6-Transformation of Stress & Strain [Jan2013]

download 6-Transformation of Stress & Strain [Jan2013]

of 49

Transcript of 6-Transformation of Stress & Strain [Jan2013]

  • 8/17/2019 6-Transformation of Stress & Strain [Jan2013]

    1/49

    Faculty of Mechanical Engineering

    Engineering Mechanics Centre of Studies

    V{t àxÜ I 

    Transformations of

    Stress & Strain 

    Ch 6- 1

    1. Ferdinand P. Beer, E. Russell Johnston,Jr, John T. Dewolf, David F. Mazurek “ Mechanics of Materials” 5th Edition in SI units

    2. R.C.Hibbeler “ Mechanics of Materials “ Seventh Edition

    Materials for this chapter are taken from :

  • 8/17/2019 6-Transformation of Stress & Strain [Jan2013]

    2/49

    Faculty of Mechanical Engineering

    Engineering Mechanics Centre of Studies

    The most general state of stress at a point may be

    represented by 6 components,

     

    Introduction

    ),, :(Note

    stressesshearing,,

     ,,

     xz  zx zy yz  yx xy

     zx yz  xy

     z  y x

    τ τ τ τ τ τ 

    τ τ τ 

    ===

    Same state of stress is represented by a different set

    of components if axes are rotated.

    Ch 6- 2

    the components of stress are transformed under arotation of the coordinate axes. The second part of 

    the chapter is devoted to a similar analysis of the

    transformation of the components of strain.

  • 8/17/2019 6-Transformation of Stress & Strain [Jan2013]

    3/49

    Faculty of Mechanical Engineering

    Engineering Mechanics Centre of Studies

    Plane Stress   - state of stress in which two faces of the

    cubic element are free of stress. For the illustrated

    example, the state of stress is defined by

    Plane Stress

    .0,,  and xy   ===   zy zx z  y x   τ τ σ τ σ σ 

    State of plane stress occurs in a thin plate subjected to

    forces acting in the midplane of the plate.

    Ch 6- 3

    State of plane stress also occurs on the free surface of a

    structural element or machine component, i.e., at any

    point of the surface not subjected to an external force.

  • 8/17/2019 6-Transformation of Stress & Strain [Jan2013]

    4/49

    Faculty of Mechanical Engineering

    Engineering Mechanics Centre of Studies

    Consider the conditions for equilibrium of a prismatic

    element with faces perpendicular to the   x ,  y , and   x’ 

    axes.

    Transformation of Plane Stress

    ( ) ( )

    ( ) ( )

    ( ) ( )

    ( ) ( )   θ θ τ θ θ σ 

    θ θ τ θ θ σ τ 

    θ θ τ θ θ σ 

    θ θ τ θ θ σ σ 

    sinsincossin

    coscossincos0

    cossinsinsin

    sincoscoscos0

     A A

     A A A F 

     A A

     A A A F 

     xy y

     xy x y x y

     xy y

     xy x x x

    ∆+∆−

    ∆−∆+∆==∑

    ∆−∆−

    ∆−∆−∆==∑

    ′′′

    ′′

    The equations may be rewritten to yield

    Ch 6- 4

    θ τ θ 

    σ σ 

    τ 

    θ τ θ σ σ σ σ 

    σ 

    θ τ θ σ 

    2cos2sin2

    2sin2cos22

    2sin2cos22

     xy

     y x

     y x

     xy y x y x

     y

     xy

     y x y x

     x

    +

    −=

    −−

    −+

    =

    +

    +=

    ′′

  • 8/17/2019 6-Transformation of Stress & Strain [Jan2013]

    5/49

    Faculty of Mechanical Engineering

    Engineering Mechanics Centre of Studies

    The previous equations are combined to yield

    parametric equations for a circle,

    222 τ σ σ    =+−   ′′′

    Principal Stresses

    22

    22

    where

     xy y x y x

    ave   R   τ σ σ σ σ 

    σ    + 

      

        −=

    +=

    Principal stresses occur on the principal planes

    of stress with zero shearing stresses.

    Ch 6- 5

    o

    2minmax,

    90 byseparatedanglestwodefines : Note

    22tan

    22

     y x

     xy p

     xy y x y x

    σ σ 

    τ θ 

    τ σ σ σ σ 

    σ 

    −=

      

        −±

    +=

  • 8/17/2019 6-Transformation of Stress & Strain [Jan2013]

    6/49

    Faculty of Mechanical Engineering

    Engineering Mechanics Centre of Studies

    Maximum shearing stress occurs for ave x   σ σ    =′

    Maximum Shearing Stress

    45 byfromoffset

    and90 byseparatedanglestwodefines: Note

    2

    2tan

    2

    o

    o

    22

    max

     p

     xy

     y x s

     xy y x

     R

    θ 

    τ 

    σ σ θ 

    τ σ σ 

    τ 

    −−=

      

