6. Fatigue strength - Tokushima U Fatigue.pdf · by the notch Fatigue limit of smooth specimen σ...

49
6. Fatigue strength

Transcript of 6. Fatigue strength - Tokushima U Fatigue.pdf · by the notch Fatigue limit of smooth specimen σ...

Page 1: 6. Fatigue strength - Tokushima U Fatigue.pdf · by the notch Fatigue limit of smooth specimen σ w0 1 0 1 w w K f σ σ = 2 0 2 w w K f σ σ, = Fatigue notch factor K f. Fatigue

6. Fatigue strength

Page 2: 6. Fatigue strength - Tokushima U Fatigue.pdf · by the notch Fatigue limit of smooth specimen σ w0 1 0 1 w w K f σ σ = 2 0 2 w w K f σ σ, = Fatigue notch factor K f. Fatigue

Fatigue fracture

Under a constant cyclic loading or irregular cyclic loading, What is fatigue fracture?

Component fractures

◎ Stress level

Under low stress level below yield stress, fatigue fracture happens

Static fracture

13%

Corrosion, Rupture

3%

Delayed fracture

Stress corrosion 5%

Thermal fatigueCorrosion fatigue

Fretting fatigue

11% Fatigue60%

Low cycle fatigue

8%

◎ Fracture cause

80-90% of fracture is by fatigue

◎ How to fracture

Under cyclic loading, componentsuddenly fractures

Page 3: 6. Fatigue strength - Tokushima U Fatigue.pdf · by the notch Fatigue limit of smooth specimen σ w0 1 0 1 w w K f σ σ = 2 0 2 w w K f σ σ, = Fatigue notch factor K f. Fatigue

Fatigue and fatigue fracture surface

(1)Origin …

(2)Crack growth …

(3)Macroscopic …

(4)Microscopic …

(5)Other …

Surface of componentStress concentration (Notch, Key, Inclusion)

After crack initiation, along max. stress plane

Smooth surface, macroscopically few plasticdeformation

Beach mark (under irregular cyclic stress)

Striation

When crack grows, cross section decreases

Ductile fracture

Rough surface

Fatigue fracture

Page 4: 6. Fatigue strength - Tokushima U Fatigue.pdf · by the notch Fatigue limit of smooth specimen σ w0 1 0 1 w w K f σ σ = 2 0 2 w w K f σ σ, = Fatigue notch factor K f. Fatigue

Fatigue fracture factor

time

Stre

ss

Tens

ion(

+)

Com

pres

sion

(-)

Main factor

(1) Max. tensile stress

(2) Cyclic stress

(3) Number of cyclic stress

Large

・ Stress concentration

・ Environment

・ Residual stress

・ Metallurgical

・ Combined stress

・ Over loading

◎ other causes

Page 5: 6. Fatigue strength - Tokushima U Fatigue.pdf · by the notch Fatigue limit of smooth specimen σ w0 1 0 1 w w K f σ σ = 2 0 2 w w K f σ σ, = Fatigue notch factor K f. Fatigue

Cyclic stress I

(b)Partial alter

σm< σa‐1 < R < 0

(c)Pulsating

R = 0σm= σa

(d)Partial Pulsating

σm> σa

R > 0

σmin

σm

σmax

σa

σm : Mean stress

σa : Stress amplitude

R : Stress ratio

2minmax σσ

σ+

=m

2minmax σσ

σ−

=a

max

min

σ

σ=R

(a)Alternating

σm= 0R = ‐1

Tens

ion(

+)

Com

pres

sion

(-)

Stre

ss

Time

Definition of cyclic stress

Page 6: 6. Fatigue strength - Tokushima U Fatigue.pdf · by the notch Fatigue limit of smooth specimen σ w0 1 0 1 w w K f σ σ = 2 0 2 w w K f σ σ, = Fatigue notch factor K f. Fatigue

Cyclic stress test

Alternating

σm= 0R = ‐1

Tens

ion(

+)

Com

pres

sion

(-)

Stre

ss

Time

Rotating fatigue tester

A point on surface of sample

Upper

Side

Lower

Side

Upper

Compression

Tension

0

0

Compression

1cy

cle

Rotating fatigue tester

Specimen

Page 7: 6. Fatigue strength - Tokushima U Fatigue.pdf · by the notch Fatigue limit of smooth specimen σ w0 1 0 1 w w K f σ σ = 2 0 2 w w K f σ σ, = Fatigue notch factor K f. Fatigue

N1

σ1 P

What does P mean

σa=σ1 cyclically applies

Specimen fails N = N1

SーN curve I

Aluminum alloy FailureNon failure

Mildsteel

105 106 107 1080

100

200

300

Cyclic number to failure N

Stre

ss a

mpl

itude

σa

[M

Pa]

