6 radar range-doppler-angular loops

70
1 RADAR Range – Doppler – Angular Loops SOLO HERMELIN http://www.solohermelin.com

Transcript of 6 radar range-doppler-angular loops

Page 1: 6 radar range-doppler-angular loops

1

RADARRange – Doppler – Angular

Loops

SOLO HERMELIN

http://www.solohermelin.com

Page 2: 6 radar range-doppler-angular loops

2

SOLO RADAR Range-Doppler-Angular Loops

Table of Contents A/C RADAR Block DiagramA/C - Target KinematicsLOS Vector in Antenna CoordinatesTarget Acceleration ModelSummary of System EquationsDiscretization of a Continuous Linear SystemDiscrete Filter/Predictor Architecture

Compensation for Processing-from-Measurement DelaysKalman Filter - State Estimation in a Linear System (one cycle)

RADAR Range-Doppler LoopsRADAR Angular Loops

References

Page 3: 6 radar range-doppler-angular loops

3

SOLO

A/C RADAR Block Diagram

Block Diagram of a Simple Coherent Radar

f0Power

Amplifier

SignalGenerator

Stable Local

Oscillator (STALO)

CoherentOscillator(COHO)

fLO fRF

fIF

fIF

f0 + fdfIF + fd fd

f0=fRF + fIF

IF AMPLIFIER

CYRCULATOR

SIGNAL

PROCESSOR

ANGLETRACKER

DOPPLERTRACKER

RANGETRACKER

SEEKERLOGIC

A/C RadarCENTRAL

PROCESSOR

RADOME

LOW-PASS-FILTER

ANTENNASTABILIZATION

A/D

ANALOG DIGITAL

FREQUENCYSOURCE

RFIF + RECEIVER

ANTENNA

Return to Table of Content

Page 4: 6 radar range-doppler-angular loops

4

A/C RADAR Range-Doppler-Angular LoopsSOLO

Antenna TrackingLoops

SignalProcessor A/C

Avionics

AngularEstimator

Range and FrequencyEstimators

Estimators

SeekerCentral

Processor

A/C Radar

Antenna Slaving& Mech. Search

Loops

AntennaGimbal

Unit

Slaving& Mech. Search

Commands

AntennaControl

A/CCentral

Processor

Digital

Return to Table of Content

Page 5: 6 radar range-doppler-angular loops

5

At any time t the following vectors define A/C and target kinematics:

SOLO

present A/C position, velocity and acceleration vectorsAAA aVR,,

present target position, velocity and acceleration vectorsTTT aVR,,

A/C - Target Kinematics

A/C

Target

Antenna

Page 6: 6 radar range-doppler-angular loops

6

A/C-Target Kinematics

Define:

SOLO

ATAT VVRRR −=−=

ATMTAT aaVVRRR −=−=−=

→=−= RRRRR AT 1

Target-A/C Antenna (Line-of-Sight) Range Vector

→R1 Line-of-Sight (LOS) Unit Vector

Lω Line-of-Sight (LOS) Angular Velocity Vector

Define:

→→→×= Rtt 11:1 21

1 1 2 21 1 1L R R t tω ω→ → →

= + Λ + Λ Lω Decompose in the LOS and normal to LOS directions

→→→

21 1,1,1 ttR where: are three orthogonal unit vectors defining a right handCartesian System and is its angular velocity vector.

→→→×= 12 111 tRt

→→→×= 21 111 ttR

A/C

Target

Target

A/C

Target

Antenna

Page 7: 6 radar range-doppler-angular loops

7

A/C-Target KinematicsSOLO

A/C

Target

1 1 2 21 1 1L R R t tω ω→ → →

= + Λ + Λ

−Λ

Λ−

Λ−Λ

=

2

1

1

2

12

2

1

1

1

1

0

0

0

1

1

1

t

t

R

t

t

R

td

d

R

R

ω

ω

Page 8: 6 radar range-doppler-angular loops

8

A/C-Target KinematicsSOLO

1 1 2 21 1 1L R R t tω ω→ → →

= + Λ + Λ

−Λ

Λ−

Λ−Λ

=

2

1

1

2

12

2

1

1

1

1

0

0

0

1

1

1

t

t

R

t

t

R

td

d

R

R

ω

ω

AT VVtRtRRRRRRRR

−=Λ−Λ+=+=→→→→→

2112 11111

( ) ( ) →→→→→→Λ−Λ+Λ−Λ+Λ+Λ++=

2121112122 111111 tRtRRtRtRRRRRRR

( ) ( )

−ΛΛ−Λ+Λ−

+Λ−Λ+Λ+Λ+

Λ−Λ+=

→→→→→→→→→

1112112221222112 111111111 tRRtRRtRRtRRtRtRRRR RR ωω

( )[ ] ( ) ( ) ATRR aatRRRtRRRRRR −=Λ−Λ+Λ−Λ+Λ+Λ+Λ+Λ−=

→→→

2211112222

21 12121 ωω

( )[ ] ( )( ) ATR

R

AT

AT

aatRRR

tRRRRRRR

VVtRtRRRRRRRR

RRRRR

−=Λ−Λ+Λ−

Λ+Λ+Λ+Λ+Λ−=

−=Λ−Λ+=+=

−==

→→

→→→→→

2211

112222

21

2112

12

121

11111

1

ω

ω

AT RRRRR

−==→1

A/C

Target

Page 9: 6 radar range-doppler-angular loops

9

SOLO RADAR Range-Doppler-Angular Loops

⋅−

⋅=Λ−Λ+Λ

→→

22211 112 tataRRR ATR

ω

We obtain the following kinematic equations that govern the range (R), doppler ( ) andthe angular rates ( ) of the Line-of-Sight (LOS)

R

21,ΛΛ

( )

⋅−

⋅=Λ+Λ−

→→RaRaRR AT 112

221

⋅−

⋅=Λ+Λ+Λ

→→

11122 112 tataRRR ATR

ω

+

Λ

=

→→RaRa

R

R

R

R

td

dAT 1

1

01

1

0

0

102

( )[ ] ( )( ) ATR

R

AT

AT

aatRRR

tRRRRRRR

VVtRtRRRRRRRR

RRRRR

−=Λ−Λ+Λ−

Λ+Λ+Λ+Λ+Λ−=

−=Λ−Λ+=+=

−==

→→

→→→→→

2211

112222

21

2112

12

121

11111

1

ω

ω

Range, Doppler & LOS Rate Equations Return to Table of Content

A/C

Target

( ) ( )( ) ( )11122

22211

11

11

2

11

11

2

taR

taRR

R

td

d

taR

taRR

R

td

d

TRA

TRA

⋅+Λ−⋅−Λ−=Λ

⋅+Λ+⋅−Λ−=Λ

ω

ω

Page 10: 6 radar range-doppler-angular loops

10

SOLO RADAR Range-Doppler-Angular Loops

A/C

Target

AntennaAxis

Antenna

The LOS vector deviatesfrom Antenna axis by the two small angles ε1 and ε2 such that rotation matrix from A to L (LOS) is

1Ruu

1Auu

and

The relative angular velocity from A to L (LOS) in Antenna coordinates (A), is:

LOS Vector in A/C Antenna Coordinates

[ ] [ ]

−≈

−=

−==

10

01

1

1

01

1

100

01

01

10

010

01

1

2

12

211

2

12

2

2

1

1

3221

εε

εε

εεεε

εεε

ε

ε

εεεL

AC

Antenna angular velocity21 11121 AAtAAtARA ttAAA

ωωωω ++=

LOS angular velocity 2211 111 ttRRL Λ+Λ+= ωω

( ) ( ) ( )

=

−+

=−=←

2

1

2

1

12

12

2

2

0

0

0

100

01

01

0

0

εε

εε

εεεε

ε

εωωω

AA

AL

AAL

( )

Λ

Λ

−=←

2

1

2

1

1

2

12 0

10

01

1

2

1

εε

ωωωω

εε

εεω

A

A

At

At

ARR

AAL

02112 =−Λ+Λ− RAR ωεεω

122

211

2

1

εωωε

εωωε

RtA

RtA

A

A

−−Λ=

+−Λ=

Page 11: 6 radar range-doppler-angular loops

11

SOLO RADAR Range-Doppler-Angular Loops

We obtained:

( )( )

1

2

21 1 2 2 1 2 2

22 2 1 1 1 2 1

1

1

A

A

A t A R

A t A R

ε ε ω ω ε ε ε

ε ε ω ω ε ε ε

= Λ + − + − Λ

= Λ + − − − Λ

Therefore:

Since ε1,ε2 << 1 we can use:

1 21 21 1 1A AA A R A t A A t AA t tω ω ω ω= + +

uu uuu uuuAntenna angular velocity

1 1 2 21 1 1L R R t tω ω= + Λ + Λuu uu uu LOS angular velocity

where:

and:

122

211

2

1

εωωε

εωωε

RAt

RAt

t

t

−−Λ=

+−Λ=

2112 Λ−Λ+= εεωω RAR

122

211

2

1

εωωε

εωωε

RAAt

RAAt

t

t

−−Λ≅

+−Λ≅

RAR ωω ≅

Return to Table of Content

LOS Vector in Seeker Coordinates (continue – 1)

A/C

Target

AntennaAxis

Antenna

Page 12: 6 radar range-doppler-angular loops

12

SOLO RADAR Range-Doppler-Angular Loops

Target Acceleration ModelSince the target acceleration vector is not measurable, we assume that it is a random process defined by

Ta

Using :

−Λ

Λ−

Λ−Λ

=

2

1

1

2

12

2

1

1

1

1

0

0

0

1

1

1

t

t

R

t

t

R

td

d

R

R

ω

ω

waatd

dT

TT

+−=τ1

and τ is the target maneuver time constant

where is a white noise vector with the covariancew ( ) ( ) ( )νδν −= tQwtwE T

( ) ( ) ( ) 2211 111111 ttattaRRaa TTTT ⋅+⋅+⋅=

( ) ( ) ( )[ ]( ) ( ) ( )