        −==

    Ch 6- 6

    2 y xave σ σ σ σ 

    +==′

  • 8/17/2019 6-Transformation of Stress & Strain [Jan2013]

    7/49

    Faculty of Mechanical Engineering

    Engineering Mechanics Centre of Studies

    For the state of plane stress

    shown, determine (a) the

    principal planes, (b) the principal

    Find the element orientation for the principal

    stresses from

    Example 6.1

    Solut  ion 

    stresses, (c) the maximum

    shearing stress and the

    corresponding normal stress.

     y x

     xy p

    σ σ 

    τ θ 

    −=

    22tan

    Determine the principal stresses from

    22

    minmax,22

      xy y x y x

    τ σ σ σ σ 

    σ    + 

      

        −±+=

    Calculate the maximum shearin stress with

    Ch 6- 7

     

    22

    max2

      xy y x

    τ σ σ 

    τ    + 

      

        −=

    2

     y x   σ σ 

    σ 

    +

    =′

    F lt f M h i l E i i

  • 8/17/2019 6-Transformation of Stress & Strain [Jan2013]

    8/49

    Faculty of Mechanical Engineering

    Engineering Mechanics Centre of Studies

    Find the element orientation for the principal

    stresses from:

    ( )=

    +== 333.1

    40222tan

      xyτ θ 

    Example 6.1

    °°=−−−

    1.233,1.5321050

     p

     y x

    θ σ σ 

    °°= 6.116,6.26 pθ 

    Determine the principal stresses from:

    2     −+ x   σ σ σ σ 

    50MPa 40MPa

    10MPa

     x xy

     y

    σ τ 

    σ 

    = + = +

    = −

    Decl  are !  

    Ch 6- 8

    ( ) ( )22

    minmax,

    403020

    22

    +±=

     

    =   xyτ σ 

    MPa30

    MPa70

    min

    max

    −=

    =

    σ 

    σ 

    Faculty of Mechanical Engineering

  • 8/17/2019 6-Transformation of Stress & Strain [Jan2013]

    9/49

    Faculty of Mechanical Engineering

    Engineering Mechanics Centre of Studies

    Calculate the maximum shearing stress with

    22

        −

    =  y x

    τ σ σ 

    τ 

    Example 6.1

    ( ) ( )22 4030   +=

    MPa50max  =τ 

    45−=   p s   θ θ 

    °°−= 6.71,4.18 sθ 

    50MPa 40MPa

    10MPa

     x xy

     y

    σ τ 

    σ = + = += −

    Ch 6- 9

    2

    1050

    2

    −=

    +==′  y x

    ave

    σ σ σ σ 

    The corresponding normal stress is

    MPa20=′σ 

    Faculty of Mechanical Engineering

  • 8/17/2019 6-Transformation of Stress & Strain [Jan2013]

    10/49

    Faculty of Mechanical Engineering

    Engineering Mechanics Centre of Studies

     A plane stress system is as shown in the

    diagram below. Determine the direct and

    Example 6.2

    SOLUTION: METHOD OF EQUILIBRIUM

    =- .

    10 MPa

    8 MPa

    15°

     P 

    '

    '

    10 sin15cos75 8 sin15cos75

    2 cos15cos15 8 cos15cos75 0

    .

    0;

    10 sin15sin75 8 sin15sin15

     x

      

      

     y

      

     A A A

     A A

     Ans

     F 

     A A A

    σ 

    σ 

    τ 

    ∆ − ∆ + ∆

    + ∆ + ∆ =

    =

    Σ =

    ∆ + ∆ + ∆

    -5.916MPa

    տ

    Ch 6- 10

    2 MPa

     P 2 cos15cos75 8 cos15cos15 0

    .  

     A A

     Ansτ + ∆ − ∆ == 3.93MPa

    Faculty of Mechanical Engineering

  • 8/17/2019 6-Transformation of Stress & Strain [Jan2013]

    11/49

    Faculty of Mechanical Engineering

    Engineering Mechanics Centre of Studies

    With the physical significance of Mohr’s circle for 

    plane stress established, it may be applied with

    simple geometric considerations. Critical values

    Mohr’s Circle for Plane Stress

    .

    For a known state of plane stress

    plot the points  X  and Y  and construct the circle

    centered at C .

    22

    22  xy

     y x y xave   R   τ 

    σ σ σ σ σ    +

     

      

        −=

    +=

    Ch 6- 11

    .

     y x

     xy p

    ave   R

    σ σ 

    τ θ 

    σ σ 

    −=

    ±=

    22tan

    minmax,

    The direction of rotation of  Ox  to Oa is the sameas CX  to CA.