S-N curves of almimum alloy and mild steel

Rotaing bendingσm=0 (R=‐1)

Fundamental diagram to evaluate fatigue property

Cyclic stress(stress amplitude σa)- Cyclic number to failure

Nominal stress。 Fatigue lifelog Nf

Page 8: 6. Fatigue strength - Tokushima U Fatigue.pdf · by the notch Fatigue limit of smooth specimen σ w0 1 0 1 w w K f σ σ = 2 0 2 w w K f σ σ, = Fatigue notch factor K f. Fatigue

SーN curve II

Aluminumalloy

Mild steel

Cyclic number to failure N(S-N curves aluminum alloy and mild steel)

FailureNon failure

105 106 107 1080

100

200

300

Stre

ss a

plitu

deσ

a[

MPa

Rotating bendingσm=0 (R=‐1)

Fatig

ue li

mit

Fatigue limit … Clear knee point (Mild steel, Titanium, Carbon steel)⇒ Over 107 cycle, fatigue life = ∞

(Super long life region, σa decreases)

Mild steel

Fatigue limit = 162MPa

Fatig

ue st

reng

th a

t107

107cycles fatiguestrength …

Not clear knee point(Non iron metals)⇒ Fatigue life is not ∞

at N=107cycles , fatigue strength

Aluminum alloy

107fatigue strength= 135MPa

Page 9: 6. Fatigue strength - Tokushima U Fatigue.pdf · by the notch Fatigue limit of smooth specimen σ w0 1 0 1 w w K f σ σ = 2 0 2 w w K f σ σ, = Fatigue notch factor K f. Fatigue

SーN curve Ⅲ

(Extremely Low Cycle Fatigue)

(Low Cycle Fatigue)

(High Cycle Fatigue)

Hysteresis loop σa ; High level

Plastic deformation

Elastic regioσa ; Elastic stress

σa

Cyclic number to failureNf

101 102 103 104 105 106 107

Page 10: 6. Fatigue strength - Tokushima U Fatigue.pdf · by the notch Fatigue limit of smooth specimen σ w0 1 0 1 w w K f σ σ = 2 0 2 w w K f σ σ, = Fatigue notch factor K f. Fatigue

PーSーN curve

N1

P=0.01

N0

P = 0.5(S‐N curve)

P=0.50

50%

σ1

Cyclic number to failure log N

Stre

ss a

mpl

itude

σa

N2

P-S-N curve

P=0.90P=0.99

10% P=0.10

Fatigueprobability

Unevenness of fatigue life

Material, geometry, stress ratio, stress amplitude are constant

Life differs 10 times

N

PN

PN ; Fracture probability at N

Area ; Fracture probability till N

Page 11: 6. Fatigue strength - Tokushima U Fatigue.pdf · by the notch Fatigue limit of smooth specimen σ w0 1 0 1 w w K f σ σ = 2 0 2 w w K f σ σ, = Fatigue notch factor K f. Fatigue

Fatigue limit and mechanical prpertiesⅠMechanical properties

・ Yield strength σS

・ Tensile strength σB

・ Brinnel HB

・ Vickers HV

Fatigue limit σw0

Vickers hardness

SampleDiamond probe Probe

d1

d2

21

22cos2 oaddd

WaSurfaceare

PLHV °==

][ 2

21

/ 854.1 mmkgfdd

W=

(Rotating bending )

◎ Aluminum alloy …

◎ Cupper alloy … Bw σσ 25.00 ≅Bw σσ 33.00 ≅

◎ Iron and steel … Bw σσ 5.00 ≅ ( ) Vw H1.06.10 ±≅σ,

Page 12: 6. Fatigue strength - Tokushima U Fatigue.pdf · by the notch Fatigue limit of smooth specimen σ w0 1 0 1 w w K f σ σ = 2 0 2 w w K f σ σ, = Fatigue notch factor K f. Fatigue

Fatigue limit and mechanical propertiesⅡFatigue limits and static strength of iron and steel

Ratio of tensile

strength (/σB)

Ratio of Vickers (/HV)

Alternating torsion 0.32 0.10

Alternating tension

compression 0.43 0.15

Pulsating tension 0.33 0.11

Plane bending 0.52 0.18

Fatigue limits and static strength of iron and steel

Page 13: 6. Fatigue strength - Tokushima U Fatigue.pdf · by the notch Fatigue limit of smooth specimen σ w0 1 0 1 w w K f σ σ = 2 0 2 w w K f σ σ, = Fatigue notch factor K f. Fatigue

Low cycle fatigue

(Extremely Low Cycle Fatigue)

(Low Cycle Fatigue) Hysteresis loopσa ; High level

(Plastic deformation)