( ) ( ) ( ) 2211

2211

2211

111111

111111

111111

ttd

dtat

td

dtaR

td

dRa

ttatd

dtta

td

dRRa

td

d

ttattaRRatd

datd

d

TTT

TTT

TTTT

⋅+⋅+⋅=

⋅+⋅+⋅=

⋅+⋅+⋅=

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) 2112

12111221

1111

11111111

ttaRatatd

d

ttaRatatd

dRtataRa

td

d

TRTT

TRTTTTT

⋅+⋅Λ−⋅+

⋅−⋅Λ+⋅+

⋅Λ−⋅Λ+⋅=

ω

ω

Page 13: 6 radar range-doppler-angular loops

13

SOLO RADAR Range-Doppler-Angular Loops

Target Acceleration Model (continue – 1)

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 2 2 1

1 2 2 1

2 1 1 2

1 1 1 1

1 1 1 1

1 1 1 1

T T T T

T T R T

T T R T

d da a R a t a t R

d t d t

da t a R a t t

d t

da t a R a t t

d t

ω

ω

= × + Λ × − Λ ×

+ × + Λ × − ×

+ × − Λ × + ×

uu uu uu uu

uu uu uu uu

uu uu uu uu

( ) ( ) ( )νδν −= tqwtwE RTRR

( ) ( ) ( )νδν −= tqwtwE tTtt

waatd

dTT

+−=τ1

We finally obtain, by neglecting terms in , and using :21, ΛΛ RAR ωω ≅

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( ) tTTRT

TT

tTTRTT

T

RTTTT

T

wRatatatatd

d

wRatatatatd

d

wtataRaRatd

d

+⋅Λ+⋅−⋅−=⋅

+⋅Λ−⋅+⋅−=⋅

+⋅Λ+⋅Λ−⋅−=⋅

1111

1

1111

1

1111

1

1122

1211

1221

ωτ

ωτ

τ

( ) ( )( ) ( ) ( )( ) ( ) ( ) tTRAT

TT

tTRATT

T

RTT

T

wtatatatd

d

wtatatatd

d

wRaRatd

d

+⋅−⋅−=⋅

+⋅+⋅−=⋅

+⋅−=⋅

122

211

111

1

111

1

11

1

ωτ

ωτ

τ

Page 14: 6 radar range-doppler-angular loops

14

SOLO

Singer Target Model

R.A. Singer, “Estimating Optimal Tracking Filter Performance for Manned ManeuveringTarget”, IEEE Trans. Aerospace & Electronic Systems”, Vol. AES-6, July 1970, pp. 437-483

The target acceleration is modeled as a zero-mean random process with exponential autocorrelation ( ) ( ) ( ) TetataER mTT

ττσττ /2 −=+= where σm

2 is the variance of the target acceleration and τT is the time constant of itsautocorrelation (“decorrelation time”).

The target acceleration is assumed to:1. Equal to the maximum acceleration value amax

with probability pM and to – amax

with the same probability.2. Equal to zero with probability p0.3. Uniformly distributed between [-amax, amax]

with the remaining probability 1-2 pM – p0 > 0.

( ) ( ) ( )[ ] ( ) ( ) ( )[ ]max

0maxmax0maxmax 2

210

a

ppaauaauppaaaaap M

M

−−−−+++−++= δδδ

RADAR Range-Doppler-Angular Loops

Target Acceleration Model (continue – 2)

Page 15: 6 radar range-doppler-angular loops

15

SOLO

Singer Target Model (continue 1)

( ) ( ) ( )[ ] ( ) ( ) ( )[ ]max

0maxmax0maxmax 2

210

a

ppaauaauppaaaaap M

M

−−−−+++−++= δδδ

( ) ( ) ( )[ ] ( )

( ) ( )[ ]

( ) ( )[ ] 022

210

2

21

0

max

max

max

max

max

max

max

max

2

max

00maxmax

max

0maxmax

0maxmax

=−−+⋅++−=

−−−−++

+−++==

+

−−

∫∫

a

a

MM

a

a

M

a

a

M

a

a

a

a

ppppaa

daaa

ppaauaau

daappaaaadaapaaE δδδ

( ) ( ) ( )[ ] ( )

( ) ( )[ ]

( ) ( )[ ]

( )02

max

3

max

02max

2max

2

max

0maxmax

20maxmax

22

413

32

21

2

21

0

max

max

max

max

max

max

max

max

ppa

a

a

pppaa

daaa

ppaauaau

daappaaaadaapaaE

M

a

a

MM

a

a

M

a

a

M

a

a

−+=

−−+−++=

−−−−++

+−++==

+

−−

∫∫ δδδ

( )02

max

0

222 413

ppa

aEaE Mm −+=−=

σ

Use

( ) ( ) ( )

max0max

00

max

max

aaa

afdaafaaa

a

+≤≤−

=−∫−

δ

RADAR Range-Doppler-Angular LoopsTarget Acceleration Model (continue – 3)

Page 16: 6 radar range-doppler-angular loops

16

SOLO

Target Acceleration Approximation by a Markov Process

w (t) x (t)

( )tF

( )tG ∫x (t)

( ) ( ) ( ) ( ) ( ) ( )twtGtxtFtxtxtd

d +== Given a Continuous Linear System:

Let start with the first order linear system describing Target Acceleration :

( ) ( ) ( )twtata TT

T +−=τ1

( ) ( ) T

T

tta ett τφ /

00, −−=

( ) ( ) [ ] ( ) ( ) [ ] ( )τδττ −=−− tqwEwtwEtwE( ) ( ) [ ] ( ) ( ) [ ] ( )ttRtaEtataEtaE

TT aaTTTT ,τττ +=−+−+

( ) ( ) [ ] ( ) ( ) [ ] ( )τττ +=+−+− ttRtaEtataEtaETT aaTTTT ,

( ) ( ) [ ] ( ) ( ) [ ] ( ) ( ) 2,TTTTT aaaaaTTTT ttRtVtaEtataEtaE σ===−−

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )tGtQtGtFtVtVtFtVtd

d TT

xxx ++= ( ) ( ) qtVtVtd

dTTTT aa

Taa +−=

τ2

( ) ( )00 ,1

, tttttd

dTT a

Ta φ

τφ −=

where

Target Acceleration Model (continue – 4)

RADAR Range-Doppler-Angular Loops

Page 17: 6 radar range-doppler-angular loops

17

SOLO

( ) ( ) qtVtVtd

dTTTT aa

Taa +−=

τ2

( ) ( )

−+=

−−TT

TTTT

t

T

t

aaaa eq

eVtV ττ τ 22

12

0

( )( ) ( ) ( )

( ) ( ) ( )

<+=+Φ+

>=+Φ=+

0,

0,,

ττττ

τττ

ττ

ττ

tVetttV

tVetVttttR

TT

T

TTT

TT

T

TTT

TT

aaT

aaa

aaaaa

aa

( )( ) ( ) ( )

( ) ( ) ( )

<+=++Φ

>=+Φ=+

0,

0,,

ττττ

τττ

ττ

ττ

tVetVtt

tVetttVttR

TT

T

TTT

TT

T

TTT

TT

aaaaa

aaT

aaa

aa

For ( ) ( )2

5 Tstatesteadyaaaaaa

T

qVtVtV

TTTTTT

ττττ ==+≈⇒> −

( ) ( ) ( ) TT

TTTTTTTTe

qeVVttRttR

TT

statesteadyaaaaaaaaττ

ττ τττττ −−

− =≈≈+≈+⇒>2

,,5

Target Acceleration Approximation by a Markov Process (continue – 1)Target Acceleration Model (continue – 5)

RADAR Range-Doppler-Angular Loops

Page 18: 6 radar range-doppler-angular loops

18

SOLO

( ) 2

0 22 T

Taa qde

qdVArea T

TTτττττ τ

τ

=== ∫∫+∞ −+∞

∞−

τT is the correlation time of the noise w (t) and defines in Vaa (τ) the correlation time corresponding to σa

2 /e.One other way to find τT is by tacking the double sides Laplace Transform L 2 on τ of:

( ) ( ) ( ) qdetqtqs sww =−=−=Φ ∫

+∞

∞−

− ττδτδ ττ2L

( ) ( )

( ) ( ) ( )sHqsHs

q

deeq

Vs

T

T

sTssaaaa

T

TTTT

−=−

=

==Φ ∫+∞

∞−

−−−

2

2

/2

1

2

ττ

τττ ττττL

τT defines the ω1/2 of half of the power spectrum

q/2 and τT =1/ ω1/2.

