.8

    1.5

    2

    2.5

    3

    NILS NILS

    oherence

    best focus 50 nm defocus

    Dense Lines

    conventional illumination

    22 nm features

    0.2 0.3 0.4

    0.3

    0.4

    0.5

    0

    0.5

    1

    0.2 0.3 0.4

    0.3

    0.4

    0.5

    0

    0.5

    1

    Partialc

    centerA

    0.6

    0.7

    0.8

    1.5

    2

    2.5

    3

    0.6

    0.7

    0.8

    1.5

    2

    2.5

    3

    Dense contacts

    conventional illumination

    For public use Seite 90940_tuesday_6924-4_Winfried_Kaiser.ppt

    NA NA

    Sigm

    0.2 0.3 0.4

    0.3

    0.4

    0.5

    0

    0.5

    1

    0.2 0.3 0.4

    0.3

    0.4

    0.5

    0

    0.5

    1

    NA 0.32 enables 22nm patterning with conventional illumination

    NILS NILS

    acenterA

    best focus 50 nm defocus

    Dense Lines

    annular illumination

    0.6

    0.7

    0.8

    2

    2.5

    3

    0.6

    0.7

    0.8

    2

    2.5

    3

    16 nm features

    0.6

    0.7

    0.8

    1.5

    2

    2.5

    3

    0.6

    0.7

    0.8

    1.5

    2

    2.5

    3

    Sig

    acenterQ

    A

    Dense contacts

    quasar illumination

    0.2 0.3 0.4

    0.3

    0.4

    0.5

    0

    0.5

    1

    1.5

    0.2 0.3 0.4

    0.3

    0.4

    0.5

    0

    0.5

    1

    1.5

    For public use Seite 100940_tuesday_6924-4_Winfried_Kaiser.ppt

    0.2 0.3 0.4

    0.3

    0.4

    0.5

    0

    0.5

    1

    0.2 0.3 0.4

    0.3

    0.4

    0.5

    0

    0.5

    1

    NA NA

    Sigm

    Q

    and even 16nm with off axis illumination

  • 7/27/2019 6924 04 Winfried Kaiser

    6/16

    NILS NILS

    centerA

    best focus 40 nm defocus

    Dense Lines

    annular illumination

    0.6

    0.7

    0.8

    1.5

    2

    2.5

    3

    0.6

    0.7

    0.8

    1.5

    2

    2.5

    3

    11 nm features

    0.6

    0.7

    0.8

    1.5

    2

    2.5

    3

    0.6

    0.7

    0.8

    1.5

    2

    2.5

    3

    Sigm

    centerQ

    A

    Dense contacts

    quasar illumination

    0.4 0.5 0.6

    0.3

    0.4

    0.5

    0

    0.5

    1

    0.4 0.5 0.6

    0.3

    0.4

    0.5

    0

    0.5

    1

    For public use Seite 110940_tuesday_6924-4_Winfried_Kaiser.ppt

    0.4 0.5 0.6

    0.3

    0.4

    0.5

    0

    0.5

    1

    0.4 0.5 0.6

    0.3

    0.4

    0.5

    0

    0.5

    1

    NA NA

    Sigm

    Q

    11nm can be imaged with NA > 0.45 and off axis illumination

    Outline

    Introduction

    Imaging requirements of future nodes

    High NA optics

    Infrastructure and Technology

    For public use Seite 120940_tuesday_6924-4_Winfried_Kaiser.ppt

    Summary

  • 7/27/2019 6924 04 Winfried Kaiser

    7/16

    The path to NA = 0.32

    Slit length 26mm

    MAG = 4x

    Enabling for higher NA:

    Larger mirror sizes

    Stronger aspheres

    For public use Seite 130940_tuesday_6924-4_Winfried_Kaiser.ppt

    NA 0.25 NA 0.32

    Full field 6 mirror designs can be extended to NAs around 0.32

    Apodization is limiting 6M designs

    center of field (x=0)

    edge of field (x=13mm)

    For public use Seite 140940_tuesday_6924-4_Winfried_Kaiser.ppt

    The larger NA introduce a high angular load on surfaces which cause significant apodisation effects

    Balancing of optical and coating design is needed to achieve a (quasi) rotational symmetric

    apodisation uniform over the field

  • 7/27/2019 6924 04 Winfried Kaiser

    8/16

    full field

    NA > 0.4 : Way out with central

    obscuration

    M5

    reduced

    field

    For public use Seite 150940_tuesday_6924-4_Winfried_Kaiser.ppt

    M5Central obscuration solves the apodisation issue but limits the field size.

    Full field designs show big central obscurations.

    In addition stopping down increases the obscuration ratio.