    Faculty of Mechanical Engineering

  • 8/17/2019 6-Transformation of Stress & Strain [Jan2013]

    12/49

    y g g

    Engineering Mechanics Centre of Studies

    With Mohr’s circle uniquely defined, the state of 

    stress at other axes orientations may be depicted.

    Mohr’s Circle for Plane Stress

    For the state of stress at an angle q  with respect to

    the  xy  axes, construct a new diameter  X’Y’  at an

    angle 2q  with respect to XY .

    Normal and shear stresses are obtained from the

    Ch 6- 12

    coordinates X’Y’.

    Faculty of Mechanical Engineering

  • 8/17/2019 6-Transformation of Stress & Strain [Jan2013]

    13/49

    Engineering Mechanics Centre of Studies

    Mohr’s circle for centric axial loading:

    Mohr’s Circle for Plane Stress

    0,   ===   xy y x P 

    τ σ σ   P 

     xy y x2

    ===   τ σ σ 

    Mohr’s circle for torsional loading:

    Ch 6- 13

    Tc xy y x   ===   τ σ σ  0 0===   xy y x Tc τ σ σ 

    Faculty of Mechanical Engineering

  • 8/17/2019 6-Transformation of Stress & Strain [Jan2013]

    14/49

    Engineering Mechanics Centre of Studies

    Example 6.3

    Solut  ion 

    For the state of plane stress shown, (a)

    Ch 6- 14

    ,

    principal planes, (c) the principal stresses,

    (d) the maximum shearing stress and the

    corresponding normal stress.

    Construction of Mohr’s circle

    ( ) ( )

    ( ) ( ) MPa504030

    MPa40MPa302050

    MPa202

    1050

    2

    22 =+==

    ==−=

    =−+

    =+

    =

    CX  R

     FX CF 

     y xave

    σ σ σ 

    Faculty of Mechanical Engineering

    E i i M h i C t f St di

  • 8/17/2019 6-Transformation of Stress & Strain [Jan2013]

    15/49

    Engineering Mechanics Centre of Studies

    Principal planes and stresses

    5020max   +=+==   CAOC OAσ 

    Example 6.3

    MPa70max  =σ 

    5020min   −=−==   BC OC OBσ 

    MPa30min   −=σ 

    °=

    ==

    1.532

    30

    402tan  p

    CP 

     FX 

    θ 

    θ 

    Ch 6- 15

    °= 6.26 pθ 

    Faculty of Mechanical Engineering

    Engineering Mechanics Centre of Studies

  • 8/17/2019 6-Transformation of Stress & Strain [Jan2013]

    16/49

    Engineering Mechanics Centre of Studies

    Example 6.3

    Ch 6- 16

    Maximum shear stress

    °+= 45 p s   θ θ 

    °=6.71 sθ 

     R=maxτ 

    MPa50max =

    τ 

    aveσ σ   =′

    MPa20=′

    σ 

    Faculty of Mechanical Engineering

    Engineering Mechanics Centre of Studies

  • 8/17/2019 6-Transformation of Stress & Strain [Jan2013]

    17/49

    Engineering Mechanics Centre of Studies

    Example 6.4

    Solut  ion 

    For the state of stress shown,determine (a) the principal planes

    and the principal stresses, (b) the

    Ch 6- 17

    stress components exerted on the

    element obtained by rotating the

    given element counterclockwise

    through 30 degrees.

    Construct Mohr’s circle

    ( ) ( ) ( ) ( ) MPa524820

    MPa802

    60100

    2

    2222 =+=+=

    =+

    =+

    =

     FX CF  R

     y xave

    σ σ σ 

    Faculty of Mechanical Engineering

    Engineering Mechanics Centre of Studies

  • 8/17/2019 6-Transformation of Stress & Strain [Jan2013]

    18/49

    Engineering Mechanics Centre of Studies

    Example 6.4

    Ch 6- 18

    Principal planes and stresses

    °=

    ===

    4.672

    4.220

    482tan

     p

     pCF 

     XF 

    θ 

    θ 

    clockwise7.33   °= pθ 

    5280

    max

    +=

    +==   CAOC OAσ 

    5280

    max

    −=

    −==   BC OC OAσ 

    MPa132max   +=σ  MPa28min   +=σ 

    Faculty of Mechanical Engineering

    Engineering Mechanics Centre of Studies

  • 8/17/2019 6-Transformation of Stress & Strain [Jan2013]