( ) ( ) ( ) TT

TTTTTTTe

qeVttRttR

TT

aaaaaaaττ

ττ τσττττ −−

=≈≈+≈+⇒>2

,,5 2

T

aTqτσ 22

=

Target Acceleration Approximation by a Markov Process (continue – 2)

RADAR Range-Doppler-Angular Loops

Target Acceleration Model (continue – 6)

Return to Table of Content

Page 19: 6 radar range-doppler-angular loops

19

SOLO RADAR Range-Doppler-Angular LoopsSummary of System Equations

RM

TRTTR

wRa

a

R

R

a

R

R

td

d

+

−+

−Λ=

1

0

0

1

0

1

0

/100

10

0102

τ

Range-Doppler Equations

Transversal LOS Equations

( )

( )

+

+

Λ

Λ

−−

−−

=

Λ

Λ

t

t

M

At

M

At

Tt

Tt

TRA

RA

RA

RAT

RA

RA

Tt

Tt

w

w

ta

ta

R

R

a

a

RR

R

RR

R

a

a

td

d

0

0

0

0

1

1

0000

1000

0010

0000

001

0

0001

10000

12000

01000

001

00

001

20

00010

2

1

2

2

1

1

2

2

1

1

2

1

2

1

2

1

ω

ω

ε

ε

τω

ω

ω

ωτ

ω

ω

ε

ε

Return to Table of Content

Page 20: 6 radar range-doppler-angular loops

20

SOLO

Discretization of a Continuous Linear System

( ) ( ) ( ) ( )[ ]∫ +−Φ+Φ= −

T

kk dwGuBTxTx0

1 ξξξξ

By changing the integration variable to ξ = λ-(k-1) T we obtain

( ) ( ) ( ) 100 :,:,1, −==−== kk xtxxtxTktTkt

( ) ( ) ( )( ) ( ) ( ) ( )[ ]( )∫−

+−Φ+−Φ=Tk

Tk

dwGuBTkTkxTTkx1

1 λλλλ

or

11111 −−−−− ++= kkkkkk wuDxFxwhere

( ) ( ) ( ) ( )∫∫ −Φ=−Φ=Φ= −−−

T

k

T

kk dwGTwdBTDTF0

1

0

11 ::: ξξξξξ

RADAR Range-Doppler-Angular Loops

Return to Table of Content

Page 21: 6 radar range-doppler-angular loops

21

SOLO

Discrete Filter/Predictor Architecture

RADAR Range-Doppler-Angular Loops

The discrete representation of the sysem is given by

x (k) - system state vector

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )kwkxkHkz

kvkukGkxkFkx

+++=+++=+

111

1

u (k) - system control input

v (k) - system unknown dynamics assumed white gaussian

w (k) - measurement noise assumed white gaussian

k - discrete time counter

Page 22: 6 radar range-doppler-angular loops

22

SOLO

Discrete Filter/Predictor Architecture (continue – 1)

RADAR Range-Doppler-Angular Loops

1. The output of the Filter/Predictor canbe at a higher rate than the input (measurements)

Tmeasurements = m Toutput, m integer

2. Between measurements it will perform State Prediction

( ) ( ) ( ) ( ) ( )( ) ( ) ( )kkxkHkkz

kukGkkxkFkkx

|1ˆ1|1ˆ

|ˆ|1ˆ

++=++=+

3. At measurements it will perform Update State

( ) ( ) ( ) ( )( ) ( ) ( ) ( )11|1ˆ|1ˆ

|1ˆ11

++++=+++−=+

kkKkkxkkx

kkxkHkzk

νν

υ (k) - Innovation

K (k) – Filter Gain

Page 23: 6 radar range-doppler-angular loops

23

SOLO

Discrete Filter/Predictor Architecture (continue – 2)

RADAR Range-Doppler-Angular Loops

The way that the Filter Gain K (k) is definedwill define the Filter properties.

1. K (k) can be choose to satisfy the bandwidth requirements. Since we have Linear Time Constant System a K (k)=constant may be chosen. This is a Luenberger Observer.

2. Since we have a Linear Time Constant System, if we assume White Gaussian System and Measurement Disturbances the Kalman Filter will provide the Optimal Filter/Predictor. An important byproduct is the Error Covariances.

3. The Filter Gain K (k) can be chosen as the steady-state value of the Kalman Filter.

Return to Table of Content

Page 24: 6 radar range-doppler-angular loops

24

RADAR Range-Doppler-Angular LoopsSOLO

From the measurement time kT of Σ, ΔAz, ΔEl channels (A/D processing) until the Digital Signal Processor (DSP) provides the measurements to the Filter a time TG = m T delay passes.

Therefore the Filter will process the measurements y(k-m)T, according to

State vector predictionmkmkmkmkmkmkmk uDxFx −−−−−−+− += ||1 ˆˆ

( )1|1|| ˆˆˆ −−−−−−−−−−− −+= mkmkmkmkmkmkmkmkmk xHyKxx Filtering

Since the Kalman Filter is running the previous estimation is available.1|ˆ −−− mkmkx

Based on the prediction of the measured value can be performedmkmkx −− |ˆky

mkmkmkmkmkmkmk uDxFx −−−−−−+− += ||1 ˆˆ

1|ˆˆ −= kkk xHy

The DSP processes the error and delivers itafter the processing delay TG= mT to the Filter.

kkk yyy ˆ−=∆

11|111|2 ˆˆ +−+−−+−+−+−+− += mkmkmkmkmkmkmk uDxFx

112|111| ˆˆ −−−−−− += kkkkkkk uDxFx

Compensation for Processing-from-Measurement Delays

Page 25: 6 radar range-doppler-angular loops

25

RADAR Range-Doppler-Angular LoopsSOLO

Return to Table of Content

Compensation for Processing-from-Measurement Delays continue – 1)

Page 26: 6 radar range-doppler-angular loops

26

Kalman FilterState Estimation in a Linear System (one cycle)

Sensor DataProcessing andMeasurement

Formation

Observation -to - Track

Association

InputData Track Maintenance

( Initialization,Confirmationand Deletion)

Filtering andPrediction

GatingComputations

Samuel S. Blackman, " Multiple-Target Tracking with Radar Applications", Artech House,1986

Samuel S. Blackman, Robert Popoli, " Design and Analysis of Modern Tracking Systems",Artech House, 1999

SOLO

State at tkx (k)

Evolutionof the system(true state)

Transition to tk+1x (k+1) =F (k) x (k)

+ G (k) u (k)+ v (k)

Measurement at tk+1z (k+1) =

H (k) x (k)+ w (k)

Estimationof the state

StateCovariance

andKalman FilterComputations

Control at tku (k)

State Error Covarianceat tk( )

( ) ( )[ ] ( ) ( )[ ] kkxkxkkxkxE

kkPT /ˆ/ˆ

|

−−

=

Controller

Innovation Covariance

( )( ) ( ) ( )

( )1

1|11

1

+++++

=+

kR

kHkkPkH

kST

Kalman Filter Gain( )( ) ( ) ( )11|1

11 +++

=+− kSkHkkP

kKT

Update StateCovariance at tk+1( )

( ) ( ) ( )111

1|1

+++=++

kWkSkW

kkPT

State PredictionCovariance at tk+1( )

( ) ( ) ( ) ( )kQkFkkPkF

kkPT +

=+|

|1

State Predictionat tk+1( )

( ) ( ) ( ) ( )kukGkkxkF

kkx

+=+

|1ˆ

Measurement Predictionat tk+1

( ) ( ) ( )kkxkHkkz |1ˆ1|1ˆ ++=+

Innovation( ) ( ) ( )kkzkzkv |1ˆ11 +−+=+

Update StateEstimation at tk+1( )( ) ( ) ( )11|1ˆ

1|1ˆ

++++=++

kvkKkkx

kkx

kt

1+kt

StateEstimation

at tk ( )kkx |ˆ

( )kkx |ˆ

( )kx

( )1|1 ++ kkP

( )1| −kkP

( )1|1ˆ ++ kkx

( )1+kx

( )kkP |

( )kkP |1+( )kkx |1ˆ +

( )kt ( )1+kt

Real Trajectory

Estimated Trajectory

Rudolf E. Kalman( 1920 - )

Page 27: 6 radar range-doppler-angular loops

27

Kalman FilterState Estimation in a Linear System (one cycle)

SOLO

State vector prediction111|111| ˆˆ −−−−−− +Φ= kkkkkkk uDxx

Covariance matrix extrapolation111|111| −−−−−− +ΦΦ= kT

kkkkkk QPP

Innovation CovariancekT

kkkkk RHPHS += −1|

Gain matrix computation1

1|−

−= kT

kkkk SHPK

Innovation1|ˆ −−= kkkkk xHyv

Filteringkkkkkk vKxx += −1|| ˆˆ

Covariance matrix updating( ) 1|| −−= kkkkkk PHKIPor

( ) ( ) Tkkk

Tkkkkkkkk KRKHKIPHKIP +−−= −1||

Return to Table of Content

Page 28: 6 radar range-doppler-angular loops

28

RADAR Range-Doppler LoopsSOLO

The Range-Doppler is defined by the dynamic equation:

( ) ( ) ( ) ( ) ( ) ( )[ ]∫ +Φ+Φ=t

t

RRRRRRR dwGuBttxtttx0

,, 00 ξξξξ

where:

( ) ( ) ( ) ( ) ( ) ( )3132210000 ,,,&,&,, ttttttIttttAtttd

dRRRRRRR Φ=ΦΦ=ΦΦ=Φ

( ) ( ) ( ) ( ) ( ) ( )0

303

202

00 !3!2, 0 tt

ttA

ttAttAIett RRRR

ttAconstA

RR

R

−Φ=+−+−+−+==Φ −=

The general solution of the Linear System is:

RRRRRRR wGuBxAxtd

d ++= or

R

G

u

M

Bx

TR

Ax

TR

wRa

a

R

R

a

R

R

td

d

R

R

RRRR

+

−+

−Λ=

1

0

0

1

0

1

0

/100

10

0102

τ

Page 29: 6 radar range-doppler-angular loops

29

RADAR Range-Doppler LoopsSOLO

( ) ( ) ( ) ( ) ( )+−+−+−+==−Φ −

!3!2

303

202

000

ttA

ttAttAIett RRR

ttAR

R

−Λ=

τ/100

10

0102

RA

−Λ

Λ

=

−Λ

−Λ=

2

2

2

222

/100

/10

10

/100

10

010

/100

10

010

ττ

ττ

RA

−+ΛΛ−Λ

=

−ΛΛ

−Λ=

3

224

2

2

2

2

23

/100

/10

/10

/100

/10

10

/100

10

010

τττ

ττ

τ

RA

( )