    NA 0.5

    NA 0.32,

    Annular 0.6-0.8

    16nm feature size

    Imaging effect of apodisation and

    central obscuration

    Model pupil:

    2/3

    1/3

    For public use Seite 160940_tuesday_6924-4_Winfried_Kaiser.ppt

    Area with reduced

    transmission/obscuration

    Transmission100%

    The prime effect of apodisation and central obscuration

    can be compensated by CD biasing

  • 7/27/2019 6924 04 Winfried Kaiser

    9/16

    Alternative with NA>0.4

    8M designs allow unobscured full field

    systems with NA 0.5.

    The two additional mirrors cause a

    For public use Seite 170940_tuesday_6924-4_Winfried_Kaiser.ppt

    reduction of system transmission by

    at least a factor of 2.

    NA 0.5

    Extending NA to 0.7

    For public use Seite 180940_tuesday_6924-4_Winfried_Kaiser.ppt

    NA 0.7

    For NA 0.7 the only

    design solutions are

    obscured 8M systems

  • 7/27/2019 6924 04 Winfried Kaiser

    10/16

    High NA solution roadmap

    Solution overview:

    8M

    6M

    ..

    unobscured

    ..

    For public use Seite 190940_tuesday_6924-4_Winfried_Kaiser.ppt

    central obscured

    (smaller fields)

    There are design solutions for high NA systems enabling 11 nm and beyond

    Res 2014 201520132010 2011 2012

    EUVL Roadmap down to 11nm

    11nm

    16nm

    22nm

    same lens,

    enhanced

    off axis

    illumination 0.32NA, 3nm OVL, >100wph

    0.32NA +off axis illumination

    0.4xNA

    For public use Seite 200940_tuesday_6924-4_Winfried_Kaiser.ppt

    27nm 0.25NA, 4nm OVL

  • 7/27/2019 6924 04 Winfried Kaiser

    11/16

    Outline

    Introduction

    Imaging requirements of future nodes

    High NA optics

    Infrastructure and Technology

    For public use Seite 210940_tuesday_6924-4_Winfried_Kaiser.ppt

    Summary

    Z-graded multilayers

    EUV Coatings

    8 1dR0(0-18)=72%

    0.7

    0.8

    0

    2

    4

    6

    2

    3

    Layerthickness,nm

    dSi

    dMoperiod. ML

    R0(0-18)=64%R0=60%

    R0=58%

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    Reflectivity

    For public use Seite 220940_tuesday_6924-4_Winfried_Kaiser.ppt

    Z-grading of EUV multilayers improves the angular acceptance

    on cost of peak reflectivity and therefore system transmission

    Bi-layer numberIncidence angle, degrees

  • 7/27/2019 6924 04 Winfried Kaiser

    12/16

    0,45

    0,50

    0,55

    des)

    Set 1

    MET2 mirrors

    on-axis

    AD-tool6 mirrors

    off-axis

    Preproduction

    tool

    Productiontoolstestmirror

    Progress in flare reduction

    0,15

    0,20

    0,25

    0,30

    0,35

    0,40

    MSFR

    [nmrms]

    (evaluatedover4.6dec

    Set 3

    Set 2

    test mirror

    setup

    POB

    a us: are eve

    Figure = 0.04 nm rms

    MSFR = 0.13 nm rms

    HSFR = 0.07 nm rms

    8% flare

    For public use Seite 230940_tuesday_6924-4_Winfried_Kaiser.ppt

    0,05

    0,10

    2000

    2001

    2002

    2003

    2004

    2005

    2006

    2007

    2008

    2009

    2010

    2011

    2012

    2013

    2014

    2015

    (MSFR

    opt.)

    16% flare

    tools

    Flare is calculated for a 2 m

    line in a bright field

    arget: are

    Flare will be improved further to secure high imaging performance

    for smaller feature sizes

    Impact of CRAO change (1)

    ChiefRay Angle on Object side ()

    EUV optics has to be non-telecentric on reticle side.

    Actual standard is 6 this limits the NA to < 0.4 Ma 4x .

    For larger NAs the CRAO has to be increased accordingly.

    Example:

    3

    4

    5

    6

    7

    8

    Vmaskbias(nm)

    For public use Seite 240940_tuesday_6924-4_Winfried_Kaiser.ppt

    0

    1

    2

    5 6 7 8 9 10

    CRAO

    required

    H

    NA=0.45, annular illumination

    Mask stack wih 67nm TaN absorber

  • 7/27/2019 6924 04 Winfried Kaiser

    13/16

    Impact of CRAO change (2)

    Required delta bias HV

    5

    6

    7

    )

    Att PSM Stack (11nm)

    17nm TaN (magenta)

    Required delta bias HV

    0

    1

    2

    3

    4

    6 7 8 9

    CRAO (deg)

    bias

    (nm

    required delta bias HV21nm Ru (green)

    11nm Si (blue)

    40 MoSi bilayer

    The impact of a change of CRAO is not well understood today in full extent.