    19/49

    g g

    Example 6.4

    180 60 67.4 52.6

    80 52cos52.6

    80 52cos52.6

     x

     y

    OK OC KC  

    OL OC CL

    ϕ 

    σ 

    σ 

    = ° − °− ° = °

    = = − = − °

    = = + = + °Stress components after rotation by 30o

    Ch 6- 19

    s n . x yτ  ′ ′ = = −

    Points   X’   and   Y’   on Mohr’s circle thatcorrespond to stress components on the

    rotated element are obtained by rotating XY 

    counterclockwise through   °= 602θ 

    48.4MPa

    111.6MPa

    41.3MPa

     x

     y

     x y

    σ 

    σ 

    τ 

    ′ ′

    = +

    = +

    = −

    S l P bl 6 1

  • 8/17/2019 6-Transformation of Stress & Strain [Jan2013]

    20/49

    Supplementary Problems 6.1

    1) At a point in the structural member, the stresses

    are represented as in figure below. Find;

    a) the magnitude and orientation of theprincipal stresses and,

    [96.1MPa;23.94 MPa;28.15o]

    a) the magnitude and orientation of the

    maximum shearing stresses andassociated normal stresses.

    [36.08MPa; -16.85o ; 60 MPa]

    80 MPa

    40 MPa

    30 MPa

     y

    10 MPa

    Ch 6 - 20

    2) For the state of plane stress shown, determinethe normal and shearing stresses on the planes

    whose normal are at +60o and + 150o with the x-

    axis. Show stresses on a sketch of the element.

    [for +60: σ N = 7.32MPa; τ N = -10MPa]

    [for +150: σ N = -27.32MPa; τ N = 10MPa]

     x

    20 MPa

    10 MPa

     

    S l P bl 6 1

  • 8/17/2019 6-Transformation of Stress & Strain [Jan2013]

    21/49

    Supplementary Problems 6.1

    3) A structural member is subjected to two set of loadings. Each separately produce

    stress conditions at a point A as shown in Figure 3(a) and Figure 3(b).

    x, y xy   .

    [37.5 MPa; 22.5 MPa; -14.33 MPa]

    a) By continuing the effect of both stress conditions Q3(a), determine the

    principal stresses and their orientations with respect to the x -axis and also the

    magnitude of the maximum shearing stress.

    10 MPa

    20 MPa30 MPa

    Ch 6 - 21

    Figure 3(a) Figure 3(b)

    AA

    15 MPa

    5 MPa

     

    30o

     x

    Faculty of Mechanical Engineering

    Engineering Mechanics Centre of Studies

  • 8/17/2019 6-Transformation of Stress & Strain [Jan2013]

    22/49

    State of stress at Q defined by:   zx yz  xy z  y x   τ τ τ σ σ σ  ,,,,,

    Consider the general 3D state of stress at a point and thetransformation of stress from element rotation

    General State of Stress

    Consider tetrahedron with face perpendicular to the line QN 

    with direction cosines:  z  y x   λ λ λ  ,,

    The requirement leads to,∑   = 0n F 

     x z  zx z  y yz  y x y

     z  z  y y x xn

    λ λ τ λ λ τ λ λ τ 

    λ σ λ σ λ σ σ 

    222

    222

    +++

    ++=

    Ch 6- 22

    Form of equation guarantees that an element orientationcan be found such that

    222ccbbaan   λ σ λ σ λ σ σ    ++=

    These are the principal axes and principal planes and the

    normal stresses are the principal stresses.

    Faculty of Mechanical Engineering

    Engineering Mechanics Centre of Studies

  • 8/17/2019 6-Transformation of Stress & Strain [Jan2013]

    23/49

    Application of Mohr’s Circle to the Three- Dimensional Analysis of Stress

    Transformation of stress for an element   The three circles represent the normal

    Ch 6- 23

    ro a e aroun a pr nc pa ax s may e

    represented by Mohr’s circle.

    an s ear ng s resses or ro a on aroun

    each principal axis.

    Points   A,   B, and   C   represent the principal

    stresses on the principal planes (shearing

    stress is zero)minmaxmax

    21 σ σ τ    −=

    Radius of the largest circle yields the

    maximum shearing stress.

    Faculty of Mechanical Engineering

    Engineering Mechanics Centre of Studies

  • 8/17/2019 6-Transformation of Stress & Strain [Jan2013]

    24/49

    In the case of plane stress, the axis

    perpendicular to the plane of stress is a principal

    axis (shearing stress equal zero).

    Application of Mohr’s Circle to the Three-Dimensional Analysis of Stress

    a) the corresponding principal stresses arethe maximum and minimum normal

    stresses for the element

    If the points A and B  (representing the principal

    planes) are on opposite sides of the origin, then

    Ch 6- 24

    b) the maximum shearing stress for the

    element is equal to the maximum “in-plane”shearing stress

    c) planes of maximum shearing stress are at

    45o to the principal planes.