Λ+Λ

Λ+

+−+−

+−Λ+Λ+Λ+Λ

−Λ+Λ+

≅Φ<<Λ

<<

<

1002

1

221

62100

62621

6

62621

222

222

1

3

3

2

2

2

323222342

323222

1

1

32

/

22

TT

T

TT

T

TTT

TTTT

TTT

TTTT

T

TTT

T

e

T

TR

T

ττ

τ

τττ

ττ

τ

( ) ( ) ( ) ( )[ ]∫ +−Φ+Φ= −

T

RRRRRkRRkR dwGuBTxTx0

1 ξξξξ

Discretization of the Continuous Linear System (continue - 1)

Page 30: 6 radar range-doppler-angular loops

30

RADAR Range-Doppler LoopsSOLO

( )

Λ+Λ

Λ+

+Λ+Λ+Λ+Λ

−Λ+Λ+

≅Φ<<Λ

<<

<

1002

1

221

6100

6621

6

2621

222

222

1

3

3

2

33222342

323222

1

1

3222

TT

T

TT

T

T

TTT

TTT

TTTT

T

TTT

T

T

TR

ττ

τ

τ

τ

Discretization of the Continuous Linear System (continue - 2

111 −−− ++= kRkRRkRRkR wuDxFxwhere

( ) ( ) ( ) ( ) ( ) ( )∫∫ −Φ=−Φ=Φ= −

T

RRkR

T

RRRRR dwGTwdBTTDTTF0

10

::: ξξξξξ

( )

( )

( ) ( ) ( )

( ) ( ) ( ) 1

2

12

10

222

222

11

0

2

0

1

0

1002

1

221

22

1

<<Λ

−<<−

−−Λ+−Λ

−−−Λ+

≅ ∫−

kR

T

kR

Tutu

TktkTkRR uT

T

udTT

T

TT

T

uDkRR

ττττ

τττ

Page 31: 6 radar range-doppler-angular loops

31

RADAR Range-Doppler LoopsSOLO

Discretization of the Continuous Linear System (continue - 3)

Computation of the covariance matrix

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

( ) ( )∫

∫ ∫

∫ ∫

−Φ−Φ=

−Φ−Φ=

−Φ−Φ==

−−−

TTT

T TT

RT

R

q

TRRRR

T T

RT

RRRRRT

kRkRkR

dTGGTq

ddTGwwEGT

ddTGwwGTEwwEQ

0

0 0

0 0111

τττ

λτλλττ

λτλλττ

λτδ

( ) ( )∫ −Φ=−

T

RRRkR dwGTw0

1 : ξξξ ( )

Λ+Λ

Λ+

≈Φ

1002

1

221

222

222

TT

T

TT

T

TR

=

1

0

0

RG

τσ 22 Txq =

( ) ( )11

101

0 +=

+−=−

++

∫ k

T

k

TdT

k

T

kTk ξξξ

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

−−

−−−

−−−

=

−−

= ∫∫

TTT

TTT

TTT

qd

TT

TTT

TTT

qdTT

T

T

qTT

26

268

6820

12

2

224

12

1

2

23

234

345

02

23

234

0

2

2

ξ

ξξ

ξξξ

ξξξ

ξξξξ

ξ

Page 32: 6 radar range-doppler-angular loops

32

RADAR Range-Doppler LoopsSOLO

Discretization of the Continuous Linear System (continue - 4)

The measurements are:• R ( H = [1 0 0]T ) and ( H = [0 1 0] ) separately R

• R and ( H = [1 1 0]T ) togetherR

Measurements Noise:

The Range and Doppler measurement noise are given by:

( ) ( )

2

222

/289.0

∆++=k

R

RFARkRNS

RkL σσ

( )

2

2

222

2

/

2289.021

∆++

+⋅⋅=

k

Df

fFA

tTtTCR

kfNS

BWkLD

DDσ

λωω

σ

(S/N)k – Signal to Noise ratio at the k batch (from RADAR Equation)

ΔR, ΔBWD – Range and Doppler resolution cells

LR, LCR – linear dimensions of the target in the Range and Cross-range directions

– total noise variations in Range and Doppler22 , kfkR Dσσ

– noise variations in Range and Doppler due to Frequency Agility22 ,

DfFARFA σσ

Rk – Range to the Target at the k batch

Page 33: 6 radar range-doppler-angular loops

33

RADAR Range-Doppler LoopsSOLO

Discretization of the Continuous Linear System (continue - 5)

Summary of RADAR Range-Doppler Dynamics ( ) ( ) ( ) 100 :,:,1, −==−== kk xtxxtxTktTkt

The discrete dynamic system (one step) is given by:

The measurements are:• R ( H = [1 0 0]T ) and ( H = [0 1 0] ) separately R

• R and ( H = [1 1 0]T ) togetherR

== −−−

TTT

TTT

TTT

wwEQ TxTkkkR

26

268

6820

2

23

234

345

2

111 τσ

( ) ( )

2

222

/289.0

∆++=k

R

RFARkRNS

RkL σσ ( )

2

2

222

2

/

2289.021

∆++

+⋅⋅=

k

Df

fFA

tTtTCR

kfNS

BWkLD

DDσ

λωω

σ

( ) 111 −−

⋅= kMkR Rau

11

2

1

222

222

1

0

0

0

2

1002

1

221

−−

+

+

Λ+Λ

Λ+

=

=

kRkR

kTRkTR

kR wuT

T

a

R

R

TT

T

TT

T

a

R

R

x

Page 34: 6 radar range-doppler-angular loops

34

RADAR Range-Doppler LoopsSOLO

Range Estimator/Predictor using only Range Measurements

The Range Filter Gains KR1, KR2, KR3 are computed using Kalman Filter Method.

Page 35: 6 radar range-doppler-angular loops

35

RADAR Range-Doppler LoopsSOLO

Velocity (Doppler) Estimator/Predictor using only Range Measurements

The Doppler Filter Gains KD1, KD2, KD3 are computed using Kalman Filter Method.Return to Table of Content

Page 36: 6 radar range-doppler-angular loops

36

SOLO

Transversal LOS Equations

−=

13

31

ARA

RAA

A

AI

IA

A

ω

ω

−=

τ1

00

120

010

1 RR

RAA

Λ

Λ

=

=

2

1

2

2

1

1

2

1

Tt

Tt

a

a

x

x

x

ε

ε

tAAAAAAA wGuBxAxtd

d ++=( )

( )

+

+

Λ

Λ

−−

−−

=

Λ

Λ

t

t

M

At

M

At

Tt

Tt

RA

RA

RA

RA

RA

RA

Tt

Tt

w

w

ta

ta

R

R

a

a

RR

R

RR

R

a

a

td

d

0

0

0

0

1

1

0000

1000

0100

0000

001

0

0001

10000

12000

01000

001

00

001

20

00010

2

1

2

2

1

1

2

2

1

1

2

1

2

1

2

1

ω

ω

ε

ε

τω

ω

ω

ωτ

ω

ω

ε

ε

=

1

0

0

1

0

0

AG

( )

( )

⋅=

2

1

1

1

2

1

ta

ta

u

M

At

M

At

A

ω

ω

=

0000

1000

0100

0000

001

0

0001

R

R

BA

RADAR Angular Loops

Page 37: 6 radar range-doppler-angular loops

37

SOLO RADAR Angular Loops

Transversal LOS Equations

Discretization of the Continuous Linear System

AAAAAAA wGuBxAxtd

d ++=

( ) ( ) ( ) 100 :,:,1, −==−== kk xtxxtxTktTkt

( ) ( )111 −−−

++=kAkAAkAAkA wuTDxTFx

where

( ) ( ) ( ) ( ) ( ) ( )∫∫ −Φ=−Φ=Φ=−

T

AAAkA

T

AAAA dwGTwdBTTDTTF0

10

::: ξξξξξ

( ) ( ) ( ) ( ) ( )+−+−+−+==−Φ −

!3!2

303

202

000

ttA

ttAttAIett AAA

ttAA

A

Page 38: 6 radar range-doppler-angular loops

38

SOLO

Transversal LOS Equations

Discretization of the Continuous Linear System (continue - 1)

( ) ( ) ( ) ( ) ( )+−+−+−+==−Φ −

!3!2

303

202

000

ttA

ttAttAIett AAA

ttAA

A

−=

13

31

ARA

RAA

A

AI

IA

A

ω

ω

−=

τ1

00

120

010

1 RR

RAA

( ) ( ) 22

2

1: TATAITTF AAAA ++≅Φ=

−−

=

322

11

1322

1

2

2

2

IAA

AIA

A

RAAARA

ARARAA

A

ωω

ωω

−−

=

2

22

22

1

100

1240

120

τ

τ RR

R

R

R

RR

R

A

( )( )

( )

−++−−

+−++

=

=

2

2

2

322

1132

13

213

2

322

113

2221

1211

TIATAITAIT

TAITT

IATAI

FF

FFTF

RAAAARARA

ARARARAAA

AA

AAA

ωωω

ωωω

RADAR Angular Loops

Page 39: 6 radar range-doppler-angular loops

39

SOLO

Discretization of the Continuous Linear System (continue - 2)

( )

( )

( )

( )

−−

−−−

−−

−−

=

−++==

221100

21

21210

21

21

22

2

22

2

322

1132211

TTT

R

TTT

R

RTT

R

RT

R

R

R

TTT

R

RT

TIATAIFF

RA

RA

RA

RAAAAA

ωττ

τω

ω

ω

[ ]

−=+≅−=

TTR

R

R

TTT

R

R

TT

TAITFF

RA

RARA

RARA

ARARAAA

ω

ωω

ωω

ωω

2100

210

02

2

2

132112

( )( )

( )

−++−−

+−++

=

=

2

2

2

322

1132

13

213

2

322

113

2221

1211

TIATAITAIT

TAITT

IATAI

FF

FFTF

RAAAARARA

ARARARAAA

AA

AAA

ωωω

ωωω

RADAR Angular Loops

Page 40: 6 radar range-doppler-angular loops

40

SOLO

Discretization of the Continuous Linear System (continue - 3)