σa

Cyclic number to failureNf

101 102 103 104 105 106 107

Under high temperature,Machine

Cyclic thermal strain

・ Nuclear vessel・ Steam turbine

Short fatigue life

Page 14: 6. Fatigue strength - Tokushima U Fatigue.pdf · by the notch Fatigue limit of smooth specimen σ w0 1 0 1 w w K f σ σ = 2 0 2 w w K f σ σ, = Fatigue notch factor K f. Fatigue

Hysteresis loopⅠ

σa

BHigh loading

AYielding

C

Yielding

(Bauschinger effect )Δσ

εa

σa

ΔεCompression

εpa

σm

εm

D

E

Δεp

Tensile strain

εea

εa

Unloading

Compressionεpa

0

Stre

ssσ

Strain ε

Hysteresis loop

Page 15: 6. Fatigue strength - Tokushima U Fatigue.pdf · by the notch Fatigue limit of smooth specimen σ w0 1 0 1 w w K f σ σ = 2 0 2 w w K f σ σ, = Fatigue notch factor K f. Fatigue

Hysteresis loopⅡ

Δσ

εa

εpa

εa

σm

σa

Δε

εea

εm

D

E

0

Stre

ssσ

Strainε

A

σa

B

εpa

C

Δεp

Hysteresis loop

εpa ; Plastic strain

Δεt ; Total strain range

εea ; Elastic strain

εm ; Mean strain

Δεp ; Plastic strain range

Δεe ; Elastic strain range

ppet EΔε

ΔσΔεΔεΔε +=+=

Area of hysteresis loop = Plastic work/ volume

Low cycle fatigue ⇒ Transfer to heat ⇒ Low speed

Page 16: 6. Fatigue strength - Tokushima U Fatigue.pdf · by the notch Fatigue limit of smooth specimen σ w0 1 0 1 w w K f σ σ = 2 0 2 w w K f σ σ, = Fatigue notch factor K f. Fatigue

Hysteresis loop Ⅲ

Static stress-strain curve

Cyclic stress-strain curve'

2'

2

n

K ⎟⎠⎞

⎜⎝⎛=ΔεΔσ

Δσ ; Cyclic Stress

K’ ;

n’ ; Cyclic hardening index

( General n’≒ 0.15)

Stress range changes with increasing N

・ Annealed steel Δσ increase・ Cold rolling steel Δσdecrease

Till 50% of lifeShape of hysteresis loop saturates

Stre

ss

Δσ

Strain

Δε

Cyclic stress-strain curve

Page 17: 6. Fatigue strength - Tokushima U Fatigue.pdf · by the notch Fatigue limit of smooth specimen σ w0 1 0 1 w w K f σ σ = 2 0 2 w w K f σ σ, = Fatigue notch factor K f. Fatigue

Strain range and fatigue life

103 104102

101

100

10510-3

10-1

10-2

100 101

10-1

Cyclic number to failure Nf

Plas

tic st

rain

ran

geΔε

p

Manson-Coffin law

41=fN

fε2

15.0≈b

CN bfp =Δε

Manson-Coffin relation

Relation between Δεpand Nf of low cycle fatigue

CN bfp =Δε …(式 6.15)

b,C ; Constant(For many materials,b≒0.5)

◎ Nf =1/4 cycle , Δεp=2εf

⎟⎠⎞

⎜⎝⎛

−=⎟

⎟⎠

⎞⎜⎜⎝

⎛=

φε

100100lnln 0

ff A

A◎

A0 ; Cross section beforeA ; Cross section afterφ ; Reduction of areaεf ; Failure ductile

Page 18: 6. Fatigue strength - Tokushima U Fatigue.pdf · by the notch Fatigue limit of smooth specimen σ w0 1 0 1 w w K f σ σ = 2 0 2 w w K f σ σ, = Fatigue notch factor K f. Fatigue

Microscopic fracture appearanceSu

rfac

e

Cyclic stress

Surf

ace

Crack initiation, First stage of crack growth

(Ⅰ)First stage of crack

growth

Enlargement

・ Aluminum alloy…Crack initiation continuously relates to growth

・ Steel, Titanium …Crack size is similar to grain size

Extrusion

Intrusion

Slip band

Page 19: 6. Fatigue strength - Tokushima U Fatigue.pdf · by the notch Fatigue limit of smooth specimen σ w0 1 0 1 w w K f σ σ = 2 0 2 w w K f σ σ, = Fatigue notch factor K f. Fatigue

Microscopic fracture appearanceⅡ

Stage IIa of crack growth process

(Ⅱa)Stage II crack growth

(Ⅰ)

Direction of crack growth

Surf

ace

Cyclic stress

試験片表面

Small crack ⇒ Grow in grain(along slip plane)