    Faculty of Mechanical Engineering

    Engineering Mechanics Centre of Studies

  • 8/17/2019 6-Transformation of Stress & Strain [Jan2013]

    25/49

    Application of Mohr’s Circle to the Three-Dimensional Analysis of Stress

    If A and B are on the same side of the origin (i.e.,

    have the same sign), then

    b) maximum shearing stress for the element is

    equal to half of the maximum stress

    a) the circle defining   smax, smin,   andt max   for the element is not the circle

    corresponding to transformations within

    the plane of stress

    Ch 6- 25

    c) planes of maximum shearing stress are at

    45 degrees to the plane of stress

    Faculty of Mechanical Engineering

    Engineering Mechanics Centre of Studies

  • 8/17/2019 6-Transformation of Stress & Strain [Jan2013]

    26/49

    Transformation of Plane Strain

    Plane strain - deformations of the material takeplace in parallel planes and are the same in

    each of those planes.

    Plane strain occurs in a plate subjected along

    its edges to a uniformly distributed load and

    restrained from expanding or contracting

    laterally by smooth, rigid and fixed supports

    ( )0 :strainof components

    x   ===   zy zx z  xy y   γ γ ε γ ε ε 

    Ch 6- 26

    Example: Consider a long bar subjected to

    uniformly distributed transverse loads. State

    of plane stress exists in any transverse

    section not located too close to the ends of 

    the bar.

    Faculty of Mechanical Engineering

    Engineering Mechanics Centre of Studies

  • 8/17/2019 6-Transformation of Stress & Strain [Jan2013]

    27/49

    Transformation of Plane Strain

    State of strain at the point   Q   results indifferent strain components with respect to

    the xy  and x’y’  reference frames.

    22

    ( )   ( )

    ( ) y xOB xy

     xy y xOB

     y y x

    ε ε ε γ 

    γ ε ε ε ε 

    γ ε ε ε 

    +−=

    ++=°=

    =

    2

    45

    coss ns ncos

    21

     Applying the trigonometric relations used

    for the transformation of stress,

    Ch 6- 27

    cos2 sin 22 2 2

    cos2 sin 22 2 2

    sin 2 cos22 2 2

     x y x y xy

     x

     x y x y xy

     y

     x y x y xy

    ε ε ε ε γ  

    ε θ θ 

    ε ε ε ε γ  ε θ θ 

    γ ε ε γ  θ θ 

    ′ ′

    + −

    = + ++ −

    = − −

    −= − +

    Faculty of Mechanical Engineering

    Engineering Mechanics Centre of Studies

  • 8/17/2019 6-Transformation of Stress & Strain [Jan2013]

    28/49

    Mohr’s Circle for Plane Strain

    The equations for the transformation of plane

    strain are of the same form as the equations

    for the transformation of plane stress - Mohr’s

    circle techni ues a l   .

     Abscissa for the center  C  and radius R ,

    22

    222 

     

     

     

     +

     

     

     

        −=

    +=

      xy y x y xave   R

    γ ε ε ε ε ε 

    Principal axes of strain and principal strains,

    Ch 6- 28

     R R aveave

     y x

     xy

     p

    −=+=

    −=

    ε ε ε ε 

    ε ε 

    γ 

    θ 

    minmax

    2tan

    ( ) 22max 2  xy y x R   γ ε ε γ    +−==

    Maximum in-plane shearing strain,

    Faculty of Mechanical Engineering

    Engineering Mechanics Centre of Studies

  • 8/17/2019 6-Transformation of Stress & Strain [Jan2013]

    29/49

    Example 6.5

    The strain at a point in a body are as

    follows:

    800 200 600ε ε = = =

    Solut  ion 

    Using Mohr’s circle

    800 xε µ =

    Determine:

    a) The principal strains and directions,

    and

    b) The strain εa   in the direction of 60º

    with the   x -axis and the strain εbperpendicular to εa  and the shearing

     x y xy

    Setting the coordinates

    ( )

    ( )

    800, 300

    200,300

     X 

    µ 

    µ 

    2001

    3002

     y

     xy

    ε µ 

    γ µ 

    =

    =

    Ch 6- 29

    strain γab.

    Centre OC800 200

    5002

    OC   +

    = =

    Radius, R 

    2 2300 300 424.3 R   µ = + =

  • 8/17/2019 6-Transformation of Stress & Strain [Jan2013]

    30/49

    Faculty of Mechanical Engineering

    Engineering Mechanics Centre of Studies

  • 8/17/2019 6-Transformation of Stress & Strain [Jan2013]

    31/49

    Absolute Maximum Shear Strain

     Absolute maximum shear strain is found from the circle having the largest radius.

    It occurs on the element oriented 45° about the axis from the element shown in its

    original position.

    minmax

    minmaxmaxabs

    ε ε ε 

    ε ε γ 

    +=

    −=

    Ch 6- 31

    Faculty of Mechanical EngineeringEngineering Mechanics Centre of Studies

  • 8/17/2019 6-Transformation of Stress & Strain [Jan2013]

    32/49

    Absolute Maximum Shear Strain

    For plane strain we have,

    This value represents the absolute maximum shear strain for the material.