( ) ( ) ( )[ ] AA

T

AA

T

AAA BT

ATIdBTAIdBTTD

+=−+≅−Φ= ∫∫ 2

:2

6

00

ξξξξ

=

=123

231

0

0

0000

1000

0100

0000

001

0

0001

Ax

xA

A B

B

R

R

B

+−

+

=+

22

22

22

133

2

3

22

132

6

TATII

T

ITT

ATI

TATI

ARA

RAA

A

ω

ω

( )

+−

+

=

1

2

131

2

1

2

1

2

13

22

22

AAARA

ARAAA

A

BT

ATIBT

BT

BT

ATI

TD

ω

ω

=

+

00

10

2

2

2

1

2

13 R

TT

R

R

R

TT

BT

ATI AA

=

00

20

02

2

2

2

1

2

R

T

T

BT

RA

RA

ARA ω

ω

ω

=

00

10

01

1 RBA

RADAR Angular Loops

Page 41: 6 radar range-doppler-angular loops

41

SOLO

Discretization of the Continuous Linear System (continue - 4)

Computation of the process covariance matrix Qk-1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

( ) ( )∫

∫ ∫

∫ ∫

−Φ−Φ=

−Φ−Φ=

−Φ−Φ==

−−−

TTT

T TT

AT

A

q

TAAAA

T T

AT

AAAAAT

kAkAkA

dTGGTq

ddTGwwEGT

ddTGwwGTEwwEQ

0

0 0

0 0111

ξξξ

λξλλξξ

λτλλττ

λξδ

( ) ( )∫ −Φ=−

T

AAAkA dwGTw0

1: ξξξ

=

1

0

0

1AG

τσ 22 Ttq =

−=

τ1

00

120

010

1 RR

RAA

=

=

1

0

0

1

0

0

1

1 A

A

A G

GG

( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

−−+−+−−−−

−+−−−+−+

=−Φ

2

2

2

322

1132

13

2

13

2

322

113

ξωξξωξω

ξωξωξωξ

ξ

TIATAITAIT

TAITT

IATAI

T

RAAAARARA

ARARARAAA

A

( )( )( ) ( ) ( )

( )( ) ( ) ( )

−−−+−−+

−−++−++

=−Φ

1

2

32

1

2

1313

1

2

32

1

2

1313

2

2

ARAARAARAA

ARAARAARAA

AA

GT

IAATIAI

GT

IAATIAI

GTξωωξω

ξωωξω

ξ

RADAR Angular Loops

Page 42: 6 radar range-doppler-angular loops

42

SOLO

Discretization of the Continuous Linear System (continue - 5)

Computation of the process covariance matrix Qk-1 (continue – 1)

−=

τ1

00

120

010

1 RR

RAA

−−

=

2

22

22

1

100

1240

120

τ

τ RR

R

R

R

RR

R

AA

( )

( ) ( )

( ) ( )

( )

( ) ( )

( ) ( )

( )

( ) ( )

( ) ( )

( )

( ) ( )

( ) ( )

−+−−

+−−

−+−−

+−−

+−+−

−−+

+−−

++−+−

+−+

+−−

==

2

2

2

2

2

2

2

2

2

2

0

2

22

2

2

2

2

2

22

2

2

2

2

41

2

12

2

1

41

2

12

2

1

22

111

2

12

2

1

22

111

2

12

2

1

τξ

τξ

ξτ

ξ

ξ

τξ

τξ

ξτ

ξ

ξ

ξττ

ωωξω

τ

ξτ

ξ

ξ

ξττ

ωωξω

τ

ξτ

ξ

ξ

ω

TT

T

RR

R

R

T

T

R

TT

T

RR

R

R

T

T

R

TT

T

RR

R

R

T

T

R

TT

T

RR

R

R

T

T

R

RA

RARARA

RARARA

( )( )( ) ( ) ( )

( )( ) ( ) ( )

−−−+−−+

−−++−++

=−Φ

1

2

32

1

2

1313

1

2

32

1

2

1313

2

2

ARAARAARAA

ARAARAARAA

AA

GT

IAATIAI

GT

IAATIAI

GTξωωξω

ξωωξω

ξ

=

1

0

0

1AG

RADAR Angular Loops

Page 43: 6 radar range-doppler-angular loops

43

SOLO

Discretization of the Continuous Linear System (continue - 6)

( )[ ] ( )[ ]22211211

2221

1211AAAA

AA

AATAAAA QQQQ

QQ

QQGTGT ===

=−Φ−Φ ττ

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

−+−−−+−−

+−−

+++−−−−

++−

+−−

−+−−−−

+−−−

=

4

4

3

3

2

2

1111

2

4

2

3

2

242

2

3

22

2

11

2

4324

22

34

2

11

1622

321

8

12

2

12

2

1

2

12

12

822

1

4

12

24

1

2313

2311

12

13111211

τξ

τξ

τξ

τξ

τξ

ττξ

τττξξξ

τξ

τξ

τξ

τξξξ

τξξ

TTTTQQ

T

RR

RT

RR

R

RR

T

R

TT

RR

R

R

T

RR

R

R

TQ

R

T

R

TT

RR

T

RR

R

R

TT

R

Q

AA

Q

A

QQ

A

A

AA

( ) ( )11

101

0 +=

+−=−

++

∫ k

T

k

TdT

k

T

kTk ξξξ

( )

( ) ( )

( )

( )

( ) ( )

+−+−−−

+−

+++−

++

+−−

+−

+−

=−

∫∫

∫∫∫ −

∫ −∫ −

4

5

3

4

2

32

011

011

2

5

2

4

2

3252

2

4

22

3

011

2

5435

22

45

2

011

8082

1

40

12

8

12

2

1

3210

12

4

12

3

4086

1

20

12

820

1

2313

0 2311

12

0 13110 1211

ττττξξξξ

ττττττττξξ

τττ

ξξ

ξξ

ξξξξ

TTTTTdTQdTQ

T

RR

RT

RR

R

RR

T

R

TT

RR

R

R

T

RR

R

R

TdTQ

R

T

R

TT

RR

T

RR

R

R

TT

R

dTQ

T

A

T

A

dTQ

T

A

dTQdTQ

T

A

T

A

T

A

T

A

Computation of the process covariance matrix Qk-1 (continue – 2)

RADAR Angular Loops

Page 44: 6 radar range-doppler-angular loops

44

SOLO

Discretization of the Continuous Linear System (continue - 7)

The measurements in Angular Loops are:• ε1 and ε2 ( H = [1 0 0 1 0 0]T )

Measurements Noise:

The angular measurement noise is given by:

( ) 2,1/

289.02

322

2 =

Θ++

= Θ i

NS

k

R

L

k

idbFA

CRk

i

ii εε σσ

(S/N)k – Signal to Noise ratio at the k batch (from RADAR Equation)

Θ3db i – Antenna Beamwidth in i=1,2 directions

LR, LCR – linear dimensions of the target in the Range and Cross-range directions

– total angular noise variation22

21, kk εε σσ

– noise variations in Range and Doppler due to Frequency Agility22 ,

DfFARFA σσ

• antenna angular rates measured by sensors on the antenna and sometimes alsoon the body

21, AtAt ωω

Rk – Range to the Target at the k batch

RADAR Angular Loops

Page 45: 6 radar range-doppler-angular loops

45

SOLO

Discretization of the Continuous Linear System (continue - 7)Summary of Discretization of RADAR Angular Loops Dynamics

12

1

12

1

12221

1211

12

1

12221

1211

2

1

−−−−−

+

+

=

kkA

A

kAA

AA

kA

A

kAA

AA

kA

A

w

w

u

u

DD

DD

x

x

FF

FF

x

x

( )

( )

( )

−−

−−−

−−

−−

==

221100

21

21210

21

21

2

2

22

2211

TTT

R

TTT

R

RTT

R

RT

R

R

R

TTT

R

RT

FF

RA

RA

RA

AA

ωττ

τω

ω

−≅−=

TTR

R

R

TTT

R

R

TT

FF

RA

RARA

RARA

AA

ω

ωω

ωω

2100

210

02

2

2112

==

00

10

2

2

2211 R

TT

R

R

R

TT

DD AA

=−=

00

20

02

2

2

2112 R

T

T

DD RA

RA

AA ω

ω

Λ=

1

1

1

1

Tt

A

a

x

ε

Λ=

2

2

2

2

Tt

A

a

x

ε

( )

⋅=

11 1

1

tau

M

At

A

ω

( )

⋅=

22 1

2

tau

M

At

A

ω

If then FA12= -FA21=0 and DA12= -DA21=0 and and are independent.1Ax2Ax0=RAω

RADAR Angular Loops

Page 46: 6 radar range-doppler-angular loops

46

SOLO

Discretization of the Continuous Linear System (continue - 8)Summary of Discretization of RADAR Angular Loops Dynamics (continue – 1)

( ) ( ) ( ) ( )

( )

( ) ( ) ( )

−=−Φ−Φ=

−Φ−Φ==

∫∫

∫ ∫−

−−−

33

33

011

2

0

0 0111

2

II

IIdTQdTGGTq

ddTGwwEGTwwEQ

T

ATt

TT

AT

AAA

T TT

AT

A

q

TAAAA

T

kAkAkA

ξξτσξξξ

λξλλξξλξδ

Process Covariance Matrix Qk-1

Measurement Noise Rk

( ) 2,1/

289.02

322

2 =

Θ++

= Θ i

NS

k

R

L

k

idbFA

CRk

i

ii εε σσ

( )

( ) ( )

( )

( )

( ) ( )

+−+−−−

+−

+++−

++

+−−

+−

+−

=−

∫∫

∫∫∫ −

∫ −∫ −

4

5

3

4

2

32

011

011

2

5

2

4

2

3252

2

4

22

3

011

2

5435

22

45

2

011

8082

1

40

12

8

12

2

1

3210

12

4

12

3

4086

1

20

12

820

1

2313

0 2311

12

0 13110 1211

ττττξξξξ

ττττττττξξ

τττ

ξξ

ξξ

ξξξξ

TTTTTdTQdTQ

T

RR

RT

RR

R

RR

T

R

TT

RR

R

R

T

RR

R

R

TdTQ

R

T

R

TT

RR

T

RR

R

R

TT

R

dTQ

T

A

T

A

dTQ

T

A

dTQdTQ

T

A

T

A

T

A

T

A

RADAR Angular Loops

Page 47: 6 radar range-doppler-angular loops

47

SOLO

During Track Mode the RADAR Seeker performs the following tasks:

• The Angular Tracker uses the Δ Elevation and Δ Azimuth Maps, computes the Radar Errors in the Detected Range-Doppler cells, and controls the gimbals in the Track Mode.