Stress concentration gives riseto damage at crack tip

Continuous

Crack growth rate

dNdahrateCrackgrowt =

(a ; crack length、N ; Cyclic number

Crack tip

Intergranular ⇒ DelayGranular ⇒ High

Page 20: 6. Fatigue strength - Tokushima U Fatigue.pdf · by the notch Fatigue limit of smooth specimen σ w0 1 0 1 w w K f σ σ = 2 0 2 w w K f σ σ, = Fatigue notch factor K f. Fatigue

Microscopic fracture appearanceⅢStage IIb of crack growth process

Crack growth direction

Surf

ace

Cyclic stress

試験片表面

(Ⅱa)(Ⅰ) (Ⅱb)Stage II of crack

growth

Microscopic structure effect

Mechanics factor(Stress intensity factor)

transfer

(Striation)

Pure Titanium

cyclemdNda /10分の数μ=

Striation spacing⇒ crack growth rate

Page 21: 6. Fatigue strength - Tokushima U Fatigue.pdf · by the notch Fatigue limit of smooth specimen σ w0 1 0 1 w w K f σ σ = 2 0 2 w w K f σ σ, = Fatigue notch factor K f. Fatigue

Microscopic fracture appearanceⅣStage IIc of crack growth process

(Ⅱa)(Ⅰ) (Ⅱb)

Crack growth direction

Surf

ace

Cyclic stress

(Ⅱc)Stage II of crack growth

Striation

High crack growth rate(High strength steel

⇒Cleavage, intergranularcracking )

Final fracture

Ductile fracture

Page 22: 6. Fatigue strength - Tokushima U Fatigue.pdf · by the notch Fatigue limit of smooth specimen σ w0 1 0 1 w w K f σ σ = 2 0 2 w w K f σ σ, = Fatigue notch factor K f. Fatigue

Crack growth lawⅠLinear fracture mechanics

Small yielding condition ⇒Application to fatigue crack

At crack tip, the same fracture happens

σ

ρ=0

Plastic zone

(b)Same Plastic elastic stress

σ

a1a2

KⅠ1 KⅠ2=

(a)Same elastic stress field

For different crack length, the same stress intensity factor

Elastic stress and elastic plastic stress becomes the same

Crack growth properies

FaKKK ⋅=−= πΔσΔ minmax

Stress intensity factor range ΔK

FaK ⋅= πσmaxmax FaK ⋅= πσminmin,

Page 23: 6. Fatigue strength - Tokushima U Fatigue.pdf · by the notch Fatigue limit of smooth specimen σ w0 1 0 1 w w K f σ σ = 2 0 2 w w K f σ σ, = Fatigue notch factor K f. Fatigue

Crack growth rateⅡ

Δσ

2

Δσ

1

Stre

ss r

ange

Time t(a)

き裂長さ a1

き裂長さ a2 For long a ,

S. I. F. KDriving force Large

(b)

S.I.F

.ran

geΔ

K

Time t

Stress intensity factor range,ΔK, change

aK ∝Δ

Stress ratio = 0

Δσ ; Cyclic stress,a ;

ΔK

1=Δ

K2

Δσ1 >Δσ2

2211 aa ΔσΔσ =

21 KK ΔΔ =⇒

Page 24: 6. Fatigue strength - Tokushima U Fatigue.pdf · by the notch Fatigue limit of smooth specimen σ w0 1 0 1 w w K f σ σ = 2 0 2 w w K f σ σ, = Fatigue notch factor K f. Fatigue

Crack growth rate Ⅲ(Paris law)

・ Resistance of crack growth・ Fatigue life estimation

Threshold

ΔKth ; Threshold S.I.F.

ΔK decrease ⇒ da/dN → 0Lower limit of crack growth

Final failure

Before fractureΔK

(R ; stress ratio,Kfc ; Fatigue fracture toughness)

( )RKK fc −= 1Δ

Stress intensity factor log(ΔK)

Cra

ck g

row

th r

ate

log(

da/d

N)

m

1

Steady growth Paris law

( )mKCdNda

Δ=

C, m ; material constantFor many materilas, m = 2~7

Page 25: 6. Fatigue strength - Tokushima U Fatigue.pdf · by the notch Fatigue limit of smooth specimen σ w0 1 0 1 w w K f σ σ = 2 0 2 w w K f σ σ, = Fatigue notch factor K f. Fatigue

Notch effectⅠ(Notch)

・ Stress concentration at notch root・ Fast crack growth

◎ Notched component⇒ few data of fatigue

Cross section suddenly changes

Hole、 Screw、Key、Defect etc.