    Ch 6- 32

    ( ) maxmax''maxabs   ε γ γ   ==

      z  x minmaxmax''maxabs   ε ε γ γ   −==

      y x

    Faculty of Mechanical EngineeringEngineering Mechanics Centre of Studies

  • 8/17/2019 6-Transformation of Stress & Strain [Jan2013]

    33/49

    Example 6.6

    The state of plane strain at a point is represented by the strain components,

    ( ) ( ) ( )6 6 6400 10 , 200 10 , 150 10 x y xyε ε γ − − −= − = =

    e erm ne e max mum n-p ane s ear s ra n an e a so u e max mum s ear s ra n.

    From the strain components, the centre of the circle is on the ε axis at:

     

    ( ) ( )66 10100102

    200400   −− −−=+−

    =avg ε 

    −γ  −−

    Solut  ion 

    Ch 6- 33

    nce , e re erence po n as coor na es

    2

    = ,−

    Thus the radius of the circle is

    ( )   ( ) ( )9622 103091075100400   −− =

    +−= R

    Faculty of Mechanical EngineeringEngineering Mechanics Centre of Studies

  • 8/17/2019 6-Transformation of Stress & Strain [Jan2013]

    34/49

    Example 6.6

    Computing the in-plane principal strains, we have

    ( )66

    66

    max 1020910309100

    −−

    −−

    −=−−=

    =+−=ε 

    From the circle, the maximum in-plane shear strain is

    m n

    ( )[ ] (Ans) 1061810409209 66minmax planeinmax−− =−−=−=   ε ε γ 

     10409,0, 10209 6minint6

    max

    −− −===   ε ε ε From the above results, we have

    Thus the Mohr’s circle is as follows,

    Ch 6- 34

    Faculty of Mechanical EngineeringEngineering Mechanics Centre of Studies

  • 8/17/2019 6-Transformation of Stress & Strain [Jan2013]

    35/49

    Three-Dimensional Analysis of Strain

    Previously demonstrated that three principal

    axes exist such that the perpendicular 

    element faces are free of shearing stresses.

    By Hooke’s Law, it follows that the shearing

    strains are zero as well and that the principal

    planes of stress are also the principal planes

    of strain.

    Ch 6- 35

    represented by Mohr’s circles.

    Faculty of Mechanical EngineeringEngineering Mechanics Centre of Studies

  • 8/17/2019 6-Transformation of Stress & Strain [Jan2013]

    36/49

    Three-Dimensional Analysis of Strain

    For the case of plane strain where the x  and y 

    axes are in the plane of strain,

    the z  axis is also a principal axis

    the corres ondin rinci al normal

    strain is represented by the point Z = 0 or the origin.

    If the points A and B lie on opposite sides of 

    the origin, the maximum shearing strain is themaximum in-plane shearing strain, D and E .

    Ch 6- 36

    If the points A and B lie on the same side of theorigin, the maximum shearing strain is out of the

    plane of strain and is represented by the points

    D’  and E’ .

    Faculty of Mechanical EngineeringEngineering Mechanics Centre of Studies

    Th D l A l f S

  • 8/17/2019 6-Transformation of Stress & Strain [Jan2013]

    37/49

    Three-Dimensional Analysis of Strain

    Corresponding normal strains,

    Consider the case of plane stress,

    0===   z b ya x   σ σ σ σ σ 

    ( ) ( )babac

    bab

    baa

     E 

     E  E 

     E  E 

    ε ε ν 

    ν σ σ 

    ν ε 

    σ σ ν ε 

    σ ν σ ε 

    +−

    −=+−=

    +−=

    −=

    1

    Ch 6- 37

    If  B is located between A and C  on the Mohr-

    circle diagram, the maximum shearing strain is

    equal to the diameter  CA.

    not zero.

    Supplementary Problems 6.2

  • 8/17/2019 6-Transformation of Stress & Strain [Jan2013]

    38/49

    1) For the given state of plane strain, determine (a) the orientation and magnitude of the

    principal strains, (b) the maximum in-plane strain, and (c) the absolute maximum

    shearing strain.a 37.53o -32.4e-6 -187.6e-6 b 155.2e-6 c 187.6e-6

    ε x = - 90 µ ; ε y = - 130 µ ; γ xy = 150 µ

    2) For the given state of plane strain, determine the state of strain associated with axes

     x’ and y’ rotated via the angle θ .[-653e-6; 303e-6; -829e-6]

    ε x = - 800 µ ;   ε y = 450 µ ; γ xy = 200 µ ; θ  = -25o

    Ch 6 - 38

    Faculty of Mechanical EngineeringEngineering Mechanics Centre of Studies

    G li d H k ’ L

  • 8/17/2019 6-Transformation of Stress & Strain [Jan2013]

    39/49

    For a triaxial state of stress, the general form for Hooke’s law is as follow:

    ( )   ( )   ( ) x z  x z  x x   vvv   σ σ σ ε σ σ σ ε σ σ σ ε    +−=+−=+−=1

     , 1

     , 1

    Generalized Hooke’s Law

    They are valid only for a linear–elastic  materials.