• Computes the Line-of-Sight (LOS) angular rates for Terminal Guidance.

Because the requirements for gimbals control and those of Terminal Guidancemay be different we can use two Filters, with the same architecture but differentFilter Gains.

RADAR Angular Loops

Page 48: 6 radar range-doppler-angular loops

48

SOLO

Angle Estimator/Predictor

The Angular Filter Gains KA1, KA2, KA3 are computed using Kalman Filter Method.

RADAR Angular Loops

Page 49: 6 radar range-doppler-angular loops

49

Seeker Conceptual Tracking Mode (continue – 1)

Antenna C.G.

A/C

AntennaL.O.S.Apparent

L.O.S.

A/CVelocity

InertialRef. Line

SOLO

Tracking Error

Gr λλε −=

I

G

I

r

Itd

d

td

d

td

d λλε −=

Time Differentiation in an Inertial System.

The Differential Equation of the Estimated Tracking Error is

G

Itd

d λλε −= ˆˆ

where

λ - Estimated LOS inertial angular-rate [rad/sec]

Gλ - Measured (by a rate-gyro on the antenna) gimbal inertial rate [rad/sec]

Kalman Filters are used to estimate both tracking error and L.O.S. inertial angular-rate

λε ˆ,ˆ

TRACK MODE

Return to Table of Content

Page 50: 6 radar range-doppler-angular loops

50

SOLO

References

Y. Bar-Shalom, T.E. Fortmann, “Tracking and Data Association”, Academic Press, 1988

Y. Bar-Shalom, Xiao-Rong Li., “Multitarget-Multisensor Tracking: Principles and Techniques”, YBS Publishing, 1995

S. S. Blackman, “Multiple-Target Tracking with Radar Applications”, Artech House, 1986

Pearson, J.B., Stear, E.B., “Kalman Filter Applications in Airborne Radar Tracking”, IEEE Transactions on Aerospace and Electronic Systems, AES-10, 1974, pp. 319-329

RADAR Range-Doppler-Angular Loops

Return to Table of Content

Page 51: 6 radar range-doppler-angular loops

January 23, 2015 51

SOLO

TechnionIsraeli Institute of Technology

1964 – 1968 BSc EE1968 – 1971 MSc EE

Israeli Air Force1970 – 1974

RAFAELIsraeli Armament Development Authority

1974 – 2013

Stanford University1983 – 1986 PhD AA

Page 52: 6 radar range-doppler-angular loops

52

Random VariablesSOLO

Table of Content

Markov Processes

A Markov Process is defined by:

Andrei AndreevichMarkov

1856 - 1922

( ) ( )( ) ( ) ( )( ) 111 ,|,,,|, tttxtxptxtxp >∀ΩΩ=≤ΩΩ ττ

i.e. the Random Process, the past up to any time t1 is fully defined by the process at t1.

Examples of Markov Processes:

1. Continuous Dynamic System( ) ( )( ) ( )wuxthtz

vuxtftx

,,,

,,,

==

2. Discrete Dynamic System

( ) ( )( ) ( )kkkkk

kkkkk

wuxthtz

vuxtftx

,,,

,,,

1

1

==

+

+

x - state space vector (n x 1)u - input vector (m x 1)v - white input noise vector (n x 1)

- measurement vector (p x 1)z

- white measurement noise vector (p x 1)w

Page 53: 6 radar range-doppler-angular loops

53

Random VariablesSOLO

Table of Content

Markov Processes

Examples of Markov Processes:

3. Continuous Linear Dynamic System( ) ( ) ( )( ) ( )txCtz

tvtxAtx

=+=

Using the Fourier Transform we obtain: ( ) ( )( )

( ) ( ) ( )ωωωωωω

VHVAIjCZH

=−= −

1

Using the Inverse Fourier Transform we obtain:

( ) ( ) ( )∫+∞

∞−

= ξξξ dvthtz ,

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

( )

( ) ( ) ( )( )( )

( ) ( )∫∫ ∫

∫ ∫∫

∞+

∞−

∞+

∞−

∞+

∞−

+∞

∞−

+∞

∞−

+∞

∞−

−=−=

−==

ξξξξωξωωπ

ξ

ωωξξωξωπ

ωωωωπ

ξ

ω

dthvddtjHv

dtjdjvHdtjVHtz

th

egrattionoforderchange

V

exp2

1

expexp2

1exp

2

1

int

h (t,τ)v (t) z (t)

Page 54: 6 radar range-doppler-angular loops

54

Random VariablesSOLO

Table of Content

Markov Processes

Examples of Markov Processes:

3. Continuous Linear Dynamic System( ) ( ) ( )( ) ( )txCtz

tvtxAtx

=+=

The Autocorrelation of the output is:

( ) ( ) ( )∫+∞

∞−

= ξξξ dvthtz ,

h (t,τ)v (t) z (t)

( ) ( ) ( )[ ] ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )[ ] ( ) ( ) ( )

( ) ( ) ( ) ( )∫∫

∫ ∫∫ ∫

∫∫

∞+

∞−

−=∞+

∞−

∞+

∞−

∞+

∞−

∞+

∞−

∞+

∞−

+∞

∞−

+∞

∞−

+=−+−=

−−+−=−+−=

−+−=+=

ζτζζσξξτξσ

ξξξξδξτξσξξξξξτξ

ξξξτξξξττ

ξζ

dhhdthth

ddththddvvEthth

dvthdvthEtztzER

v

t

v

v

zz

2

111

2

212121

2

212111

222111

1

( ) ( ) ( )[ ] ( )τδσττ 2

vvv tvtvER =+=

( ) ( ) ( ) ( ) ( ) 22 expexp vvvvvv djdjRS σττωτδσττωτω =−=−= ∫∫+∞

∞−

+∞

∞−

( ) ( ) ( )( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) 2*2

22

2

expexp

expexpexpexp

expexp

xx

xx

x

RR

zzzz

HHdjhdjh

djdjhhdjdjhh

djdhhdjRSzzzz

σωωχχωχζζωζσ

χχωζζωζχσττζωζζωζτζσ

ττωζτζζσττωτω

χτζ

ττ

=

−=

−=−−−=

−−=−=

∫∫

∫ ∫∫ ∫

∫ ∫∫

∞+

∞−

∞+

∞−

∞+

∞−

∞+

∞−

=+∞+

∞−

∞+

∞−

+∞

∞−

+∞

∞−

−=+∞

∞−

( ) ( ) ( ) ( )ωωωω vvzz SHHS *=

Page 55: 6 radar range-doppler-angular loops

55

Random VariablesSOLO

Table of Content

Markov Processes

Examples of Markov Processes:

4. Continuous Linear Dynamic System ( ) ( ) ( )∫+∞

∞−

= ξξξ dvthtz ,

( ) ( ) ( )[ ] ( )τδσττ 2

vvv tvtvER =+= ( ) 2

vvvS σω =

v (t) z (t)( )xj

KH

ωωω

/1+=

( )xj

KH

ωωω

/1+=

The Power Spectral Density of the output is:

( ) ( ) ( ) ( ) ( ) 222

*

/1 x

v

vvzz

KSHHS

ωωσ

ωωωω+

==

( ) ( ) 222

/1 x

vvzz

KS

ωωσω

+=

ω

22

vvK σ

2/22

vvK σ

The Autocorrelation of the output is:( ) ( ) ( )

( ) ( ) ( ) ( )∫∫

∫∞+

∞−

=∞+

∞−

+∞

∞−

−−

=+

=

=

dsss

K

jdj

K

djSR

x

vjs

x

v

zzzz

τωσ

πωτω

ωωσ

π

ωτωωπ

τ

ω

exp/12

1exp

/12

1

exp2

1

2

22

2

22

ωj

R

( ) 0/1 2

22

=−∫

∞→R

s

x

vv dses

K τ

ωσ( ) 0

/1 2

22

=−∫

∞→R

s

x

vv dses

K τ

ωσ

xω−

σ

ωσ js +=

0<τ0>τ

( ) τωσωω xeK

R vvxzz

==2

22

τ

2/22

vvxK σω

( )τωσω

xvxK

−= exp2

22

( ) ( )

( ) ( )

>

+

−−=

−−

<

−=

−−

=

−→

0exp

Reexp2

1

0exp

Reexp2

1

222

22

222

222

22

222

τω

τσωτ

ωσω

π

τω

τσωτ

ωσω

π

ωω

ωω

x

vx

x

vx

x

vx

x

vx

s

sKsdss

s

K

j

s

sKsdss

s

K

j

x

x

Page 56: 6 radar range-doppler-angular loops

56

Random VariablesSOLO

Markov Processes

Examples of Markov Processes:

5. Continuous Linear Dynamic System with Time Variable Coefficients

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )21121&

:&:

tttQteteE

twEtwtetxEtxteT

ww

wx

−=

−=−=

δ

w (t) x (t)