(Notch)Origin of crack

Fracture

◎ How to evaluate stress concentration⇒ FEM

Decrease of fatigue strength

凹凸

Page 26: 6. Fatigue strength - Tokushima U Fatigue.pdf · by the notch Fatigue limit of smooth specimen σ w0 1 0 1 w w K f σ σ = 2 0 2 w w K f σ σ, = Fatigue notch factor K f. Fatigue

Non propagating crack

Notch effectⅡ(Fatigue limit of notched material)Fa

tigue

lim

itσ

w

Stress concentration Kt

Fatigue limit of notched material

ρ

Rotating bendA

CFatigue strength σw1

σw0

① Fatigue strengthσw1

For Smooth specimen,Limit stress not to initiate crack

B D

Crack strength σw2

Branch ρ=ρ0

② Crack strength σw2

Fracture stress to occur non-propagatingcrack

Fatigue limit (Two types)

Fatigue limit of notched material

Crack initiates, but not fracture

Page 27: 6. Fatigue strength - Tokushima U Fatigue.pdf · by the notch Fatigue limit of smooth specimen σ w0 1 0 1 w w K f σ σ = 2 0 2 w w K f σ σ, = Fatigue notch factor K f. Fatigue

Notch effectⅢ(Fatigue notch factor Kf)

ρ

Rotating bending

Non-propagting crack

Fatig

ue li

mit

σw

Stress concentration Kt

Fatigue limit of notched specimen

A

CFatigue strength σw1

σw0

B D

Crack strength σw2

Branchρ=ρ0

Branch point B

Material constantDependence on ρ0

① Fatigue strength σw1

ρ>ρ0 ; No non-propagating crack② Crack strength σw2

ρ<ρ0 ; Non-propagating crack

How much is Fatigue limit decreasedby the notch

Fatigue limit of smooth specimen σw0

1

01

w

wfK

σ

σ=

2

02

w

wfK

σ

σ=,

Fatigue notch factor Kf

Page 28: 6. Fatigue strength - Tokushima U Fatigue.pdf · by the notch Fatigue limit of smooth specimen σ w0 1 0 1 w w K f σ σ = 2 0 2 w w K f σ σ, = Fatigue notch factor K f. Fatigue

Fatigue limit and stress concentration

Kt=Kf

Stress concentration Kt

1 2 3 40

0.5

1.0

Fatig

ue li

mit

σw

1/ σ

w0

, σw

2/ σ

w0 S30C

ρ

Rotating bending(d=5mm)

td

t = 0.5mm

Notch depth t = 0.1mm

Different notch depth⇒ Kt of branch point differs

⇒ Kt of branch point differsDifferent diameter

Branch point0

1

w

w

σ

σ

0

2

w

w

σ

σ

・ Fatigue strength σw1

・ Crack strength σw2

0

1

w

w

σ

σ

0

2

w

w

σ

σ

Page 29: 6. Fatigue strength - Tokushima U Fatigue.pdf · by the notch Fatigue limit of smooth specimen σ w0 1 0 1 w w K f σ σ = 2 0 2 w w K f σ σ, = Fatigue notch factor K f. Fatigue

Kt / Kf1

Kt / Kf2

1/ρand Kt/KfⅠ

0 2010

1.0

2.0

0

1/ρ [mm-1]

Kt /

Kf1

, Kt /

Kf2

Relation between Kt / Kf1, Kt / Kf2 and 1/ρ

S30C

Notch depth t = 0.1mmt = 0.5mm

ρ0≒0.5mm

2

「If Elastic Max. stress and notch radii is the same, Fatigue limit is the same. 」

Page 30: 6. Fatigue strength - Tokushima U Fatigue.pdf · by the notch Fatigue limit of smooth specimen σ w0 1 0 1 w w K f σ σ = 2 0 2 w w K f σ σ, = Fatigue notch factor K f. Fatigue

Fatigue limit and non-propagating crackⅠ

σmin=-σa

σmac=+σa

l

Plastic zone

Plastic zone

x Micro-non-propagating crack

δ

(δ: Crack opening displacement)

No opening at crack tip ⇒ Non-propagation

Non-propagation of micro-crack

・ δ ; very small at crack tip

・ like closing

① Size of non-propagating crack

② Size of inclusion and defectEffect on fatigue limit

Fatigue limit of steel

After initiated crack grows,Limited stress which non-propagates

(Threshold stress which crack does not grow.)