    Hooke’s law for shear stress and shear strain is written as

     And relationship between G, E  and v  is;

    1 1 1  xy xy yz yz xz xz 

    G G Gγ τ γ τ γ τ  = = =

    Ch 6- 39

    ( )v E G+= 12

    Faculty of Mechanical EngineeringEngineering Mechanics Centre of Studies

    G li d H k ’ L

  • 8/17/2019 6-Transformation of Stress & Strain [Jan2013]

    40/49

    Generalized Hooke’s Law

    Stresses in terms of strains

    2 E 

    v or G eσ ε ε ε ε σ ε λ  = + + − = +

    ( ) ( )  ( )( )

    ( ) ( )   ( )( )

    1 1 2

    21 1 2

    21 1 2

    : ;

     y y x z y y y

     z z x y z z z 

     x y z 

    v v

     E v or G e

    v v

     E 

    or G ev v

    vE  ote and e

    σ ε ε ε ε σ ε λ  

    σ ε υ ε ε ε σ ε λ  

    λ ε ε ε  

    + −

    = + + − = ++ −

    = + + − = ++ −

    = = + +

    Ch 6- 40

    ( ) ( ) ( ); ;

    2 1 2 1 2 1 xy xz yz  y xz xz 

     E E E 

    v v vτ τ τ γ γ γ  = = =

    + + +

    Faculty of Mechanical EngineeringEngineering Mechanics Centre of Studies

    E am le 6 7

  • 8/17/2019 6-Transformation of Stress & Strain [Jan2013]

    41/49

    Example 6.7

    The copper bar is subjected to a uniform loading along its edges. If it has a = 300 mm, b = 50mm, and t = 20 mm before load is applied, find its new length, width, and thickness after 

    application of the load. Take E CU  = 120 GPa, v  = 0.34.

    From the loading we have

    The associated normal strains are determined from the generalized Hooke’s law,

    800 MPa , 500 MPa , 0 , 0 x y xy z 

    σ σ τ σ  = = − = =

    Ch 6- 41

     

    ( )

    ( )

    ( )

    0.00808

    0.00643

    0.000850

     x x y z 

     y

     y x z 

     z  z x y

    v E E 

    v

     E E 

    v E E 

    σ ε σ σ 

    σ ε σ σ 

    σ ε σ σ 

    = − + =

    = − + = −

    = − + = −

  • 8/17/2019 6-Transformation of Stress & Strain [Jan2013]

    42/49

    Faculty of Mechanical EngineeringEngineering Mechanics Centre of Studies

    Example 6 8

  • 8/17/2019 6-Transformation of Stress & Strain [Jan2013]

    43/49

    Example 6.8

     At a point in a stresses body, the strains related to the coordinate set xyz  are

    given by:

    Determine the complete stress components for this body. Assume Young

    Modulus, E  = 100 GPa and Poisson’s ratio, v  = 0.33.

    6300 100 500 10

    200 500 400

    − − × −

    Ch 6- 43

    Faculty of Mechanical EngineeringEngineering Mechanics Centre of Studies

    Example 6 8

  • 8/17/2019 6-Transformation of Stress & Strain [Jan2013]

    44/49

    Example 6.8

    ( )( ) xx xx yy zz xx E 

    σ ε υ ε ε ε  = + + −−

    Normal stresses on each axis:

    ( ) ( )( )  ( )( )

    ( )

    ( ) ( )  ( )( )

    6

    6 6 6 6

    11

    11

    100 10200 10 0.33 100 10 400 10 200 10

    1 0.33 1 2 0.33

    2.2114 10 0.000031 .

    1 1 2

    2.2114 10 0.000133 .

     yy yy xx zz yy

     Ans

     E 

    ns

    σ ε υ ε ε ε  υ υ 

    − − − −×= × + − × − × − ×

    + −

    = × − =

    = + + −+ −

    = × − =

    -6.86MPa

    -29.4MPa

    Ch 6- 44

    ( ) ( )1 1 2 zz z 

     E σ ε υ υ 

    =+ −   ( )( )

    ( )112.2114 10 0.000235 .

     z xx yy zz 

     Ans

    υ ε ε ε  + + −

    = × − = -51.97MPa

    Faculty of Mechanical EngineeringEngineering Mechanics Centre of Studies

    Example 6 7

  • 8/17/2019 6-Transformation of Stress & Strain [Jan2013]

    45/49

    Example 6.7

    Continue.