( )tF

( )tG ∫x (t)

( ) ( ) ( ) ( ) ( ) ( )twtGtxtFtxtxtd

d +==

( ) ( ) ( ) ( ) ( )tetGtetFte wxx +=

( ) ( ) ( ) ( ) ( ) ( )∫Φ+Φ=t

t

dwGttxtttx0

,, 00 λλλλ

The solution of the Linear System is:

where:

( ) ( ) ( ) ( ) ( ) ( ) ( )3132210000 ,,,&,&,, ttttttItttttFtttd

d Φ=ΦΦ=ΦΦ=Φ

( ) ( ) ( ) ( ) ( ) ( )∫Φ+Φ=t

t

wxx deGttettte0

,, 00 λλλλ

( ) ( ) ( ) ( ) ( ) twEtGtxEtFtxE +=

Page 57: 6 radar range-doppler-angular loops

57

Random VariablesSOLO

Markov Processes

Examples of Markov Processes:

5. Continuous Linear Dynamic System with Time Variable Coefficients (continue – 1)

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )21121&

:&:

tttQteteE

twEtwtetxEtxteT

ww

wx

−=

−=−=

δ

w (t) x (t)

( )tF

( )tG ∫x (t)

( ) ( ) ( ) ( ) ( ) ( )∫Φ+Φ=t

t

dwGttxtttx0

,, 00 λλλλ ( ) ( ) ( ) ( ) ( ) ( )∫Φ+Φ=t

t

wxx deGttettte0

,, 00 λλλλ

( ) ( ) ( ) ( ) teteEtxVartV T

xxx ==: ( ) ( ) ( ) ( ) ττττ ++=+=+ teteEtxVartV T

xxx :

( ) ( ) ( ) ( ) ( ) ( ) ττττ +=++=+ teteEttRteteEttR T

xxx

T

xxx :,&:,

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ΦΦ+ΦΦ==t

t

TTT

xxx dtGQGttttVttttRtV0

,,,,, 000 λλλλλλ

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∫+

+Φ+Φ++Φ+Φ=++=+τ

λλτλλλλττττττt

t

TTT

xxx dtGQGttttVttttRtV0

,,,,, 000

Page 58: 6 radar range-doppler-angular loops

58

Random VariablesSOLO Markov Processes

Examples of Markov Processes:

5. Continuous Linear Dynamic System with Time Variable Coefficients (continue – 2)

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )21121&

:&:

tttQteteE

twEtwtetxEtxteT

ww

wx

−=

−=−=

δ

w (t) x (t)

( )tF

( )tG ∫x (t)

( ) ( ) ( ) ( ) ( ) ( )∫Φ+Φ=t

t

dwGttxtttx0

,, 00 λλλλ ( ) ( ) ( ) ( ) ( ) ( )∫Φ+Φ=t

t

wxx deGttettte0

,, 00 λλλλ

( ) ( ) ( ) ( ) teteEtxVartV T

xxx ==: ( ) ( ) ( ) ( ) ττττ ++=+=+ teteEtxVartV T

xxx :

( ) ( ) ( ) ( ) ( ) ( ) ττττ +=++=+ teteEttRteteEttR T

xxx

T

xxx :,&:,

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

<Φ+Φ+Φ+Φ

>Φ+Φ+Φ+Φ

=+

∫+

0,,,,

0,,,,

,

0

0

000

000

τλλλλλλττ

τλλλλλλττ

ττt

t

TTT

x

t

t

TTT

x

x

dtGQGttttVtt

dtGQGttttVtt

ttR

( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

<+Φ+

>Φ+Φ−+Φ+

<Φ+Φ−+Φ

>+Φ

=+

+

+

0,

0,,,

0,,,

0,

,

τττ

τλλλλλλτττ

τλλλλλλττ

ττ

ττ

τ

tttV

dtGQGttttV

or

dtGQGttVtt

tVtt

ttR

T

x

t

t

TTT

x

t

t

TT

x

x

x

Page 59: 6 radar range-doppler-angular loops

59

Random VariablesSOLO Markov Processes

Examples of Markov Processes:

5. Continuous Linear Dynamic System with Time Variable Coefficients (continue – 3)

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )21121&

:&:

tttQteteE

twEtwtetxEtxteT

ww

wx

−=

−=−=

δ

w (t) x (t)

( )tF

( )tG ∫x (t)

( ) ( ) ( ) ( ) ( ) ( )∫Φ+Φ=t

t

wxx deGttettte0

,, 00 λλλλ

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

<Φ+Φ+Φ+Φ

>Φ+Φ+Φ+Φ

=+

∫+

0,,,,

0,,,,

,

0

0

000

000

τλλλλλλττ

τλλλλλλττ

ττt

t

TTT

x

t

t

TTT

x

x

dtGQGttttVtt

dtGQGttttVtt

ttR

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ΦΦ+ΦΦ==t

t

TTT

xxx dtGQGttttVttttRtV0

,,,,, 000 λλλλλλ

( ) ( ) ( ) ( ) teteEtxVartV T

xxx ==:

( ) ( ) ( ) ( ) ( ) ( ) ττττ +=++=+ teteEttRteteEttR T

xxx

T

xxx :,&:,

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )tGtQtGdtFtGQGttFtttVtt

dtGQGttFtttVtttFtVtd

d

T

t

t

TTTTT

x

t

t

TTT

xx

+ΦΦ+ΦΦ+

ΦΦ+ΦΦ=

0

0

,,,,

,,,,

000

000

λλλλλλ

λλλλλλ

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )tGtQtGtFtVtVtFtVtd

d TT

xxx ++=

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ττττττττ +++++++++=+ tGtQtGtFtVtVtFtVtd

d TT

xxx

Page 60: 6 radar range-doppler-angular loops

60

Random VariablesSOLO Markov Processes

Examples of Markov Processes:

5. Continuous Linear Dynamic System with Time Variable Coefficients (continue – 4)

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )21121&

:&:

tttQteteE

twEtwtetxEtxteT

ww

wx

−=

−=−=

δ

w (t) x (t)

( )tF

( )tG ∫x (t)

( ) ( ) ( ) ( ) ( ) ( )∫Φ+Φ=t

t

wxx deGttettte0

,, 00 λλλλ ( ) ( ) ( ) ( ) teteEtxVartV T

xxx ==:

( ) ( ) ( ) ( ) ( ) ( ) ττττ +=++=+ teteEttRteteEttR T

xxx

T

xxx :,&:,

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

<Φ+Φ+Φ+Φ

>Φ+Φ+Φ+Φ

=+

∫+

0,,,,

0,,,,

,

0

0

000

000

τλλλλλλττ

τλλλλλλττ

ττt

t

TTT

x

t

t

TTT

x

x

dtGQGttttVtt

dtGQGttttVtt

ttR

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

<+Φ++++++++>+Φ+++++

=+0,,,

0,,,,

τττττττττττττ

τtttGtQtGtFttRttRtF

tGtQtGtttFttRttRtFttR

td

dTTT

xx

TT

xx

x

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

<++++Φ+++++>+Φ+++++

=+0,,,

0,,,,

τττττττττττττ

τtGtQtGtttFttRttRtF

tttGtQtGtFttRttRtFttR

td

dTT

xx

TTT

xx

x

Page 61: 6 radar range-doppler-angular loops

61

Random VariablesSOLO Markov Processes

Examples of Markov Processes:

6. How to Decide if a Input Noise can be Approximated by a White or a Colored Noise

w (t) x (t)

( )tF

( )tG ∫x (t)

( ) ( ) ( ) ( ) ( ) ( )twtGtxtFtxtxtd

d +== Given a Continuous Linear System:

we want to decide if can be approximated by a white noise.( )tw

Let start with a first order linear system with white noise input :( )tw '

( ) ( ) ( )twT

twT

tw '11 +−= w (t)w' (t) ( )

TssH

+=1

1

( ) ( ) Ttt

w ett /

00, −−=φ

( ) ( ) [ ] ( ) ( ) [ ] ( )τδττ −=−− tQwEwtwEtwE ''''

( ) ( ) [ ] ( ) ( ) [ ] ( )ttRtwEtwtwEtwE ww ,τττ +=−+−+

( ) ( ) [ ] ( ) ( ) [ ] ( )τττ +=+−+− ttRtwEtwtwEtwE ww ,

( ) ( ) [ ] ( ) ( ) [ ] ( ) ( )ttRtVwEwtwEtwE wwww ,==−− ττ

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )tGtQtGtFtVtVtFtVtd

d TT

xxx ++= ( ) ( ) QT

tVT

tVtd

dwwww 2

12 +−=

( ) ( )00 ,1

, ttT

tttd

dww φφ −=

where

Page 62: 6 radar range-doppler-angular loops

62

Random VariablesSOLO Markov Processes

Examples of Markov Processes:

6. How to Decide if a Input Noise can be Approximated by a White or a Colored Noise

(continue – 1)

( ) ( ) QT

tVT

tVtd

dwwww 2

12 +−=

( ) ( )

−+=

−−T

t

T

t

wwww eT

QeVtV

22

12

0 t2/T

( ) T

t

ww eV2

0−

−T

t

eT

Q 2

12 T

QV statesteadyww 2

=−

( )tVww

( ) ( ) ( ) ( )( ) ( ) ( )

<+=+Φ+

>=+Φ=+

0,

0,,

ττττ

τττ

τ

τ

tVetttV

tVetVttttR

wwTT

www

wwT

www

ww

( ) ( ) ( ) ( )( ) ( ) ( )

<+=++Φ

>=+Φ=+

0,

0,,

ττττ

τττ

τ

τ

tVetVtt

tVetttVttR

wwT

www

wwTT

www

ww

For ( ) ( )T

QVtVtV

T statesteadywwwwww 25 ==+≈⇒> −ττ

( ) ( ) ( ) TTstatesteadywwwwwwww e

T

QeVVttRttR

T

ττ

ττττ −−

− =≈≈+≈+⇒>2

,,5

w (t)w' (t) ( )Ts

sH+

=1

1

Page 63: 6 radar range-doppler-angular loops

63

Random VariablesSOLO Markov Processes

Examples of Markov Processes:

6. How to Decide if a Input Noise can be Approximated by a White or a Colored Noise

(continue – 2)

( ) ( ) ( ) TTstatesteadywwwwwwww e

T

QeVVttRttR

T

ττ

ττττ −−

− =≈≈+≈+⇒>2

,,5

( ) T

ww eT

QV /

2ττ ==

τ

T

QV statesteadyww 2

=−

T− T

1−− ⋅ eV statesteadyww ( ) Qde

T

QdVArea T

ww === ∫∫+∞

−+∞

∞− 02

2 ττττ

T is the correlation time of the noise w (t) and can be found from Vww (τ) by tacking the time corresponding to Vww steady-state /e.