    Our view is that there are no showstoppers for an increase to 9 - 10 allowing full

    CRAO (deg)Source: Samsung

    11nm DL

    NA=0.45

    Quasar

    For public use Seite 250940_tuesday_6924-4_Winfried_Kaiser.ppt

    .

    where on the effect on imaging by larger CRAOs can be compensated by biasing

    without critical impact.

    The only alternative for NA > 0.4 would be to go to higher Mag (5x, 6x, 8x) whichwould limit the usable field size in 2 dimensions with significant impact on

    productivity or require larger mask sizes.

    EUV Source power

    wp

    (full field optics)

    For public use Seite 260940_tuesday_6924-4_Winfried_Kaiser.ppt

    Source: Cymer

  • 7/27/2019 6924 04 Winfried Kaiser

    14/16

    EUV source power vs. resist sensitivity

    1400

    16008 mirror POB

    6 mirror POB

    200

    400

    600

    800

    1000

    1200

    Power[Watt@I

    FIB]

    @ 100 wph

    For public use Seite 270940_tuesday_6924-4_Winfried_Kaiser.ppt

    To keep the required source power (at intermediate focus in band)

    in a realistic range, resist sensitivity must target 10 mJ /cm2

    0

    0 10 20 30 40

    Resist sensitivity [mJ/cm^2]

    Effective etendue for

    off axis illumination

    out

    Conventional

    out in

    Annular Quasar 45

    out in

    -

    1.40.70.40.6-0.8Annular

    3.21.61.00.8Conventional

    NA=0.45NA=0.32NA=0.25Setting

    relative etendue (@fixed slit size)

    out= 0.8 in = 0.0 out= 0.8 in = 0.6 out= 1.0 in = 0.6

    For public use Seite 280940_tuesday_6924-4_Winfried_Kaiser.ppt

    ... - .

    Off axis illumination will reduce the effective etendue the illumination system

    can accept from the source. Therefore the source etendue covering the full

    source power has to be small enough to avoid any productivity loss for these

    settings. Since the etendue grows with NA, in future larger source etendues

    can be accepted or more aggressive off axis settings can be used.

  • 7/27/2019 6924 04 Winfried Kaiser

    15/16

    0.8

    1.0

    stloss

    flare

    flare + aberrations

    Resist effect on imaging

    1:1 L/S

    0.0

    0.2

    0.4

    0.6

    12 17 22 27 32 37

    relativecontr

    5nm resist blur

    flare + aberrations +

    10nm resist blur

    flare + aberrations +

    15nm resist blur

    Assumptions:

    Flare: 4% system, 50% mask trans

    Aberration: 0.5nm RMS

    Resist treated as a Gaussian (1) image blur Relative contrast loss calculated based on

    For public use Seite 290940_tuesday_6924-4_Winfried_Kaiser.ppt

    a -p tc nm MTF contrast

    See also:

    Advances in Resist Materials and Processing Technology XXV

    K. van Ingen Schenau: Photoresist-induced contrast loss and

    its impact on EUV imaging extendibility

    Wednesday, 27 February 2008 9:40 AM 10:00 AM

    Resist diffusion has strongest effect on contrast loss.

    For pattern transfer of very fine features significant improvement

    of resist blur (diffusion) to finally 5nm are needed

    Outline

    Introduction

    Imaging requirements of future nodes

    High NA optics

    Infrastructure and Technology

    For public use Seite 300940_tuesday_6924-4_Winfried_Kaiser.ppt

    Summary

  • 7/27/2019 6924 04 Winfried Kaiser

    16/16

    Summary: the extendibility of EUVL

    There are solutions visible for high NA design to 0.7 NA.The challenge will be to find full field designs with optimum

    transmission to enable high productivity.

    ~ . .

    These together will enable the printing of 11nm dense features in

    single exposure mode and even beyond. Improvements in polishing

    and coating technologies are expected to support this progress.

    Mask technology has to follow the resolution roadmap accordingly.

    For larger NAs the CRAO has to be increased and the layer stack to be

    adapted. The expectation is that neither increase of Mag and no larger

    For public use Seite 310940_tuesday_6924-4_Winfried_Kaiser.ppt

    .

    Very important are improvements of resists:

    Resist sensitivity have to target 10mJ/cm2 to keep the required sourcepower in a realistic target range of some 100W @ 100 wph tput.

    To enable pattern transfer of features down to 11nm the resist blur

    (diffusion length) has to be reduced to at least 5nm .

    ACKNOWLEDGEMENT

    Thanks

    The activities received funding

    by the European Commission in the project "More Moore"

    and by various national European governments

    including the German Federal Ministry of Education and Research

    in the program MEDEA+ .

    For public use Seite 320940_tuesday_6924-4_Winfried_Kaiser.ppt