Page 31: 6. Fatigue strength - Tokushima U Fatigue.pdf · by the notch Fatigue limit of smooth specimen σ w0 1 0 1 w w K f σ σ = 2 0 2 w w K f σ σ, = Fatigue notch factor K f. Fatigue

Fatigue limit and non-propagating crackⅡ

Fatigue limit of smooth and notched specimen of steelNo notched specimen

Non-propagation

Page 32: 6. Fatigue strength - Tokushima U Fatigue.pdf · by the notch Fatigue limit of smooth specimen σ w0 1 0 1 w w K f σ σ = 2 0 2 w w K f σ σ, = Fatigue notch factor K f. Fatigue

Notch sensitivity

Kt / Kf1

Kt / Kf2

0 2010

1.0

2.0

0

1/ρ [mm-1]

Kt /

Kf1

, Kt /

Kf2

Relation between Kt / Kf1, Kt / Kf2 と 1/ and ρ

S30C

Notch depth t = 0.1mmt = 0.5mm

ρ0≒0.5mm

2

Increase of notch sensitivity

Kt = Kf(Max. notch sensitivity)

11

−=

t

f

KK

η (0<η<1)

Notch sensitivity factor

Kt = 1.67 and ρ=1mm

η= 0.28

η= 0.69

η= 0.88

Pure Ti

S10C

Al alloy

Insensibility

Sensitivity

Page 33: 6. Fatigue strength - Tokushima U Fatigue.pdf · by the notch Fatigue limit of smooth specimen σ w0 1 0 1 w w K f σ σ = 2 0 2 w w K f σ σ, = Fatigue notch factor K f. Fatigue

Size effectρ1

Rotating bending

ρ2

Rotating bending

② Large Surface area (statistical factor)① Stress gradient

Two main factors

Similar size of specimens

⇒ 1/ρ increases

⇒ For the same Kt , Kf1 and Kf2 decrease

Big Size ⇒Strength decreaseFor the same materials,

Size effect

⇒21

, f

t

f

t

KK

KK

increases ⇒ Decrease of fatigue strength

⇒ Probability of existing microcrack increases

Dangerous cross section increases

2

02

1

01 ,

w

wf

w

wf KK

σ

σ

σ

σ==⇒ Σw1 andσw2 increase

Page 34: 6. Fatigue strength - Tokushima U Fatigue.pdf · by the notch Fatigue limit of smooth specimen σ w0 1 0 1 w w K f σ σ = 2 0 2 w w K f σ σ, = Fatigue notch factor K f. Fatigue

Area FECD ;Possible area of Safety use

Mean stress effectⅠ

45°

AlternatingPush-pull

45°

PulsatingPush-pull

0

Stre

ss a

mpl

itude

Mean stress

Diagram of fatigue limit

Diagram of fatigue limit

σT

σw

0

A

B

Effect of mean stress on fatigue limit

A ; Smooth specimen σw0

B ; True facture stress σT

σm

σa

GC

E

-σS

σS

σS

DF

H

Large plastic deformation happens

σS ; Yield stress

Page 35: 6. Fatigue strength - Tokushima U Fatigue.pdf · by the notch Fatigue limit of smooth specimen σ w0 1 0 1 w w K f σ σ = 2 0 2 w w K f σ σ, = Fatigue notch factor K f. Fatigue

Surface effectⅠ (Effect of surface roughness)

0.1 1 10 100

1.0

0.5

Surface roughness Hmax’ [μm]

Fatig

ue st

reng

thm

= σ

w’/σ

w

Annealed steel

SteelTi alloyAl alloy

Bending fatigue

Effect of surface roughness

Decrease of fatigue limitLarge Surfaceroughness

凹凸

Page 36: 6. Fatigue strength - Tokushima U Fatigue.pdf · by the notch Fatigue limit of smooth specimen σ w0 1 0 1 w w K f σ σ = 2 0 2 w w K f σ σ, = Fatigue notch factor K f. Fatigue

Surface effect

Page 37: 6. Fatigue strength - Tokushima U Fatigue.pdf · by the notch Fatigue limit of smooth specimen σ w0 1 0 1 w w K f σ σ = 2 0 2 w w K f σ σ, = Fatigue notch factor K f. Fatigue

Estimation of fatigue lifeⅠ (Low cycle fatigue)

102 103 105104

10-2

10-3

10-1

Stra

in r

ange

Δε

p, Δε

t

Number of cycle to failure Nf

Strain range – fatigue life curve

Manson-coffin law

CN bfp =⋅Δε

Steel

fC ε=55.0≈b 、

ffp N εΔε =⋅ 55.0

Plastic strain range-life curve

Total strain range-life curve

( ) 03.100251.0 53.0 =− ft NΔε

Important total strain Range-fatigue life curve

Practical aspect

Low cycle fatigue

Page 38: 6. Fatigue strength - Tokushima U Fatigue.pdf · by the notch Fatigue limit of smooth specimen σ w0 1 0 1 w w K f σ σ = 2 0 2 w w K f σ σ, = Fatigue notch factor K f. Fatigue

Estimation of fatigue lifeⅡ (Crack growth life)