One other way to find T is by tacking the double sides Laplace Transform L 2 on τ of:

( ) ( ) ( ) QdetQtQs s

ww =−=−=Φ ∫+∞

∞−

− ττδτδ ττ2'' L

( ) ( )

( ) ( ) ( )sHQsHsT

Q

deeT

QVs sT

sswwww

−==

=

==Φ ∫+∞

∞−

−−−

2

/

2

1

2ττ ττ

τL( ) ( ) 22/1/1 ωωω

+= Q

Qww

ω

T/12/1 =ω

Q

2/Q

T/12/1 −=−ω

T can be found by tacking ω1/2 of half of the power spectrum Q/2 and T=1/ ω1/2.

Page 64: 6 radar range-doppler-angular loops

64

Random VariablesSOLO Markov Processes

Examples of Markov Processes:

( ) ( ) 22/1/1 ωωω

+= Q

Qww

ω

T/12/1 =ω

Q

2/Q

T/12/1 −=−ω

Let return to the original system: ( ) ( ) ( ) ( ) ( ) ( )twtGtxtFtxtxtd

d +==

w (t) x (t)

( )tF

( )tG ∫x (t)

6. How to Decide if a Input Noise can be Approximated by a White or a Colored Noise

(continue – 3)

Compute the power spectrum ofand define Q and T.

( )ωjsww =Φ ( )tw

then can be approximated by the white noise with( )tw ( )tw '

( ) ( ) [ ] ( ) ( ) [ ] ( )τδττ −=−− tQwEwtwEtwE ''''

then can be approximated by a colored noise that can be obtained by passingthe predefined white noise through a filter

( )tw( )tw ' ( )

sTsH

+=1

1

If F of eigenvalue maximum

1F of constant time minimumT =<51

If F of eigenvalue maximum

1F of constant time minimumT =>52

Page 65: 6 radar range-doppler-angular loops

65

Random VariablesSOLO Markov Processes

Examples of Markov Processes: 7. Digital Simulation of a Contimuos Process

Let start with a first order linear system with white noise input :( )tw '

( ) ( ) ( )twT

twT

tw '11 +−= w (t)w' (t) ( )

TssH

+=1

1

( ) ( ) Ttt

w ett /

00, −−=φ ( ) ( )00 ,

1, tt

Ttt

td

dww φφ −=

( ) ( ) ( ) ( ) ( )∫ −−− +=t

t

TtTtt dwT

etwetw0

0 '1/

0

/ τττ

Let choose t = (k+1) ΔT and t0 = k ΔT

( ) ( ) [ ] ( ) ( ) [ ] ( )τδττ −=−− tQwEwtwEtwE ''''where

( )[ ] ( ) ( )[ ] ( )( )

( )

Tkw

Tk

Tk

TTkTT dwT

eTkweTkw

∆+

∆+−∆− ∫+∆=∆+

1'

1

/1/ '1

1 τττ

Page 66: 6 radar range-doppler-angular loops

66

Random VariablesSOLO Markov Processes

Examples of Markov Processes: 7. Digital Simulation of a Contimuos Process (continue – 1)

Define: TTe /: ∆−=ρ

( ) ( ) [ ] ( ) ( ) [ ] ( )[ ] ( )[ ] ( ) ( ) [ ] ( ) ( ) [ ]

( )

( )( )

( )[ ]( )

( )[ ] ( ) ( ) ( )2/21/12

2

1

12

/12

2

1 1

122112

/1/1

1111

12

122

1

''''1

''''

11

21

21

ρτ

ττττττ

ττ

ττδ

ττ

−=−===

−−=

∆−∆∆−∆

∆−∆+

∆+−

∆+

∆+−

∆+

∆+

∆ −

∆+−∆+−

∫ ∫

T

Qe

T

Qe

T

T

QdQ

Te

ddwEwwEwET

ee

TkwETkwTkwETkwE

TTTk

Tk

TTk

Tk

Tk

TTk

Tk

Tk

Tk

Tk Q

TTkTTk

( )[ ] ( ) ( )[ ] ( )( )

( )

Tkw

Tk

Tk

TTkTT dwT

eTkweTkw

∆+

∆+−∆− ∫+∆=∆+

1'

1

/1/ '1

1 τττ

Define w’ (k) such that:

( ) ( ) [ ] ( ) ( ) [ ] T

QkwEkwkwEkwE

2:'''' =−−

( ) ( )2

1

1

':'

ρ−= kw

kw

Therefore:( )[ ] ( ) ( )kwTkwTkw '11 2ρρ −+∆=∆+

Page 67: 6 radar range-doppler-angular loops

67

RADAR Range-Doppler LoopsSOLO

Start with:

( ) ( ) ( ) ( ) ( ) ( )3132210000 ,,,&,&,, ttttttIttttAtttd

d Φ=ΦΦ=ΦΦ=Φ

Using the Laplace’s Transform we obtain

( ) ( ) ( )sAttssI

Φ=Φ−Φ ~,

~00 ( ) ( ) 1~ −−=Φ AIss

−Λ=

τ/100

10

0102A

+−Λ−

−=−

τ/100

1

012

s

s

s

AsI

( ) ( ) ( )( ) ( )

( ) ( )( )

( ) ( )

( ) ( )

+

Λ−+Λ−Λ−Λ

Λ−+Λ−Λ−

=

Λ−++Λ++

Λ−+=− −

τ

τ

τ

ττττ

τ

/1

100

/1

/1

11

00

/1/1

1/1/1

/1

1222222

2

222222

22

222

1

s

ss

s

s

s

s

ssss

s

s

ssss

sss

ssAsI

Page 68: 6 radar range-doppler-angular loops

68

RADAR Range-Doppler LoopsSOLO

( )

( ) ( )

( ) ( )

+

Λ−+Λ−Λ−Λ

Λ−+Λ−Λ−

=− −

τ

τ

τ

/1

100

/1

/1

11

222222

2

222222

1

s

ss

s

s

s

s

ssss

s

AsI

( ) ( )

( ) ( )

+

Λ+−Λ−

Λ−+Λ+

+−Λ

Λ++

Λ−Λ+

Λ

−Λ−

Λ

Λ+−ΛΛ+

Λ−+ΛΛ+

+−Λ−

Λ+Λ−

Λ−Λ

Λ++

Λ−

=

τ

ττττ

τ

ττττ

/1

100

/121

/121

/1/1/1

21

21

22

/121

/121

/1/11

21

21

21

21

22

22

s

sssssss

sssssss

Page 69: 6 radar range-doppler-angular loops

69

RADAR Range-Doppler LoopsSOLO

( )

( ) ( )

( ) ( )

+

Λ+−Λ−

Λ−+Λ+

+−Λ

Λ++

Λ−Λ+

Λ

−Λ−

ΛΛ+−ΛΛ+

Λ−+ΛΛ+

+−Λ−

Λ+Λ−

Λ−Λ

Λ++

Λ−

=− −

τ

ττττ

τ

ττττ

/1

100

/121

/121

/1/1/1

21

21

22

/121

/121

/1/11

21

21

21

21

22

22

1

s

sssssss

sssssss

AsI

( ) ( ) TATt eAsIT =−=Φ =

−− 11L

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )

−Λ−

+Λ+

−Λ+−Λ

−ΛΛ+

+ΛΛ+

−Λ−−

Λ+

=

Λ−Λ−Λ−ΛΛ−Λ

Λ−Λ−Λ−ΛΛ−Λ

τ

τ

τ

ττττ

τττ

/

22

/

22

/

00

/12/12/12

1

2

/12/12/12

1

2

1

T

TTTTTTT

TTTTTTT

e

eeeeeee

eeeeeee

Page 70: 6 radar range-doppler-angular loops

70

RADAR Range-Doppler LoopsSOLO

( ) ( ) TATt eAsIT =−=Φ =

−− 11L

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )

−Λ−

+Λ+

−Λ+−Λ

−ΛΛ+

+ΛΛ+

−Λ−−

Λ+

=

Λ−Λ−Λ−ΛΛ−Λ

Λ−Λ−Λ−ΛΛ−Λ

τ

τ

τ

ττττ

τττ

/

22

/

22

/

00

/12/12/12

1

2

/12/12/12

1

2

1

T

TTTTTTT

TTTTTTT

e

eeeeeee

eeeeeee

( )

Λ+Λ

Λ+

+−+−

+−Λ+Λ+Λ+Λ

−Λ+Λ+

≅Φ<<Λ

<<

<

1002

1

221

62100

62621

6

62621

222

222

1

3

3

2

2

2

323222342

323222

1

1

32

/

22

TT

T

TT

T

TTT

TTTT

TTT

TTTT

T

TTT

T

e

T

T

T

ττ

τ

τττ

ττ

τ