    ( )9

    6100 10300 10 .

    1 1 0.33 xy xy

     E ns

    vτ ε 

      −×= = × =

    + +22.6MPa

    ( )

    ( )

    9

    6

    9

    6

    100 10 200 10 .1 1 0.33

    100 10500 10 .

    1 1 0.33

     xz xz 

     yz yz 

     E  nsv

     E ns

    v

    τ ε 

    τ ε 

    ×= = × =

    + +

    ×= = × =

    + +

    15.04MPa

    37.6MPa

    Thus, complete stress component is:

    Ch 6- 45

    . . .

    22.6 29.4 37.6 .

    15.04 37.6 51.97

     Pa Ans

    = −−

    σɶ

    Supplementary Problems 6.3

  • 8/17/2019 6-Transformation of Stress & Strain [Jan2013]

    46/49

    1) Determine the complete stress component of this material. Use E  = 200 GPa and G

    = 80 GPa. 200 100 0

    100 300 400   µ 

    2) A square ABCD of 20 mm side is scribed on the surface

    of a thin plate while the plate is unloaded, as shown in

    Figure Q2. After the plate is loaded, the lengths of sides

     AB and AD are observed to have increased by 4 x10-6 m and 6 x10-6 m, respectively while angle  DAB   is

    observed to have decreased by 160 x10-6 rad.

    Determine;

    D   C

    Ch 6 - 46

    i. the principal strains and its orientation,[344.34µ,155.66µ,29o]

    ii. the maximum in-plane shear strain, and [188.68µ]

    iii. the average normal strain. [250µ]

    iv. The principal stresses using E  = 200 GPa and v  =

    0.3. [85.94 MPa,56.92 MPa]

     A   B

      x 

    Figure Q2

    Previous Exam Questions

  • 8/17/2019 6-Transformation of Stress & Strain [Jan2013]

    47/49

    OCT2009/MEC411/KJM454 Q2(b)

    An element is subjected to two mutually perpendicular strains, εx= 400µ and εy= 200µ,

    together with an unknown shear strain γxy. If the maximum principal strain in the

    i. the magnitude of the shear strain, [346.4µ]

    ii. the other principal strain and the direction of the principal strain, [100µ,30o]

    iii. the strain εa in a direction of 30° with the x-axis, and [500µ]

    iv. If  E  = 200 GPa and v = 0.03, determine the principal stresses.

    APR2011/MEC411 Q5(b)

    Ch 6 - 47

    e s a e o p ane s ra n a a po n n a e orma e o y s e ne y εx = – µ, εy =

     – 140 µ, and γxy = 150 µ. Calculate :

    i. the orientation and magnitude of the principal strains, [37.53o,-42.38µ,-197.62µ]

    ii. the maximum in-plane strain, and [150 µ]

    iii. the new state of εx , i.e., εx’, when the element is rotated + 30o with respect to the

    x-axis. [-45.05 µ]

    Previous Exam Questions

  • 8/17/2019 6-Transformation of Stress & Strain [Jan2013]

    48/49

    JUN2011/MEC411 Q5(d)

    The principal stresses (at a point on a certain material) are given as 90 MPa and 30

    MPa, both is in tension. Determine the normal and shear stresses on a plane making an

    angle of tan-10.25 (ccw) with the principal directions. [86.47 MPa,14.1 MPa]

    JAN2012/MEC411 Q5(b)

    A state of plane stress consists of a tensile stress 60 MPa exerted on vertical surfaces

    and of unknown shearing stresses. If the largest normal stress is 100 MPa, calculate;

    i. the average normal stress, [30 MPa]

    Ch 6 - 48

    ii. the magnitude of the shearing stress, [63.25 MPa]

    iii. the maximum shearing stress, and [70 MPa]iv. the minimum principal stresses. [-40 MPa]

    Previous Exam Questions

  • 8/17/2019 6-Transformation of Stress & Strain [Jan2013]

    49/49

    JUN2012/MEC411 Q5(a)

    A steel bar is subjected to an axial force of  P . The state of stress at a point on the bar 

    caused by the axial loading is shown in Figure Q5(a). Knowing that the stresses on

     plane a-a are σy

    ’ = -100 MPa and τx

    ’y

    ’ = 35 MPa, determine using the Mohr’s circle;

    i) the normal stress, σX’ of the stress component on plane  a-a, [-12.25 MPa]

    ii) The angle α that plane a-a forms with the horizontal, and   [19.3o]

    iii) The maximum compressive stress in the bar. [-112.25 MPa]

      P

    σy 

    Ch 6 - 49

    State of stress

    P

    α

    a

    a

    σy 

    y

     x

    z

    Figure Q5 (a)