Crack growth life

Paris law

( )mKCdNda

Δ=

C, m ; Material constantFor many materials,m = 2~7

( ) ( ) ( )∫∫⋅

=⋅

= c

i

c

i

a

a mm

a

a mC daaFCFaC

daN 11

πΔσπΔσ

( ) ( ){ }( ) ( )m

mc

mi

FCm

aa

⋅−

−=

−−−−

πΔσ2

2 2222

ai ; Initial crack lengthac ; Critical crack length

( )∫ ∫== C c

i

N a

a mC daKC

dNN0

Integration

Page 39: 6. Fatigue strength - Tokushima U Fatigue.pdf · by the notch Fatigue limit of smooth specimen σ w0 1 0 1 w w K f σ σ = 2 0 2 w w K f σ σ, = Fatigue notch factor K f. Fatigue

Linear cumulative damage lawⅠ

Under Fluctuating stress, estimation of fatigue life①

Time

Stre

ss

σ1σ2

(a)

Time

Stre

ss

σ1σ2

(b)

2 step 2 stage fluctuating stress

For Stressσ1 , Fatigue life Nf = N1

For Stressσ2 , Fatigue life Nf = N2

Stress range changes during cycle

(D;cumulative damage)

12

2

1

1 =+=Nn

NnD … (

Fatigue damage

After σ1 cycles n1(n1<N1),σ2 cycles n2

Miner law)

Page 40: 6. Fatigue strength - Tokushima U Fatigue.pdf · by the notch Fatigue limit of smooth specimen σ w0 1 0 1 w w K f σ σ = 2 0 2 w w K f σ σ, = Fatigue notch factor K f. Fatigue

Linear cumulative damage lawⅡ

Under Fluctuating stress, estimation of fatigue life②

12

2

1

1 =+=Nn

NnD

After σ1 cycles n1(n1<N1),σ2 cycles n2

Miner law

(When D =1 , fatigue fracture)

D<1 D>1

Time

Stre

ss

σ1σ2

(a)

2 step 2 stage fluctuating stress

(a) Cyclic stress

Actually,

High ⇒ LowTime

Stre

ss

σ1σ2

(b)

(b)Cyclic stress

Low ⇒ High

(For some case, D=0.1~20 ⇒ must modify)

Page 41: 6. Fatigue strength - Tokushima U Fatigue.pdf · by the notch Fatigue limit of smooth specimen σ w0 1 0 1 w w K f σ σ = 2 0 2 w w K f σ σ, = Fatigue notch factor K f. Fatigue

Linear cumulative damage lawⅢ

Stre

ss a

mpl

itude

σa

Number of cycles N

Linear cumulative damage law

σ1

σ2

σ3

N1

σW

n3n1 n2 N2

Miner lawΣ(ni/Ni)=1

N3*

N3=∞

Modified miner law

Page 42: 6. Fatigue strength - Tokushima U Fatigue.pdf · by the notch Fatigue limit of smooth specimen σ w0 1 0 1 w w K f σ σ = 2 0 2 w w K f σ σ, = Fatigue notch factor K f. Fatigue
Page 43: 6. Fatigue strength - Tokushima U Fatigue.pdf · by the notch Fatigue limit of smooth specimen σ w0 1 0 1 w w K f σ σ = 2 0 2 w w K f σ σ, = Fatigue notch factor K f. Fatigue

平均応力・残留応力の影響Ⅱ(疲労限度線図②)

平均応力の影響

残留応力の影響

・ 圧縮残留応力 ⇔ 圧縮の平均応力が作用する

・ 引張り残留応力 ⇔ 引張りの平均応力が作用するに対応する

0

疲労限度σ

a

平均応力 ; σm

疲労限度

⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

⎟⎟⎠

⎞⎜⎜⎝

⎛−=

n

B

mwa

σ

σσσ 10

σB ; 引張り強さ

σm ; 平均応力

σw0 ; 平滑材の疲労限度

σw

0

σB

修正グッドマン線図

n = 1 … 直線

ゲルバー線

n = 2 … 放物線

σS

ゾーダーベルク線

n = 1 … σSに置き換えた

(教科書 P184 図 6.16(b))

Page 44: 6. Fatigue strength - Tokushima U Fatigue.pdf · by the notch Fatigue limit of smooth specimen σ w0 1 0 1 w w K f σ σ = 2 0 2 w w K f σ σ, = Fatigue notch factor K f. Fatigue

切欠材の疲労限度の推定

切欠材の疲労限度の推定

縦軸 ;f

w

K0σ

横軸 ; 引張り強さ σB

σw0 ; 平滑材の疲労限度

Kf ; 切欠係数

σw

0 / K

f

切欠材の疲労限度として評価

0

疲労限度σ

a平均応力 ; σm

σw

0

σB

修正グッドマン線図

ゲルバー線

σS

ゾーダーベルク線

図.疲労限度線図

(教科書 P184 図 6.16(b))

Page 45: 6. Fatigue strength - Tokushima U Fatigue.pdf · by the notch Fatigue limit of smooth specimen σ w0 1 0 1 w w K f σ σ = 2 0 2 w w K f σ σ, = Fatigue notch factor K f. Fatigue

組み合わせ応力下の疲労強度Ⅰ

yM

Mx

z

ab c

d

y

M

M

T

Tx

z

ab c

d

yTx

z

ab c

d

σ σ

y

き裂発生領域

x

45°

(a)曲げ (c)ねじり

y

き裂発生領域

τ

τ

τ

図.曲げ、ねじり組み合わせ応力における最大せん断応力

2maxσ

τ =

σ σ

y

き裂発生領域

τ

τ

τ

θ

(b)曲げ+ねじり

22

max 2τ

στ +⎟

⎠⎞

⎜⎝⎛= ττ =max

(教科書 P186 図 6.17)

Page 46: 6. Fatigue strength - Tokushima U Fatigue.pdf · by the notch Fatigue limit of smooth specimen σ w0 1 0 1 w w K f σ σ = 2 0 2 w w K f σ σ, = Fatigue notch factor K f. Fatigue

組み合わせ応力下の疲労強度Ⅱ

疲労き裂 ⇒ 主として、せん断応力の繰り返しで発生

12

2

max

2

max

=⎟⎟⎠

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛τ

τ

τ

σ⇒

12

0

2

0

=⎟⎟⎠

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

ww τ

τ

σ

σ⇒2

0max

wστ =

0max wστ =

(曲げのとき)

(ねじりのとき)

近似

( ) 20

22 2 wστσ =+⇒ … (式 6.27)

00

2 ww τ

σ= と仮定する

22

max 2τ

στ +⎟

⎠⎞

⎜⎝⎛=

y

M

M

T

Tx

z

ab c

d

(注意)

① 曲げとねじりの応力サイクルの位相差がある時、ない時に比べてτmaxが小さい。

② 切欠材では、曲げとねじりで Kt およびρ0 が異なる。

Page 47: 6. Fatigue strength - Tokushima U Fatigue.pdf · by the notch Fatigue limit of smooth specimen σ w0 1 0 1 w w K f σ σ = 2 0 2 w w K f σ σ, = Fatigue notch factor K f. Fatigue

表面効果と疲労限度Ⅲ (環境の影響)

① 塩水などによる腐食

②高温環境

⇒ 腐食ピットの発生

応力腐食割れ

⇒ 疲労限度 低下

⇒ 疲労限度 低下

⇒ 表面層の酸化、軟化

Page 48: 6. Fatigue strength - Tokushima U Fatigue.pdf · by the notch Fatigue limit of smooth specimen σ w0 1 0 1 w w K f σ σ = 2 0 2 w w K f σ σ, = Fatigue notch factor K f. Fatigue

表面効果と疲労限度Ⅱ (表面処理の影響)

①鋼材の焼きなまし、焼きならし、脱炭

②浸炭、窒化

⑤ メッキ

⑥ コーティング、イオン注入

⇒ C含有量の減少により軟化

⇒ 疲労き裂が発生しやすい

引張り残留応力の発生

⇒ 疲労限度 低下

⇒ 硬度が増す

圧縮残留応力の発生

⇒ 疲労限度 上昇

③表面圧延

④ ショットピーニング⇒ 加工硬化、圧縮残留応力の発生

⇒ 疲労限度 上昇

⇒ メッキ層中の微細な割れ

⇒ 疲労限度 低下

⇒ 強化層の形成 (研究中)

⇒ 疲労限度 上昇

Page 49: 6. Fatigue strength - Tokushima U Fatigue.pdf · by the notch Fatigue limit of smooth specimen σ w0 1 0 1 w w K f σ σ = 2 0 2 w w K f σ σ, = Fatigue notch factor K f. Fatigue

1/ρとKt/Kfによる整理Ⅱ表.材料の引張り強さ、疲労強度、ρ0と近似式の係数

⎟⎠⎞

⎜⎝⎛+⎟

⎠⎞

⎜⎝⎛+⎟

⎠⎞

⎜⎝⎛+=

ρρρ

1111 3

32

2

31

11

AAAKK

f

t …(式 6.20) (ρ>ρ0)

A , B ; 係数

ρ ; 切欠半径⎟⎠⎞

⎜⎝⎛+⎟

⎠⎞

⎜⎝⎛+⎟

⎠⎞

⎜⎝⎛+=

ρρρ

1111 3

32

2

31

12

BBBKK

f

t …(式 6.21) (ρ<ρ0)

(教科書 P181 表 6.2)